Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 3, стр. 321-341

Высшие когнитивные способности птиц: сравнительно-эволюционный анализ

З. А. Зорина 1*, Т. А. Обозова 1**, А. А. Смирнова 1***

1 Биологический факультет, Московский государственный университет им. М.В. Ломоносова
Москва, Россия

* E-mail: zoyazorina17@gmail.com
** E-mail: obozovat@gmail.com
*** E-mail: annsmirn1@gmail.com

Поступила в редакцию 26.08.2020
После доработки 28.10.2020
Принята к публикации 22.12.2020

Аннотация

Сравнительное исследование высших когнитивных способностей животных позволяет оценить эволюционные предпосылки формирования мышления и языка человека. В обзоре будут рассмотрены основные подходы к исследованию мышления животных и проанализированы полученные с их помощью данные. Результаты разноплановых тестов указывают на то, что животные с высоким уровнем развития мозга обладают широким спектром когнитивных способностей. Как и ожидалось, наиболее широкий спектр выявлен у человекообразных обезьян. Сходный по многим показателям спектр обнаружен у высших представителей класса птиц (врановых и попугаеобразных), несмотря на иное строение их мозга. Конвергентное сходство степени развития когнитивных способностей высших представителей млекопитающих и птиц отражает наличие единых факторов, определяющих их эволюцию. Сравнение нескольких видов врановых и попугаеобразных указывает на то, что высокий уровень развития их когнитивных способностей обусловлен высоким уровнем организации их мозга, а не особенностями экологии.

Ключевые слова: сравнительные исследования, мышление животных, высшие когнитивные способности, врановые, попугаи, понгиды

DOI: 10.31857/S004446772103014X

Список литературы

  1. Багоцкая М.С., Смирнова А.А., Зорина З.А. Врановые способны понимать логическую структуру задач на подтягивание закрепленной на нити приманки. Журнал высшей нервной деятельности им. И.П. Павлова. 2010. 60 (5): 543–551.

  2. Богословская Л.С., Поляков Г.И. Пути морфологического прогресса нервных центров у высших позвоночных. М.: Наука, 1981. 159 с.

  3. Воронов Л.Н. Особенности морфологического строения конечного мозга серой вороны и сизого голубя в связи с развитием их элементарной рассудочной деятельности. Журнал высшей нервной деятельности им. И.П. Павлова. 1999. 49 (4): 684–688.

  4. Голубева Т.Б., Корнеева Е.А. Головной мозг и сенсорные системы птиц: Современное представление. Орнитология: история, традиции, проблемы и перспективы. Материалы Всерос. конф., посвящ. 120-летию со дня рождения профессора Г.П. Дементьева. М.: 2018, 119–129 с.

  5. де Вааль Ф. Достаточно ли мы умны, чтобы судить об уме животных? М.: Альпина нон-фикшн, 2017. 404 с.

  6. Доброхотова Л.П. Сравнительное изучение нейронного строения неостриатума птиц, обладающих различной способностью к экстраполяции. Журнал высшей нервной деятельности им. И.П. Павлова. 1978. 28 (1): 162–168.

  7. Зорина З.А., Обозова Т.А. Новое о мозге и когнитивных способностях птиц. Зоол. журн. 2011. 90 (7): 784–802.

  8. Зорина З.А., Смирнова А.А., Обозова Т.А. Мышление птиц: понимают ли попугаи, о чем они говорят? Природа. 2018. 10: 58–64.

  9. Зорина З.А., Смирнова А.А. Количественные оценки у серых ворон: обобщение по относительному признаку “большее множество”. Журнал высшей нервной деятельности им. И.П. Павлова. 1995. 45 (3): 490–499.

  10. Зорина З.А., Смирнова А.А. Количественная оценка серой вороной множеств, состоящих из 15–25 элементов. Журнал высшей нервной деятельности им. И.П. Павлова. 1996. 46 (2): 298–301.

  11. Зорина З.А., Смирнова А.А. О чем рассказали “говорящие” обезьяны (Способны ли высшие животные к оперированию символами?). М.: ЯСК, 2006. 423 с.

  12. Зорина З.А., Смирнова А А. Обобщение, умозаключение по аналогии и другие когнитивные способности врановых птиц. Когн. исслед.: Сборник науч. трудов. Ред. В.Д. Соловьев, Т.В. Черниговская. М.: Языки славянских культур, 2008. 148–165 с.

  13. Зорина З.А., Смирнова А.А. История и методы экспериментального изучения мышления животных. Современная экспериментальная психология: В 2 т. Под ред. В. А. Барабанщикова. М.: Институт психологии РАН, 2011. Т. 1. 61–87 с.

  14. Зорина З.А., Смирнова А.А. История экспериментального изучения мышления животных и роль идей Л.В. Крушинского в формировании современных представлений об элементарном мышлении. В кн.: Формирование поведения животных в норме и патологии: К 100-летию со дня рождения Л.В. Крушинского (1911–1984). Сост. И.И. Полетаева, З.А. Зорина М.: Языки славянских культур, 2013. 8–71 с.

  15. Зорина З.А., Смирнова А.А. Современные представления о когнитивных способностях врановых птиц. Орнитология: история, традиции, проблемы и перспективы. Материалы Всерос. конф., посвящ. 120-летию со дня рождения профессора Г.П. Дементьева. М.: 2018. 163–168 с.

  16. Зорина З.А., Смирнова А.А., Лазарева О.Ф. Умеют ли вороны “cчитать”? Природа. 2001. 2: 72–79.

  17. Зорина З.А., Федотова И.Б. Роль Wulst в решения экстраполяционной задачи у вороновых птиц. Журнал высшей нервной деятельности им. И.П. Павлова. 1981. 31 (1): 185–187.

  18. Крушинский Л.В. Биологические основы рассудочной деятельности. М.: Изд-во Московского университета, 1977. 270 с.

  19. Леонтьев А.Н. Избранные психологические произведения: В 2-х томах. Т. 2. М.: Педагогика, 1983. 320 с.

  20. Лурия А.Р. Основы нейропсихологии. М.: Издательский центр “Академия”, 2003. 384 с.

  21. Новоселова С.Л. Развитие интеллектуальной основы деятельности приматов. М.: Воронеж. 2001. 287 с.

  22. Обозова Т.А., Смирнова А.А., Зорина З.А. Ранний онтогенез поведения у слетков большеклювой вороны (Corvus macrorhynchos) их естественной среде обитания. Зоол. журн. 2018. 97 (1): 56–66.

  23. Обозова Т.А., Багоцкая М.С., Смирнова А.А., Зорина З.А. Сравнительная оценка способности разных видов птиц к решению протоорудийных задач. Зоол. журн. 2013. 92 (6): 731–741.

  24. Обозова Т.А., Смирнова А.А., Зорина З.А. Клесты-еловики (Loxia curvirostra) способны к обобщению признака “больше”. Журнал высшей нервной деятельности им. И.П. Павлова. 2009. 59 (3): 305–312.

  25. Обухов Д.К., Обухова Е.В. Эволюция конечного мозга птиц и млекопитающих – два пути развития – один результат. Морфология. 2010. 137 (4): 145.

  26. Обухов Д., Андреева Н. Эволюционная морфология нервной системы позвоночных. М.: Юрайт, 2019. 340 с.

  27. Пепперберг И. Алекс и я. М.: Языки славянских культур. 2017. 334 с.

  28. Полетаева И.И., Перепелкина О.В., Зорина З.А. Когнитивные способности животных (рассудочная деятельность) в свете генетических представлений. Вавил. журн. генет. и сел. 2017. 21 (4): 421–426.

  29. Самулеева М.В., Смирнова A.A., Обозова Т.А., Зорина З.А. Исследование формирования отношений симметрии между “знаком” и “обозначаемым” у серых ворон. Когнитивная наука в Москве: новые исследования (Москва, 16 июня 2015 г.). Материалы Третьей Международной постерной конференции под общ. ред. Е.В. Печенкова, М.В. Фаликман. М.: БукиВеди, 2015. 390–394 с.

  30. Самулеева М.В., Смирнова А.А. Изучение особенностей процесса символизации у серых ворон. Журнал высшей нервной деятельности им. И.П. Павлова. 2019. 69 (4): 505–513.

  31. Смирнова А.А. О способности птиц к символизации. Зоол. журн. 2011. 90 (7): 803–810.

  32. Смирнова А.А., Зорина З.А. Когнитивные способности птиц: обобщение, использование понятий, символизация, умозаключения. В кн.: Формирование поведения животных в норме и патологии: К 100-летию со дня рождения Л.В. Крушинского (1911–1984). Сост. И.И. По-летаева, З.А. Зорина. М.: Языки славянских культур, 2013. 148–168 с.

  33. Смирнова А.А., Самулеева М.В. Исследование факторов, влияющих на внимание к зоне нанесения метки у серых ворон. Эволюционная и сравнительная психология в России: Теория и практика исследований под ред. И.А. Хватова, А.И. Харитонова. М.: Когито-Центр, 2017: 142–151.

  34. Смирнова А.А., Калашникова Ю.А., Самулеева М.В., Зорина З.А. Оценка способности серых ворон (Corvus cornix) узнавать свое отражение в зеркале. Зоол. журн. 2019. 98 (11): 1223–1232.

  35. Филатова О. Киты и дельфины. М: Фитон ХХI, 2018. 168 с.

  36. Фирсов Л.А., Чиженков А.М. Эволюция интеллекта (присущ ли разум животным?). Санкт-Петербург: Изд-во “Астер-Х”. 2004. 125 с.

  37. Adriaense J.E.C., Martin J.S., Schiestl M., Lamm C., Bugnyar T. Negative emotional contagion and cognitive bias in common ravens (Corvus corax). Proc. Natl. Acad. Sci. 2019. 116 (23): 11547 LP–11552.

  38. Agrillo C., Petrazzini M. E. M., Bisazza A. Numerical abilities in fish: A methodological review. Behav. Proc. 2017. 141 (2): 161–171.

  39. Anderson J.R., Gallup G.G. Mirror self-recognition: a review and critique of attempts to promote and engineer self-recognition in primates. Primates. 2015. 56 (4): 317–326.

  40. Auersperg A.M.I., Kacelnik A., von Bayern A.M.P. Explorative learning and functional inferences on a five-step means-means-end problem in Goffin’s Cockatoos (Cacatua goffini). Plos One. 2013. 8: e68979.

  41. Auersperg A.M.I. Exploration technique and technical innovations in corvids and parrots. Elsevier: Anim. creat. innov. 2015. 2: 45–72.

  42. Auersperg A.M.I., Borasinski S., Laumer I., Kacelnik A. Goffin’s cockatoos make the same tool type from different materials. Biol. Lett. 2016. 12 (11): 20160689.

  43. Auersperg A.M.I., Köck C., O’Hara M., Huber L. Tool making cockatoos adjust the lengths but not the widths of their tools to function. PLoS One. 2018. 13 (11): e0205429.

  44. Auersperg A.M.I., Szabo B., von Bayern A.M.P., Bugnyar T. Object permanence in the goffin cockatoo (Cacatua goffini). J. Comp. Psy. 2014a. 128 (1): 88–98.

  45. Auersperg A.M.I., Szabo B., vonBayern A.M.P., Kacelnik A. Spontaneous innovation in tool manufacture and use in a Goffin’s cockatoo. Curr. Biol. 2012. 22: 903–904.

  46. Auersperg A.M.I., von Bayern A.M.P., Gajdon G.K., Huber L., Kacelnik A. Flexibility in problem solving and tool use of kea and New Caledonian crows in a multi access box paradigm. PLoS One. 2011a. 6 (6): e20231.

  47. Auersperg A.M.I., von Bayern A.M.I., Weber S., Szabadvari A., Bugnyar T., Kacelnik A. Social transmission of tool use and tool manufacture in Goffin cockatoos (Cacatua goffini). Proc. R. Soc. B Biol. Sci. 2014b. 281: 20140972.

  48. Auersperg A.M.I., von Bayern A.M.P. Who’s a clever bird – Now? A brief history of parrot cognition. Behaviour. 2019. 156: 1–17.

  49. Auersperg A.M.I., Huber L., Gajdon G.K. Navigating a tool end in a specific direction: stick-tool use in kea (Nestor notabilis). Biol. Lett. 2011b. 7: 825–828.

  50. Bania A.E., Harris S.H., Kinsley R., Boysen S.T. Constructive and deconstructive tool modification by chimpanzees (Pan troglodytes). Anim. Cogn. 2009. 12 (1): 85–95.

  51. Bastos A.P.M., Taylor A.H. Macphail’s Null Hypothesis of Vertebrate Intelligence: Insights From Avian Cognition. Front. Psychol. 2020. 11: 1692.

  52. Beinhauer I., Bugnyar T., Auersperg A. Prospective but not retrospective tool selection in the Goffin’s cockatoo (Cacatua goffiniana). Behaviour. 2018. 156 (5): 633–659.

  53. Bird C., Emery N. Insightful Problem Solving and Creative Tool Modification by Captive Nontool-using Rooks. Proc. Natl. Acad. Sci. 2009a. 106 (25):10370–10375.

  54. Bird C., Emery N. Rooks Use Stones to Raise the Water Level to Reach a Floating Worm. Curr. Biol. 2009b. 19 (16): 1410–1414.

  55. Biro D., Matsuzawa T. Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals, and the introduction of zero. Anim. Cogn. 2001. 4: 193–199.

  56. Boeckle M., Clayton N.S. A raven’s memories are for the future. Science. United States. 2017. 357 (6347): 126–127.

  57. Bohn M., Allritz M., Call J., Völter C.J. Information seeking about tool properties in great apes. Sci. Rep. 2017. 7: 10923.

  58. Bond A., Diamond J. Thinking Like a Parrot: Perspectives from the Wild. University of Chicago Press, 2019. 296 pp.

  59. Bortot M., Stancher G., Vallortigara G. Transfer from number to size reveals abstract coding of magnitude in honeybees. iSci. 2020. 23 (5): 101122.

  60. Boucherie P.H., Loretto M.C., Massen J.J.M., Bugnyar T. What constitutes “social complexity” and “social intelligence” in birds? Lessons from ravens. Behav. Ecol. Sociobiol. 2019. 73: 12.

  61. Bourjade M., Call J., Pelé M., Maumy M., Dufour V. Bonobos and orangutans, but not chimpanzees, flexibly plan for the future in a token-exchange task. Anim. Cogn. 2014. 17: 1329–1340.

  62. Boysen S.T., Berntson G.G. Numerical competence in a chimpanzee (Pan troglodytes). J. Comp. Psychol. US. 1989. 103 (1): 23–31.

  63. Boysen S.T., Hallberg K.I. Primate numerical competence: Contributions toward understanding nonhuman cognition. Cogn. Sci. 2000. 24: 423–443.

  64. Brecht K.F. A multi-facetted approach to investigating theory of mind in corvids. Doctoral thesis. 2017.

  65. Briscoe S.D., Albertin C.B., Rowell J.J., Ragsdale C.W. Neocortical Association Cell Types in the Forebrain of Birds and Alligators. Curr. Biol. 2018; 28(5): 686–696.

  66. Brucks D., von Bayern A.M.P. Parrots Voluntarily Help Each Other to Obtain Food Rewards. Curr. Biol. England. 2020. 30 (2): 292–297.

  67. Bugnyar T., Reber S.A., Buckner C. Ravens attribute visual access to unseen competitors. Nat. Commun. 2016. 7: 10506.

  68. Buniyaadi A., Taufique S.K.T., Kumar V. Self-recognition in corvids: evidence from the mirror-mark test in Indian house crows (Corvus splendens). J. Ornithol. 2020. 161 (2): 341–350.

  69. Byrne R.W., Bates L.A., Moss C.J. Elephant cognition in a primate perspective. Comp. Cogn. Behav. Rev. 2009. 4: 1–15.

  70. Caicoya Á.L., Amici F., Ensenyat C., Colell M. Object permanence in Giraffa Camelopardalis: First steps in Giraffes’ physical cognition. J. Comp. Psychol. 2019. 133 (2): 207–214.

  71. Call J. Object permanence in orangutans (Pongo pygmaeus), chimpanzees (Pan troglodytes), and children (Homo sapiens). J. Comp. Psychol. 2001. 115: 159–171.

  72. Call J., Tomasello M. Does the chimpanzee have a theory of mind? 30 years later. Trends Cogn. Sci. 2008. 12: 187–192.

  73. Catala A., Mang B., Wallis L., Huber L. Dogs demonstrate perspective taking based on geometrical gaze following in a Guesser–Knower task. Anim. Cogn. 2017. 20 (4): 581–589.

  74. Cheke L., Bird C., Clayton N. Tool-use and instrumental learning in the Eurasian jay (Garrulus glandarius). Anim. Cogn. 2011. 14 (3): 441–455.

  75. Cheke L.G., Clayton N.S. Eurasian jays (Garrulus glandarius) overcome their current desires to anticipate two distinct future needs and plan for them appropriately. Biol. Lett. 2012. 8: 171–175.

  76. Cibulski L., Wascher C.A., Weiss B.M., Kotrschal K. Familiarity with the experimenter influences the performance of Common ravens (Corvus corax) and Carrion crows (Corvus corone corone) in cognitive tasks. Behav. Proc. 2014. 103 (100): 129–137.

  77. Clary D., Kelly D.M. Graded mirror self-recognition by Clark’s nutcrackers. Sci. Rep. 2016. 6 (1): 1–11.

  78. Clayton N., Emery N. What Do Jays Know About Other Minds and Other Times? Nat. Rev. Neurosci. 2003b. 4 (8): 685–691.

  79. Clayton N.S., Bussey T.J., Dickinson A. Can animals recall the past and plan for the future? Nature Reviews Neuroscience. 2003a. 4: 685–691.

  80. Clayton N.S., Dickinson A. Episodic-like memory during cache recovery by scrub jays. Nature. England. 1998. 395 (6699): 272–274.

  81. Clayton N.S., Emery N.J. Avian Models for Human Cognitive Neuroscience: A Proposal. Neuron. United States. 2015. 86 (6): 1330–1342.

  82. Clayton N.S., Griffiths D.P., Emery N. J., Dickinson A. Elements of episodic-like memory in animals. Philos. Trans. R. Soc. Lond. B. Biol Sci. 2001. 356 (1413): 1483–1491.

  83. Cnotka J., Güntürkün O., Rehkämper G., Gray R.D., Hunt G.R. Extraordinary large brains in tool-using New Caledonian crows (Corvus moneduloides). Neurosci. 2016. Lett. 433: 241–245.

  84. Collier-Baker E., Davis J., Nielsen M., Suddendorf T. Do chimpanzees (Pan troglodytes) understand single invisible displacement? Anim. Cogn. 2006. 9: 55–61.

  85. Collier-Baker E., Suddendorf T. Do chimpanzees (Pan troglodytes) and 2-year-old children (Homo sapiens) understand double invisible displacement? J. Comp. Psychol. 2006. 120: 89–97.

  86. Correia S.P.C., Dickinson A., Clayton N.S. Western scrub-jays anticipate future needs independently of their current motivational state. Curr. Biol. 2007. 17: 856–861.

  87. Dally J.M., Emery N.J., Clayton N.S. Avian theory of mind and counter espionage by food-caching western scrub-jays (Aphelocoma californica). Eur. J. Dev. Psychol. 2010. 7: 17–37.

  88. de Blois S.T., Novak M.A., Bond M. Object permanence in orangutans (Pongo pygmaeus) and squirrel monkeys (Saimiri sciureus). J. Comp. Psychol. 1998. 112: 137–152.

  89. Dunbar R.I.M. Neocortex size as a constraint on group size in primates. J. Hum. Evol. 1992. 22: 469–493.

  90. Elmore L.C., Magnotti J.F., Katz J.S., Wright A.A.: Change detection by rhesus monkeys (Macaca mulatta) and pigeons (Columba livia). J. Comp. Psychol. 2012. 126: 203–212.

  91. Emery N.J. Bird brain: An exploration of avian intelligence. Princeton University Press, 2016. 192 pp.

  92. Emery N.J., Clayton N.S. The mentality of crows: convergent evolution of intelligence in corvids and apes. Science. 2004. 306: 1903–1907.

  93. Emery N.J. Cognitive ornithology: The evolution of avian intelligence. Phil. Trans. R. Soc. Bio. Sci. 2006. 361: 23–43.

  94. Emery N.J., Clayton N.S. An avian perspective on simulating other minds. Learn. Behav. 2016. 44 (3): 203–204.

  95. Emery N.J., Clayton N.S. Comparative social cognition. Annu. Rev. Psychol. 2009. 60: 87–113.

  96. Emery N.J., Clayton N.S. Evolution of the avian brain and intelligence. Curr. Biol. England. 2005. 15 (23): 946–950.

  97. Emery N.J., Clayton N.S., Frith C.D. Introduction. Social intelligence: From brain to culture. Philos. Trans. R. Soc. Biol. Sci. 2007. 362: 485–488.

  98. Erdöohegyi Á., Topál J., Virányi Z., Miklósi Á. Dog-logic: inferential reasoning in a two-way choice task and its restricted use. Anim. Behav. 2007. 74: 725–737.

  99. Fagot J., Tomonaga M. Global and local processing in humans (Homo sapiens) and chimpanzees (Pan troglodytes): Use of a visual search task with compound stimuli. J. Comp. Psychol. 1999. 113: 3–12.

  100. Fayet A.L., Hansen E.S., Biro D. Evidence of tool use in a seabird Proc. Natl. Acad. Sci. U.S.A. 2020. 117: 1277–1279.

  101. Fiset S., Plourde V. Object permanence in domestic dogs (Canislupus familiaris) and gray wolves (Canis lupus). J. Comp. Psychol. 2013. 127: 115–127.

  102. Flemming T.M., Thompson R.K.R., Beran M.J., Washburn D.A. Analogical reasoning and the differential outcome effect: Transitory bridging of the conceptual gap for rhesus monkeys (Macaca mulatta). J. Exp. Psychol. Anim. Behav. Proces. 2011. 37: 353–360.

  103. Fouts R.S., Mills S.T. Next of kin: My conversations with chimpanzees. NY: Harper Paperbacks, 1998. 448 pp.

  104. Fouts R.S., Waters G. Chimpanzee sign language and Darwinian continuity: Evidence for a neurology continuity of language. Neurol. Res. 2001. 23: 787–794.

  105. Gallup G.G. Chimpanzees: Self-recognition. Science. 1970. 167: 86–87.

  106. Gallup G.G., Anderson J.R. Self-recognition in animals: Where do we stand 50 years later? Lessons from cleaner wrasse and other species. Psychol. Conscious. (Wash. D. C.). Theory Research, and Practice. 2020. 7 (1): 46–58.

  107. Gardner R. A. Review of sign language studies of cross-fostered chimpanzees. J. Wash. Acad. Sci. 2007. 93 (1): 37–57.

  108. Gruber R., Schiestl M., Boeckle M., Frohnwieser A., Miller R., Gray R.D., Clayton N.S., Taylor A.H. New caledonian crows use mental representations to solve metatool problems. Curr. Biol. 2019. 29 (4): 686–692.

  109. Güntürkün O. The convergent evolution of neural substrates for cognition. Psychol. Res. 2012. 76: 212–219.

  110. Güntürkün O., Bugnyar T. Cognition without Cortex. Trends Cogn. Sci. Eng. 2016. 20 (4): 291–303.

  111. Güntürkün O., Ströckens F., Scarf D., Colombo M. Apes, feathered apes, and pigeons: differences and similarities. Curr. Opin. Behav. Sci. 2017. 16: 35–40.

  112. Gutiérrez-Ibáñez C., Iwaniuk A.N., Wylie D.R. Parrots have evolved a primate-like telencephalic-midbrain-cerebellar circuit. Sci. Rep. 2018. 8: 9960.

  113. Habl C., Auersperg A.M.I. The keybox: Shape-frame fitting during tool use in Goffin’s cockatoos (Cacatua goffiniana). PLoS One. 2017. 12 (11): e0186859.

  114. Hanus D., Mendes N., Tennie C., Call J. Comparing the Performances of Apes (Gorilla gorilla, Pan troglodytes, Pongo pygmaeus) and Human Children (Homo sapiens) in the Floating Peanut Task. PLoS One. 2011. 6 (6): e19555.

  115. Hare B. From hominoid to hominid mind: What changed and why? Annu. Rev. Anthropol. 2011. 40 (1): 293–309.

  116. Heinrich B. Conflict, cooperation, and cognition in the common raven. Advances in the Study of Behavior. 2011. 43: 189–237.

  117. Heinrich B., Bugnyar T. Testing problem solving in ravens: String-pulling to reach food. Ethology. 2005. 111: 962–976.

  118. Herculano-Houzel S. Numbers of neurons as biological correlates of cognitive capability. Curr. Opin. Behav. Sci. 2017. 16: 1–7.

  119. Heyes C.M. Animal mindreading: What’s the problem? Psychon. Bull. Rev. 2015. 22 (2): 313–327.

  120. Hill H., Dietrich S., Cadena A., Raymond J., Cheves K. More than a fluke: Lessons learned from a failure to replicate the false belief task in dolphins. Int. J. Comp. Psychol. 2018. 31: 37823.

  121. Hochmann J-R., Tuerk A.S., Sanborn S., Zhu R., Long R., Dempster M., Carey S. Children’s representation of abstract relations in relational/array match-to-sample tasks. Cogn. Psychol. 2017. 99: 17–43.

  122. Hoffmann A., Rüttler V., Nieder A. Ontogeny of object permanence and object tracking in the carrion crow, Corvus corone. Anim. Behav. 2011. 82 (2): 359–367.

  123. Holzhaider J.C., Hunt G.R., Gray, R.D. Social learning in new Caledonian crows. Learn. Behav. 2010. 38(3): 206–219.

  124. Hopkins W.D., Washburn D.A. Matching visual stimuli on the basis of global and local features by chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). Anim. Cogn. 2002. 5: 27–31.

  125. Huber L., Gajdon G.K. Technical intelligence in animals: The kea model. Anim. Cogn. 2006. 9: 295–305.

  126. Hunt G.R., Holzhaider, J.C., Gray R.D. Prolonged Parental Feeding in Tool-Using New Caledonian Crows. Ethology. 2012. 118: 423–430.

  127. Irie N., Hasegawa T. Elephant psychology: What we know and what we would like to know. Jpn. Psychol. Res. 2009. 51: 177–181.

  128. Irie N., Hiraiwa-Hasegawa M., Kutsukake N. Unique numerical competence of Asian elephants on the relative numerosity judgment task. J. Ethol. 2019. 37: 111–115.

  129. Jacobs I., Kabadayi C., Osvath M. The Development of Sensorimotor Cognition in Common Ravens (Corvus corax) and its Comparative volution. Animal Behavior and Cognition. 2019. 6 (3): 194–212.

  130. Jacobs I.F., Osvath M. The String-Pulling Paradigm in Comparative Psychology. Am. Psych. Assoc. 2015. 129 (2): 89–120.

  131. Jarvis E., Güntürkün O., Bruce L., Csillag A., Karten H., Kuenzel W., Medina L., Paxinos G., Perkel D., Shimizu T., Striedter G., Wildv J., Ball G., Dugas-Ford J., Durand S., Hough G., Husband S., Kubikova L., Lee D. Avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. 2005. 6 (6): 151–159.

  132. Jelbert S.A., Hosking R.J., Taylor A.H., Gray R.D. Mental template matching is a potential cultural transmission mechanism for New Caledonian crow tool manufacturing traditions. Sci. Rep. 2018. 8: 8956–8958.

  133. Jelbert S.A., Miller R., Schiestl M., Boeckle M., Cheke L.G., Gray R.D., Taylor A.H., Clayton N.S. New Caledonian crows infer the weight of objects from observing their movements in a breeze. Proc. Biol. Sci. 2019. 286: 20182332.

  134. Jelbert S.A., Taylor A.H., Cheke L.G., Clayton N.S., Gray R.D. Using the Aesop’s fable paradigm to investigate causal understanding of water displacement by New Caledonian crows. PLoS One. 2014. 9: e92895.

  135. Jones T.B., Kamil A.C. Tool-making and tool-using in the Northern blue jay. Science. 1973. 180: 1076–1078.

  136. Kabadayi C., Bobrowicz K., Osvath M. The detour paradigm in animal cognition. Anim. Cogn. 2018. 21: 21–35.

  137. Kabadayi C., Krasheninnikova A., O’Neill L., van de Weijer J., Osvath M., von Bayern A.M.P. Are parrots poor at motor self-regulation or is the cylinder task poor at measuring it? Anim. Cogn. 2017a. 20 (6): 1137–1146.

  138. Kabadayi C., Osvath M. Ravens parallel great apes in flexible planning for tool-use and bartering. Science. United States. 2017b. 357 (6347): 202–204.

  139. Kabadayi C., Taylor L.A., von Bayern A.M., Osvath M. Ravens, New Caledonian crows and jackdaws parallel great apes in motor self-regulation despite smaller brains. R. Soc. Open. Sci. 2016. 3: 160104.

  140. Kacelnik A., Chappell J., Kenward B., Weir A.A.S. Cognitive Adaptations for Tool-Related Behavior in New Caledonian Crows. Comparative Cognition: Experimental Explorations of Animal Intelligence. Oxford University Press, 2012. 720 pp.

  141. Kamil A.C., Balda R.P., Olson D.J. Performance of four seed-caching corvid species in the radial-arm maze analog. J. Comp. Psychol. United States. 1994. 108 (4): 385–393.

  142. Kaminski J., Call J., Tomasello M. Chimpanzees know what others know, but not what they believe. Cognition. 2008. 109 (2): 224–234.

  143. Kano F., Krupenye C., Hirata S., Call J. Eye tracking uncovered great apes' ability to anticipate that other individuals will act according to false beliefs. Commun. Integr. Biol. 2017. 10: 1–12.

  144. Kenward B., Rutz C., Weir A.A.S., Kacelnik A. Development of tool use in New Caledonian crows: inherited action patterns and social influences. Anim. Behav. 2006.72: 1329–1343.

  145. Kenward B., Schloegl C., Rutz C., Weir A.A.S., Bugnyar T., Kacelnik A. On the evolutionary and ontogenetic origins of tool-oriented behaviour in New Caledonian crows (Corvus moneduloides). Biol. J. Linn. Soc. Lond. 2011. 102 (4): 870–877.

  146. Kenward B., Weir A.A.S., Rutz C. Kacelnik A. Tool manufacture by naive juvenile crows. Nature. 2005. 433: 121.

  147. Klump B.C., Masuda B.M., St Clair J.J.H., Rutz C. Preliminary observations of tool-processing behaviour in Hawaiian crows Corvus hawaiiensis. Commun. Integr. Biol. 2018 .11 (4): e1509637.

  148. Koehler O. Thinking without words. Proceedings of the 14th International Congress of Zoology. 1953. Copenhagen, 1956. 75–88 pp.

  149. Köhler W. The mentality of apes. NY: Harcourt, Brace and World. 1925.

  150. Krachun C., Plowright C.M.S. When pigeons in motion lose sight of their food: Behaviour on visible displacement tasks revisited. Canadian J. Zool. 2007 85: 644–652.

  151. Kraft F.L., Forštová T., Urhan A.U., Exnerová A., Brodin A. No evidence for self-recognition in a small passerine, the great tit (Parus major) judged from the mark/mirror test. Anim Cogn. 2017. 20 (6): 1049–1057.

  152. Krasheninnikova A., Berardi R., Lind M.A., O’Neil L., Von Bayern A.M.P. Primate cognition test battery in parrots. Behaviour. 2019a. 156: 721–761.

  153. Krasheninnikova A., Bräger S., Wanker R. Means-end comprehension in four parrot species: explained by social complexity. Anim. Cogn. Germany. 2013. 16 (5): 755–764.

  154. Krasheninnikova A., Brucks D., Blanc S., von Bayern A. Assessing African grey parrots’ prosocial tendencies in a token choice paradigm. R. Soc. Open Sci. 2019b. 6 (12): 190696.

  155. Krupenye C., Call J. Theory of mind in animals: Current and future directions. Wiley Interdiscip. Rev. Cogn. Sci. United States. 2019. 10 (6): e1503.

  156. Lambert M., Jacobs I., Osvath M., von Bayern A. Birds of a feather? Parrot and corvid cognition compared. Behaviour. 2018. 156: 505–594.

  157. Laumer I.B., Auersperg A.M.I., Bugnyar T., Call J. Orangutans (Pongo abelii) make flexible decisions relative to reward quality and tool functionality in a multi-dimensional tool-use task. PLoS ONE. 2019. 14 (2): e0211031.

  158. Laumer I.B., Bugnyar T., Auersperg A.M.I. Flexible decision-making relative to reward quality and tool functionality in Goffin cockatoos (Cacatua goffiniana). Sci. Rep. 2016. 6: 28380.

  159. Laumer I.B., Bugnyar T., Reber S.A., Auersperg A.M.I. Can hook-bending be let off the hook? Bending/unbending of pliant tools by cockatoos. Proc. Biol. Sci. 2017. 284 (1862): 20171026.

  160. Lazareva O.F., Smirnova A.A., Bagozkaja M.S., Zorina Z.A., Rayevsky V.V., Wasserman E.A. Transitive responding in hooded crows requires linearly ordered stimuli. 2004. J. Exp. Anal. Behav. 82: 1–19.

  161. Lee V.E., McIvor G.E., Thornton A. Testing relationship recognition in wild jackdaws (Corvus monedula). Sci. Rep. 2019. 9 (1): 6710.

  162. Lefebvre L., Nicolakakis N., Boire D. Tools and brains in birds. Behaviour. 2002. 139 (3): 939–973.

  163. Legg E.W., Ostojić L., Clayton N.S. Caching at a distance: A cache protection strategy in Eurasian jays. Anim. Cogn. 2016. 19 (4): 753–758.

  164. Lethmate J. Tool-using skills of orang-utans. J. Hum. Evol. 1982.11: 49–64.

  165. Logan C.J., Breen A.J., Taylor A.H., Gray R.D., Hoppitt W.J.E. How New Caledonian crows solve novel foraging problems and what it means for cumulative culture. Learn. Behav. 2016. 44: 18–28.

  166. Lyn H. Apes and the evolution of language: Taking stock of 40 years of research. In J. Vonk, T.K. Shackelford (Eds.), Oxford Library of Psychology. The Oxford handbook of comparative evolutionary psychology. UK: Oxford University Press, 2012. 356–378 pp.

  167. Magnotti J.F., Katz J.S., Wright A.A., Kelly D.M. Superior abstract-concept learning by Clark’s nutcrackers (Nucifraga columbiana). Biol. Lett. 2015. 11: 20150148.

  168. Magnotti J.F., Wright A.A., Leonard K., Katz J.S., Kelly D.M. Abstract-concept learning in Black-billed magpies (Pica hudsonia). Psychon. Bull. Rev. 2017. 24: 431–435.

  169. Maler L. Brain Evolution: Intelligence without a Cortex. Curr. Biol. 2018. 28: 213–215.

  170. Manriquea H.M., Molina A.C., Posada S., Colell M. Vertical string-pulling in green jays (Cyanocorax yncas). Behav. Proc. 2017. 140: 74–80.

  171. Matsui H., Hunt G.R., Oberhofer K., Ogihara N., McGowan K.J., Mithraratne K., Yamasaki T., Gray R.D., Izawa E.I. Adaptive bill morphology for enhanced tool manipulation in New Caledonian crows. Sci. Rep.2016. 6: 22776.

  172. Matsuzawa T. Use of numbers by a chimpanzee. Nature. 1985. 315: 57–59.

  173. McGrew W.C. Is primate tool use special? Chimpanzee and New Caledonian crow compared. Philos. Trans. R. Soc. Lond. B. Biol Sci. 2013. 368 (1630): 20120422.

  174. Mendes N., Hanus D., Call J. Raising the level: Orangutans use water as a tool. Biol. Lett. 2007. 3 (5): 453–455.

  175. Miller R., Boeckle M., Jelbert S.A., Frohnwieser A., Wascher C.A.F., Clayton N.S. Self-control in crows, parrots and nonhuman primates. Wiley Interdisciplinary Reviews: Cognitive Science. 2019. 10.

  176. Miller R., Gruber R., Frohnwieser A., Schiestl M., Jelbert S.A., Gray R.D., Boeckle M., Taylor A.H., Clayton N.S. Decision-making flexibility in New Caledonian crows, young children and adult humans in a multi-dimensional tool-use task. PLoS ONE. 2020. 15 (3).

  177. Morrison R., Reiss D. Precocious development of self-awareness in dolphins. PLoS One. 2018. 13 (1): e0189813.

  178. Murofushi K. Numerical matching behavior by a chimpanzee (Pan troglodytes): Subitizing and analogue magnitude estimation. Jpn. Psychol. Res. 1997. 39: 140–153.

  179. O’Hara M., Mioduszewska B., Haryoko T., Prawiradilaga D.M., Huber L., Auersperg A. Extraction without tooling around – The first comprehensive description of the foraging- and socio-ecology of wild Goffin’s cockatoos (Cacatua goffiniana). Behaviour. 2019. 156: 661–690.

  180. Obozova T., Smirnova A., Zorina Z., Wasserman E. Analogical reasoning in amazons. Anim. Cogn. 2015. 18: 1363–1371.

  181. Oden D.L., Thompson R.K.R., Premack D. Spontaneous Transfer of Matching by Infant Chimpanzees (Pan troglodytes). J. Exp. Psychol. Anim. Behav. Proces. 1988.14: 140–145.

  182. Olkowicz S., Kocourek M., Lučan R.K., Porteš M., Fitch W.T., Herculano-Houzel S., Němec P. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl. Acad. Sci. U. S. A. 2016. 113 (26): 7255–7260.

  183. Osthaus B., Lea S., Slater A. Dogs (Canis lupus familiaris) fail to show understanding of means end connections in a string pulling task. Anim. Cogn. 2005. 8: 37–47.

  184. Ostojić L., Cheke L.G., Shaw R.C., Legg E.W., Clayton N.S. Desire-state attribution: Benefits of a novel paradigm using the foodsharing behavior of Eurasian jays (Garrulus glandarius). Commun. Integr. Biol. 2016. 9 (2): e1134065.

  185. Ostojić L., Legg E.W., Brecht K.F., Lange F., Deininger C., Mendl M., Clayton N.S. Current desires of conspecific observers affect cache-protection strategies in California scrub-jays and Eurasian jays. Curr. Biol. 2017. 27 (2): 51–53.

  186. Osvath M., Kabadayi C., Jacobs I. Independent Evolution of Similar Complex Cognitive Skills: The Importance of Embodied Degrees of Freedom. Anim. Behav. Cogn. 2014. 1 (3): 249–264.

  187. Osvath M., Persson T. Great apes can defer exchange: A replication with different results suggesting future oriented behavior. Front. Psychol. 2013. 4: 698.

  188. Pack A.A. Experimental studies of dolphin cognitive abilities. In D.L. Herzing & C.M. Johnson (Eds.). Dolphin communication and cognition: Past, present, and future Cambridge, MA: MIT Press, 2015. 175–200 pp.

  189. Pailian H., Carey S.E., Halberda J., Pepperberg I.M. Age and Species Comparisons of Visual Mental Manipulation Ability as Evidence for its Development and Evolution. Sci. Rep. 2020. 10: 7689.

  190. Pepperberg I.M., Willner M.R., Gravitz L.B. Development of Piagetian object permanence in grey parrot (Psittacus erithacus). J. Comp. Psychol. 1997. 111 (1): 63–75.

  191. Pepperberg I.M. Acquisition of the same/different concept by an African Grey parrot (Psittacus erithacus): Learning with respect to categories of color, shape, and material. Anim. Learn. Behav. 1987. 15: 423–432.

  192. Pepperberg I.M. Grey parrot numerical competence: a review. Anim. Cogn. 2006. 9: 377–391.

  193. Pepperberg I.M. Grey Parrots (Psittacus erithacus) – Cognitive and Communicative Abilities. Field and Laboratory Methods in Animal Cognition. Cambridge University Press, 2018. 329–353 pp.

  194. Pepperberg I.M. The Alex studies: cognitive and communicative abilities of grey parrots. UK: Harvard Univ. Press, 2009. 448 pp.

  195. Pepperberg I.M. The Comparative Psychology of Intelligence: Some Thirty Years Later. Front. Psychol. 2020. 11: 973.

  196. Pepperberg I.M., Carey S. Grey parrot number acquisition: the inference of cardinal value from ordinal position on the numeral list. Cognition. 2012. 125: 219–232.

  197. Pepperberg I.M., Funk M.S. Object permanence in four species of psittacine birds: An African Grey parrot (Psittacus erithacus), an Illiger mini macaw (Ara maracana), a parakeet (Melopsittacus undulatus), and a cockatiel (Nymphicus hollandicus). Anim. Learn. Behav. 1990. 18 (1): 97–108.

  198. Pepperberg I.M., Gordon J.D. Number comprehension by a grey parrot (Psittacus erithacus), including a zero-like concept. J. Comp. Psychol. United States. 2005. 119 (2): 197–209.

  199. Pepperberg I.M., Gray S.L., Mody S., Cornero F.M., Carey S. Logical reasoning by a Grey parrot? A case study of the disjunctive syllogism. Behaviour. 2019. 156: 409–445.

  200. Piaget J. The Construction of Reality in the Child. NY: Basic Books, 1954.

  201. Plotnik J.M., Brubaker D.L., Dale R., Tiller L.N., Mumby H.S., Clayton N.S. Elephants have a nose for quantity. Proc. Natl. Acad. Sci. U.S.A. 2019. 116 (25): 12566–12571.

  202. Plotnik J.M., Clayton N.S. Convergent cognitive evolution across animal taxa: Comparisons of chimpanzees, corvids and elephants. Concepts: New Directions in the Study of Concepts. MIT Press: Cambridge, MA, 2015. 29–56 pp.

  203. Plotnik J.M., de Waal F.B., Reiss D. Self-recognition in an Asian elephant. Proc. Natl. Acad. Sci. U.S.A. 2006. 103 (45): 17053–17057.

  204. Plotnik J.M., Shaw R.C., Brubaker D.L., Tiller L.N., Clayton N.S. Thinking with their trunks: Elephants use smell but not sound to locate food and exclude nonrewarding alternatives. Anim. Behav. 2014. 88: 91–98.

  205. Poletaeva I.I., Zorina Z.A. A Genetic Approach to the Study of Simple Cognitive Abilities in Animals. Russian J. Cogn. Sci. 2014. 1 (3): 31–55.

  206. Pollok B., Prior H., Güntürkün O. Development of object permanence in food-storing magpies (Pica pica). J. Comp. Psychol. 2000. 114 (2): 148–157.

  207. Portmann A. Études sur la cérébralisation chez les oiseaux: II Les indices intra cérébraux. Alauda. 1947. 15: 1–15.

  208. Portmann A. Études sur la cérébralisationchez les oiseaux. I. Alauda. 1946. 14: 1–20.

  209. Povinelli D.J. Folk physics for apes: The chimpanzee’s theory of how the world works. Oxford, UK: Oxford University Press, 2000. 408 pp.

  210. Premack D. The codes of man and beasts. Behav. Brain. Sci. 1983. 6 (1): 125–136.

  211. Price E.E., Lambeth S.P., Schapiro S.J., Whiten A. A potent effect of observational learning on chimpanzee tool construction. Proc. R. Soc. Lond. B. 2009. 276 (1671): 3377–3383.

  212. Prior H., Schwarz A., Gunturkun O. Mirror-induced behavior in the magpie (Pica pica): evidence of self-recognition. PLoS Biol. 2008. 6 (8): 1642–1650.

  213. Redshaw J., Taylor A.H., Suddendorf T. Flexible Planning in Ravens? Trends Cogn. Sci. 2017. 21: 821–822.

  214. Reiner A. Avian evolution: from Darwin’s finches to a new way of thinking about avian forebrain organization and behavioural capabilities. Biol. Lett. 2009. 5 (1): 122–124.

  215. Reiner A., Perkel D.J., Bruce L.L., Butler A.B., Csillag A., Kuenzel W., Medina L., Paxinos G., Shimizu T., Striedter G., Wild M., Ball G.F., Durand S., Gütürkün O., Lee D.W., Mello C. V, Powers A., White S.A., Hough G., Kubikova L., Smulders T.V., Wada K., Dugas-Ford J., Husband S., Yamamoto K., Yu J., Siang C., Jarvis E.D. The Avian Brain Nomenclature Forum: Terminology for a New Century in Comparative Neuroanatomy. J. Comp. Neurol. 2004. 473: 1–6.

  216. Reiss D., Marino L. Mirror self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proc. Natl. Acad. Sci. U.S.A. 2001. 98 (10): 5937–5942.

  217. Rilling J.K. Comparative primate neurobiology and the evolution of brain language systems. Curr. Opinion. Neurobiol. 2014. 28: 10–14.

  218. Roelofs Y. Tool use in birds – An overview of reported cases, ontogeny and underlying cognitive abilities. Doctoral thesis. 2010. 31 pp.

  219. Rooijakkers E.F., Kaminski J., Call J. Comparing dogs and great apes in their ability to visually track object transpositions. Anim. Cogn. 2009. 12: 789–796.

  220. Rumbaugh D.M. With Apes in mind: Emergents, communication and competence. KB Press: New Holland, 2013. 280 pp.

  221. Rutz C., Hunt G.R., St Clair J.J.H. Corvid Technologies: How Do New Caledonian Crows Get Their Tool Designs? Curr. Biol. 2018. 28: 1109–1111.

  222. Rutz C., Klump B.C., Komarczyk L., Leighton R., Kramer J., Wischnewski S., Sugasawa S., Morrissey M.B., James R., St Clair J.J.H., Switzer R., Masuda B. Discovery of species-wide tool use in the Hawaiian crow. Nature. 2016a. 537: 403–407.

  223. Rutz C., Sugasawa S., van der Wal J.E.M., Klump B.C., St Clair J.J.H. Tool bending in New Caledonian crows. R. Soc. Open Sci. 2016b. 3 (8): 160439.

  224. Sabbatini G., Truppa V., Hribar A., Gambetta B., Call J., Visalberghi E. Understanding the functional properties of tools: chimpanzees(Pan troglodytes) and capuchin monkeys (Cebus paella) attend to tool features differently. Anim. Cogn. 2012. 15: 577–590.

  225. Salwiczek L.H., Emery N.J., Schlinger B., Clayton N.S. The Development of Caching and Object Permanence in Western Scrub-Jays (Aphelocoma californica): Which Emerges First? J. Comp. Psychol. 2009. 123 (3): 295–303.

  226. Samuleeva M., Smirnova A. Emergence of reflexivity relation without identity matching-to-sample training in hooded crows (Corvus cornix). Cogn. Neurosci. 2020. 65: 157–162.

  227. Savage-Rumbaugh E.S., Rumbaugh D.M., Fields W.M. Empirical Kanzi: the ape language controversy, revisited. Skeptic. 2009. 15: 25–33.

  228. Sayol F., Downing P.A., Iwaniuk A.N., Maspons J., Sol D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 2018. 9: 2820.

  229. Sayol F., Lefebvre L., Sol D. Relative brain size and its relation with the associative pallium in birds. Behav. Evol. 2016. 87: 69–77.

  230. Scheiber I.B.R., Weiß B.M., Hirschenhauser K., Wascher C.A.F., Nedelcu I.T., Kotrschal K. Does “Relationship Intelligence” Make Big Brains in Birds? Open Biol. J. 2008. 1: 6–8.

  231. Schmitt V., Pankau B., Fischer J. Old world monkeys compare to apes in the primate cognition test battery. PLoS One. 2012. 7 (4): e32024.

  232. Schwing R., Weiss F., Tichy A., Gajdon G. Testing the causal understanding of water displacement by kea (Nestor notabilis). Behaviour. 2019. 156: 1–32.

  233. Seed A., Emery N., Clayton N. Intelligence in corvids and apes: a case of convergent evolution? Ethology. 2009. 115: 401–420.

  234. Seed A., Seddon E., Greene B., Call J. Chimpanzee ‘folk physics’: bringing failures into focus. Philos. Trans. R. Soc. Lond. B. Biol Sci. 2012. 367: 2743–2752.

  235. Seed A., Tebbich S., Emery N., Clayton S. Investigating physical cognition in rooks, Corvus frugilegus. Curr. Biol. 2006. 16 (7): 697–701.

  236. Shanahan M., Bingman V.P., Shimizu T., Wild M., Güntürkün O. Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front Comput Neurosci. 2013. 7: 89.

  237. Shumaker R.W., Walkup K.R., Beck B.B. Animal tool behavior: The use and manufacture of tools by animals. Baltimore, MD: Johns Hopkins University Press, 2011. 282 pp.

  238. Smirnova A., Zorina Z., Obozova T., Wasserman E. Crows spontaneously exhibit analogical reasoning. Curr. Biol. 2015. 25 (2): 256–260.

  239. Smirnova A.A., Lazareva O.F., Zorina Z.A. Use of number by crows: investigation by matching and oddity learning. J. Exp. Anal. Behav. 2000. 73: 163–176.

  240. Stanton L., Davis E., Johnson S., Gilbert A., Benson-Amram S. Adaptation of the Aesop’s Fable paradigm for use with raccoons (Procyon lotor): considerations for future application in non-avian and non-primate species. Anim. Cogn. 2017. 20 (6): 1147–1152.

  241. Taylor A.H. Corvid cognition. Wiley Interdisciplinary Reviews: Cognitive Science. 2014. 5: 361–372.

  242. Taylor A.H. Folk Physics for Crows? Anim. Behav. Cogn. 2020. 7: 452–456.

  243. Taylor A.H., Hunt G.R., Gray R.D. Context-dependent tool use in New Caledonian crows. Biol. Lett. 2012. 8 (2): 205–207.

  244. Taylor A.H., Knaebe B., Gray R.D. An end to insight? New Caledonian crows can spontaneously solve problems without planning their actions. Proc. Royal Soc. B 2012. 279 (1749): 4977–4981.

  245. Tebbich S., Seed A.M., Emery N.J., Clayton N.S. Non-tool-using rooks, Corvus frugilegus, solve the trap-tube problem. Anim. Cogn. 2007. 10: 225–231.

  246. Tornick J.K., Rushia S.N., Gibson B.M. Clark’s nutcrackers (Nucifraga columbiana) are sensitive to distance, but not lighting when caching in the presence of a conspecific. Behav. Proc. 2016. 123: 125–133.

  247. Ujfalussy D.J., Miklósi Á., Bugnyar T. Ontogeny of object permanence in a non-storing corvid species, the jackdaw (Corvus monedula). Anim. Cogn. 2013. 16 (3): 405–416.

  248. van Casteren A. Tool Use: Crows Craft the Right Tool for the Job. Curr. Biol. 2017. 27 (24): 1314–1316.

  249. van der Vaart E., Hemelrij C.K. ‘Theory of mind’ in animals: ways to make progress. Synthese. 2014. 191 (3): 335–354.

  250. van Horik J.O., Clayton N.S., Emery N.J. Convergent Evolution of Cognition in Corvids, Apes and Other Animals. The Oxford Handbook of Comparative Evolutionary Psychology. Oxford University Press, 2012. 80–101 pp.

  251. Visalberghi E., Sabbatini G., Taylor A.H., Hunt G.R. Cognitive insights from tool use in nonhuman animals. In J. Call, G.M. Burghardt, I.M. Pepperberg, C.T. Snowdon, T. Zentall (Eds.), APA handbooks in psychology. APA handbook of comparative psychology: Perception, learning, and cognition, 2017. 673–701 pp.

  252. Völter C.J., Call J. The cognitive underpinnings of flexible tool use in Great Apes. J. Exp. Psychol. Anim. Learn. Cogn. 2014. 40 (3): 287–302.

  253. von Bayern A.M.P., Danel, S., Auersperg A.M.I., Mioduszewska B., Kacelnik A. Compound tool construction by New Caledonian crows. Scientific Reports. 2018. 8: 1–8.

  254. von Bayern A.M.P., Jacobs I., Osvath M. Tool-using puffins prickle the puzzle of cognitive evolution. Proc. Natl. Acad. Sci. U.S.A. 2020. 117: 2737–2739.

  255. Vonk J. Matching based on biological categories in Orangutans (Pongo abelii) and a Gorilla (Gorilla gorilla gorilla). PeerJ. 2013. 1: e158.

  256. Wang L., Luo Y., Wang X., Maierdiyali A., Chang H., Li Z. Azure-winged magpies solve string-pulling tasks by partial understanding of the physical cognition. CurrentZoology 2019. 65 (4): 385–392.

  257. Wasserman E., Castro L., Fagot J. Relational thinking in animals and humans: From percepts to concepts. APA handbook of comparative psychology: Perception, learning, and cognition. American Psychological Association, 2017. 359–384 pp.

  258. Wasserman E.A., Young M.E., Castro L. Mechanisms of same–differentconceptualization: entropy happens! Curr. Opin. Behav. Sci. 2021. 37: 19–28.

  259. Weir A.A.S., Chappell J., Kacelnik A. Shaping of hooks in new caledonian crows. Science. 2002. 297 (5583): 981.

  260. Werdenich D., Huber L. A case of quick problem solving in birds: string pulling in keas, Nestor notabilis. Anim. Behav. 2006. 71 (4): 855–863.

  261. Whitt E., Douglas M., Osthaus B., Hocking I. Domestic cats (Felis catus) do not show causal understanding in a string_pulling task. Anim. Cogn. 2009. 12 (5): 739–743.

  262. Wilson B., Mackintosh N.J., Boakes R.A. Transfer of relational rules in matching and oddity learning by pigeons and corvids. Q. J. Exp. Psychol. Sect. B. 1985. 37: 313–332.

  263. Wimpenny J.H., Weir A.A.S., Clayton L., Rutz C., Kacelnik A. Cognitive processes associated with sequential tool use in New Caledonian crows. PLoS One. 2009. 4 (8): e6471.

  264. Wright A.A., Magnotti J.F., Katz J.S., Leonard K., Kelly D.M. Concept learning set-size functions for Clark’s nutcrackers. J. Exp. Anal. Behav. 2016. 105: 76–84.

  265. Wright A.A., Magnotti J.F., Katz J.S., Leonard K., Vernouillet A., Kelly D.M. Corvids Outperform Pigeons and Primates in Learning a Basic Concept. Psychol. Sci. 2017. 8: 437–444.

  266. Zentall T.R., Pattiso K.F. Now You See It, Now You Don’t: Object Permanence in Dogs. Current Directions in Psychological Science. 2016. 25(5): 357–362.

  267. Zentall T.R., Raley O.L. Object permanence in the Pigeon (Columba livia): Insertion of a delay prior to choice facilitates visible- and invisible-displacement accuracy. J. Comp. Psy. 2019. 133 (1): 132–139.

  268. Zentall T.R., Wasserman E.A., Urcuioli P.J. Associative concept learning in animals. J. Exp. Anal. Behav. 2014. 101(1): 130–151.

  269. Zucca P., Milos N., Vallortigara G. Piagetian object permanence and its development in Eurasian jays (Garrulus glandarius). Anim. Cogn. 2007. 10: 243–258.

Дополнительные материалы отсутствуют.