Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 3, стр. 306-320

Серотониновая система в оогенезе млекопитающих

Ю. Б. Шмуклер 1*, Н. М. Алешина 1, Л. А. Мальченко 1, Д. А. Никишин 1

1 ФГБУН Институт биологии развития им. Н.К. Кольцова РАН
Москва, Россия

* E-mail: yurishmukler@yahoo.com

Поступила в редакцию 15.12.2020
После доработки 16.02.2021
Принята к публикации 02.03.2021

Аннотация

Трансмиттеры, в частности серотонин, наряду с классической функцией передачи нервного импульса участвуют в целом ряде регуляторных процессов на протяжении всего онтогенеза, в том числе реализующихся задолго до формирования нервной системы. Рассмотрены структура и функции серотониновой системы в оогенезе млекопитающих, источники и механизмы аккумулирования трансмиттера в ооцитах, а также экспрессия компонентов серотониновой системы – рецепторов, ферментов синтеза и деградации, а также мембранного и везикулярного транспортеров в клетках женской репродуктивной системы млекопитающих. Приведены данные о влиянии блокаторов обратного захвата серотонина (SERT) на оогенез и эмбриогенез.

Ключевые слова: серотонин, оогенез, ооцит, гранулеза, кумулюс, рецептор, транспортер, триптофангидроксилаза, декарбоксилаза ароматических аминокислот

DOI: 10.31857/S0044467721030084

Список литературы

  1. Бузников Г.А. Низкомолекулярные регуляторы зародышевого развития. 1967. Москва, Наука. 265 с.

  2. Бузников Г.А. Нейротрансмиттеры в эмбриогенезе. 1987. М. Наука

  3. Бузников Г.А. Донервные трансмиттеры как регуляторы эмбриогенеза. Современное состояние проблемы. Онтогенез. 2007. 38 (4): 262–270.

  4. Бузников Г.А., Манухин Б.Н. Влияние серотонина на эмбриональную моторику голожаберных моллюсков. Ж. общ. биол. 1960. 21 (5): 347–352.

  5. Бузников Г.А., Шмуклер Ю.Б. Влияние препаратов-антимедиаторов на межклеточные связи у ранних зародышей морских ежей. Онтогенез. 1978. 9 (2): 173–178.

  6. Бузников Г.А., Мальченко Л.А., Никитина Л.А., Галанов А.Ю., Еманов В.С. Эффект нейротрансмиттеров и их антагонистов на созревание ооцитов. 1. Эффект серотонина и его антагонистов на чувствительность ооцитов морской звезды к 1-метиладенину. Онтогенез. 1990. 21: 375–380.

  7. Григорьев Н.Г. Кортикальный слой цитоплазмы – возможное место действия донервных трансмиттеров. Ж. эвол. биохим. физиол. 1988. 24 (5): 625–629.

  8. Коштоянц Х.С. Проблемы энзимохимии возбуждения и торможения и эволюции функций нервной системы. Изд. АН СССР. 1963. Москва.

  9. Мартынова Л.Е. Гаструляция у морского ежа Strongylocentrotus droebachiensis в норме и при обработке различными веществами. Онтогенез. 1981. 12: 310–315.

  10. Никитина Л.А., Мальченко Л.А., Теплиц Н.А., Бузников Г.А. Эффект серотонина и его аналогов на созревание ооцитов in vitro. Онтогенез. 1988. 19: 336–343.

  11. Никитина Л.А., Трубникова О.Б., Бузников Г.А. Эффекты нейротрансмиттеров и их антагонистов на созревание ооцитов. Эффект антагонистов серотонина на созревание in vitro ооцитов амфибий. Онтогенез. 1993. 24: 229–236.

  12. Никишин Д.А., Семенова М.Н., Шмуклер Ю.Б. Экспрессия генов трансмиттерных рецепторов в раннем развитии морского ежа Paracentrotus lividus. Онтогенез. 2012. 43 (3): 212–216.

  13. Никишин Д.А., Алешина Н.М., Семенова М.Л., Шмуклер Ю.Б. Локализация серотонина и его мембранного транспортера в яичнике мыши. Современная наука: актуальные проблемы теории и практики. Серия “Естественные и технические науки”. 2017а. № 11: 22–25.

  14. Никишин Д.А., Алешина Н.М., Семенова М.Л., Шмуклер Ю.Б. Динамика экспрессии компонентов серотонинергической системы в клетках гранулезы развивающегося овариального фолликула и при лютеинизации. Гены и клетки. 2017б. 12 (4): 37–42.

  15. Никишин Д.А., Алешина Н.М., Шмуклер Ю.Б. Синтез и мембранный транспорт серотонина в развивающемся овариальном фолликуле мыши. Доклады Академии наук. 2018а. 478 (1): 103–106.

  16. Никишин Д.А., Храмова Ю.В., Багаева Т.С., Семенова М.Л., Шмуклер Ю.Б. Экспрессия компонентов серотонинергической системы в фолликулогенезе и доимплантационном развитии мыши. Онтогенез. 2018б. 49 (3): 208–216.

  17. Никишин Д.А., Алешина Н.М., Семенова М.Л., Шмуклер Ю.Б. Влияние серотонина на экспрессию маркеров функционального состояния клеток гранулезы в культуре in vitro. Фундаментальные аспекты психического здоровья, 2018в. № 4: 13–17.

  18. Никишин Д.А., Храмова Ю.В., Алешина Н.М., Мальченко Л.А., Шмуклер Ю.Б. Опосредованное ооцитом влияние серотонина на функциональный статус клеток гранулезы. Онтогенез, 2021. 52 (2): 000–000 в печати.

  19. Ростомян М.A., Абрамян К.С., Бузников Г.А., Гусарева Э.В. Электронно-цитохимическое выявление аденилатциклазы у ранних эмбрионов морского ежа. Цитология. 1985. 27: 877–881.

  20. Шмуклер Ю.Б. Межклеточные взаимодействия у ранних зародышей морских ежей. III. Влияние нейрофармакологических препаратов на тип дробления половинных зародышей Scaphechinus mirabilis. Онтогенез. 1981. 12 (4): 404–409.

  21. Шмуклер Ю.Б. Специфическое связывание [H3]8-OH-DPAT ранними зародышами морского ежа Strongylocentrotus intermedius. Биол. Мембр. 1992. 9 (10–11): 1167–1169.

  22. Шмуклер Ю.Б., Никишин Д.А. Трансмиттерные системы в эмбриогенезе – современное состояние проблемы. Успехи физиологических наук. 2018. 49 (4): 81–92.

  23. Шмуклер Ю.Б., Бузников Г.А., Григорьев Н.Г., Maльченко Л.A. Влияние циклических нуклеотидов на чувствительность ранних зародышей морских ежей к цитотоксическим нейрофармакологическим препаратам. Бюлл. эксп. биол. мед. 1984. 97 (3): 354–355.

  24. Aktas H., Wheeler M.B., First N.L., Leibfried-Rutledge M.L. Maintenance of meiotic arrest by increasing [cAMP]i may have physiological relevance in bovine oocytes. J. Reprod. Fertil. 1995. 105: 237–245.

  25. Aluigi M.G., Diaspro A., Ramoino P., Russo P., Falugi C. The sea urchin, Paracentrotus lividus, as a model to investigate the onset of molecules immunologically related to the α-7 subunit of nicotinic receptors during embryonic and larval development. Curr. Drug Targets. 2012. 13 (5): 587–593.

  26. Amenta F., Vega J.A., Ricci A., Collier W.L. Localization of 5-hydroxytryptamine-like immunoreactive cells and nerve fibers in the rat female reproductive system. Anat. Rec. 1992. 233. (3): 478–484.

  27. Amireault P., Dubé F. Intracellular cAMP and calcium signaling by serotonin in mouse cumulus-oocyte complexes. Mol. Pharmacol. 2005a. 68 (6): 1678–1687.

  28. Amireault P., Dubé F. Serotonin and its antidepressant-sensitive transport in mouse cumulus-oocyte complexes and early embryos. Biol. Reprod. 2005б. 73 (2): 358–365.

  29. Amireault P., Sibon D., Côté F. Life without peripheral serotonin: insights from tryptophan hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks. ACS Chem. Neurosci. 2013. 4 (1): 64–71.

  30. Azmitia E.C. Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull. 2001. 56 (5): 413–424.

  31. Basu B., Desai R., Balaji J., Chaerkady R., Sriram V., Maiti S., Panicker. Serotonin in pre-implantation mouse embryos is localized to the mitochondria and can modulate mitochondrial potential.MM. Reproduction. 2008. 135 (5): 657–669.

  32. Batta S.K., Knudsen J.F. Calcium concentration in cumulus enclosed oocytes of rats after treatment with pregnant mares serum. Biol. Reprod. 1980. 22: 243–246.

  33. Beyer T., Danilchik M., Thumberger T., Vick P., Tisler M., Schneider I., Bogusch S., Andre P., Ulmer B., Walentek P., Niesler B., Blum M., Schweickert A. 2012. Serotonin signaling is required for Wnt-dependent GRP specification and leftward flow in Xenopus. Curr. Biol. 22, 33–39.

  34. Bòdis J., Bognàr Z., Hartmann G., Török A., Csaba I.F. Measurement of noradrenaline, dopamine and serotonin contents in follicular fluid of human graafian follicles after superovulation treatment. Gynecol. Obstet. Invest. 1992. 33 (3): 165–167.

  35. Bòdis J., Török A., Tinneberg H.R., Hanf V., Papenfuss F., Schwarz H. Serotonin induces progesterone release from human granulosa cells in a superfused granulosa cell system. Archives of Gynecology and Obstetrics. 1993. 253 (2): 59–64.

  36. Burnik-Papler T., Vrtacnik-Bokal E., Maver A., Kopitar A.N., Lovrečić L. Transcriptomic analysis and meta-analysis of human granulosa and cumulus cells. PloS One. 2015. 10 (8): e0136473.

  37. Buznikov G.A., Marshak T.L., Malchenko L.A., Nikitina L.A., Shmukler Yu.B., Buznikov A.G., Rakic Lj., Whitaker M.J. Serotonin and acetylcholine modulate the sensitivity of early sea urchin embryos to protein kinase C activators. Comp. Biochem. Physiol. 1998. 120A (2): 457–462.

  38. Buznikov G.A., Nikitina L.A., Galanov A.Y., Malchenko L.A., Trubnikova O.B. The control of oocyte maturation in the starfish and amphibians by serotonin and its antagonists. Int. J. Dev. Biol. 1993. 37: 363–364.

  39. Buznikov G.A., Peterson R.E., Nikitina L.A., Bezuglov V.V., Lauder J.M. The pre-nervous serotonergic system of developing sea urchin embryos and larvae: pharmacologic and immunocytochemical evidence. Neurochem. Res. 2005. 30 (6–7): 825–837.

  40. Cabrera R.M., Lin Y.-L., Law E., Kim J., Wlodarczyk B.J. The teratogenic effects of sertraline in mice. Birth Defects Res. 2020. 112 (13): 1014–1024.

  41. Capasso A., Creti P., De Petrocellis B., De Prisco P., Parisi E. Role of dopamine and indolamine derivatives in the regulation of sea urchin adenylate cyclase. Biochem. Biophys. Res. Comm. 1988. 154: 758–764.

  42. Cerdà J., Subhedar N., Reich G., Wallace R.A., Selman K. Oocyte sensitivity to serotonergic regulation during the follicular cycle of the teleost Fundulus heteroclitus. Biol. Reprod. 1998. 59 (1): 53–61.

  43. Chaiyamoon A., Tinikul R., Chaichotranunt S., Poomthong T., Suphamungmee W., Sobhon P., Tinikul Y. Distribution and dynamic expression of serotonin and dopamine in the nervous system and ovary of Holothuria scabra during ovarian maturation. Journal of Comparative Physiology A. 2018. 204: 391–407.

  44. Cho W.K., Stern S., Biggers J.D. Inhibitory effect of dibutyryl cAMP on mouse oocyte maturation in vitro. J. Exp. Zool. 1974. 187: 383–386.

  45. Čikoš Š., Veselá J., Il’kova G., Rehák P., Czikková S., Koppel J. Expression of beta adrenergic receptors in mouse oocytes and preimplantation embryos. Mol. Reprod. Dev. 2005. 71: 145–153.

  46. Clausell D.E., Soliman K.F. Ovarian serotonin content in relation to ovulation. Experientia. 1978. 34 (3): 410–411.

  47. Collart C., Owens N.D.L., Bhaw-Rosun L., Cooper B., De Domenico E., Patrushev I., Sesay A.K., Smith J.N., Smith J.C., Gilchrist M.J. High-resolution analysis of gene activity during the Xenopus mid-blastula transition. Development, 2014. 141 (9): 1927–1939.

  48. Noorlander C.W., Ververs F.F.T., Nikkels P.G.J., van Echteld C.J.A., Visser G.H.A., Smidt M.P. Modulation of serotonin transporter function during fetal development causes dilated heart cardiomyopathy and lifelong behavioral abnormalities. PLoS One. 2008. 3 (7): e2782.

  49. Côté F., Fligny C., Bayard E., Launay J.-M., Gershon M.D., Mallet J., Vodjdani G. Maternal serotonin is crucial for murine embryonic development. Proc. Natl Acad. Sci. U S A. 2007. 104 (1): 329–334.

  50. Creeley C.E.,Denton L.K. Use of Prescribed Psychotropics during Pregnancy: A Systematic Review of Pregnancy, Neonatal, and Childhood Outcomes. Brain Sci. 2019. 9 (9): 235.

  51. Cunha V., Rodrigues P., Santos M.M., Moradas-Ferreira P., Ferreira M. Fluoxetine modulates the transcription of genes involved in serotonin, dopamine and adrenergic signalling in zebrafish embryos, Chemosphere. 2017.

  52. Darszon A., Labarca P., Nishigaki T., Espinosa F. 1999. Ion channels in sperm physiology. Physiol Rev 79: 481–510.

  53. Dekel N., Beers W.H. 1978. Rat oocyte maturation in vitro: Relief of cyclic AMP inhibition by gonadotropins. Proc. Natl Acad. Sci. USA 75: 4369–4373.

  54. Devic E., Paquereau L., Steinberg R., Caput D., Audigier Y. Early expression of a beta1-adrenergic receptor and catecholamines in Xenopus oocytes and embryos. FEBS Lett. 1997. 417: 184–190.

  55. Dietrich J.E., Hiiragi T. Stochastic patterning in the mouse preimplantation embryo. Development. 2007. 134 (23): 4219–4231.

  56. Dubé F., Amireault P. Local serotonergic signaling in mammalian follicles, oocytes and early embryos. Life Sciences. 2007. 81: 1627–1637.

  57. Frazer A., Hensler J.G. Serotonin Receptors. In: Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. (Siegel G.J., Agranoff B.W., Albers R.W., eds). Philadelphia: Lippincott-Raven; 1999.

  58. Gardner D.K., Lane M., Calderon I., Leeton J. Environment of the preimplantation human embryo in vivo: Metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil. Steril. 1996. 65: 349–353.

  59. Garnerot F., Pellerin J., Blaise C., Mathieu M. Immunohistochemical localization of serotonin (5-hydroxytryptamine) in the gonad and digestive gland of Mya arenaria (Mollusca: Bivalvia). Gen. Comp. Endocrinol. 2006. 149 (3): 278–284.

  60. Giannaccini G., Betti L., Palego L., Schmid L., Fabbrini L., Pelosini C., Gargini C., Da Valle Y., Lanza M., Marsili A., Maffei M., Santini F., Vitti P., Pinchera A., Lucacchini A. Human serotonin transporter expression during megakaryocytic differentiation of MEG-01 cells. Neurochem. Res. 2010; 35 (4): 628–635.

  61. Graveleau C., Paust H.J., Schmidt-Grimminger D., Mukhopadhyay A.K. Presence of a 5-HT7 receptor positively coupled to adenylate cyclase activation in human granulosa-lutein cells. Journal of Clinical Endocrinology and Metabolism. 2000. 85 (3): 1277–1286.

  62. Hagström B.E., Lönning S. The sea urchin egg as a testing object in toxicology. Acta Pharmacol Toxicol (Copenh). 1973. 1: 3–49.

  63. Hamdan F.F., Ungrin M.D., Abramovitz M., Ribeiro P. Characterization of a novel serotonin receptor from Caenorhabditis elegans: cloning and expression of two splice variants. J Neurochem. 1999. 72: 1372–1383.

  64. Hinckley M., Vaccari S., Horner K., Chen R., Conti M. The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes. Dev. Biol. 2005.287: 249–261.

  65. Hohmann S., Schweinfurth N., Lau T., Deuschle M., Lederbogen F., Banaschewski T., Schloss P. Differential expression of neuronal dopamine and serotonin transporters DAT and SERT in megakaryocytes and platelets generated from human MEG-01 megakaryoblasts. Cell Tissue Res. 2011. 346 (2): 151–161.

  66. Homburger F., Chaube S., Eppenberger M., Bogdonoff P.D., Nixon C.W. Susceptibility of certain inbred strains of hamsters to teratogenic effects of thalidomide. Toxicol. Appl. Pharmacol. 1965. 7 (5): 686–693.

  67. Hoyer D., Clarke D.E., Fozard J.R., Hartig P.R., Martin G.R., Mylecharane E.J., Saxena P.R., Humphrey P.P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 1994. 46 (2): 157–203.

  68. Iľkova G., Rehak P., Vesela J., Čikoš Š., Fabian D., Czikkova S., Koppel J. Serotonin localization and its functional significance during mouse preimplantation embryo development. Zygote. 2004. 12 (3): 205–213.

  69. Ivashkin E., Khabarova M.Yu., Melnikova V., Nezlin L.P., Kharchenko O., Voronezhskaya E.E., Adameyko I. Serotonin Mediates Maternal Effects and Directs Developmental and Behavioral Changes in the Progeny of Snails. Cell Rep. 2015 Aug 18; 12 (7): 1144–58. https://doi.org/10.1016/j.celrep.2015.07.022

  70. Jequier E., Robinson D.S., Lovenberg W., Sjoerdsma A. Further studies on tryptophan hydroxylase in rat brainstem and beef pineal. Biochem. Pharmacol. 1969. 18: 1071–1081.

  71. Jajoo A., Donlon C., Shnayder S., Levin M., McVey M. Sertraline induces DNA damage and cellular toxicity in Drosophila that can be ameliorated by antioxidants Sci. Rep. 2020. 10 (1): 4512.

  72. Kaihola H., Yaldir F.G., Hreinsson J., Hörnaeus K., Bergquist J., Olivier J.D.A., Åkerud H., Sundström-Poromaa I. Effects of Fluoxetine on Human Embryo Development Front Cell Neurosci. 2016. 10: 160.

  73. Katow H., Yaguchi S., Kyozuka K. Serotonin stimulates [Ca2+]i elevation in ciliary ectodermal cells of echinoplutei through a serotonin receptor cell network in the blastocoel. J. Exp. Biol. 2007. 210 (Pt 3): 403–412.

  74. Kaur S., Archer K.J., Devi M.G., Kriplani A., Strauss J.F., Singh R. Differential gene expression in granulosa cells from polycystic ovary syndrome patients with and without insulin resistance: identification of susceptibility gene sets through network analysis. The Journal of Clinical Endocrinology and Metabolism. 2012. 97 (10): E2016–2021.

  75. Kidder G.M., Vanderhyden B.C. Bidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol. 2010. 88 (4): 399–413.

  76. Koppan M., Bodis J., Verzar Z. Tinneberg H.-R., Török A. Serotonin may alter the pattern of gonadotropin-induced progesterone release of human granulosa cells in superfusion system. Endocrine. 2004. 24 (2): 155–159.

  77. Krantic S., Dube F., Querion R. and Guerrier P. Pharmacology of the serotonin induced meiosis reinitiation of Spisula oocytes. Develop.Biol. 1991. 146: 491–497.

  78. Lauder J.M., Moiseiwitsch J., Liu J., Wilkie M.B. Serotonin in development and pathophysiology. In: Brain Lesions in the Newborn (Lou H.C., Griesen G., Larsen J., Falck, eds.). 1994. Munksgaard, Copenhagen. P. 60–72.

  79. Lawrence T.S., Beers W.H., Gilula N.B. Transmission of hormonal stimulation by cell-to-cell communication. Nature. 1978. 272: 501–506.

  80. Levin M., Buznikov G.A., Lauder J.M. Of minds and embryos: left-right asymmetry and the serotonergic controls of pre-neural morphogenesis. Dev Neurosci. 2006. 28 (3): 171–185.

  81. Lister A., Regan C., Van Zwol J., Van Der Kraak G. Inhibition of egg production in zebrafish by fluoxetine and municipal effluents: a mechanistic evaluation. Aquat. Toxicol. 2009. 95 (4): 320–329. Aquat. Toxicol. 2009. 95 (4): 320–329.

  82. Liu C., Peng J., Matzuk M.M., Yao H.H.-C. Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nature Communications. 2015. 6: 6934.

  83. Loewi O. Über humorale übertragbarkeit der Herznervenwirkund. I: Mittellung. Pflügers Arch. 1921. 189 (3): 239–242.

  84. Masseau I., Bannon P., Anctil M., Dubé F. Localization and quantification of gonad serotonin during gametogenesis of the surf clam, Spisula solidissima. Biol. Bull. 2002. 202 (1): 23–33.

  85. Misri S., Kendrick K. Treatment of perinatal mood and anxiety disorders: a review. Can J Psychiatry. 2007. 52 (8): 489–98.

  86. Misri S., Reebye P., Kendrick K., Carter D., Ryan D., Grunau R.E., Oberlander T.F. Internalizing behaviors in 4-year-old children exposed in utero to psychotropic medications. Am. J. Psychiatry. 2006. 163: 1026–1032.

  87. Moore C.J., DeLong N.E., Chan K.A., Holloway A.C., Petrik J.J., Sloboda D.M. Perinatal administration of a selective serotonin reuptake inhibitor induces impairments in reproductive function and follicular dynamics in female rat offspring. Reprod. Sci. 2015. 22 (10): 1297–1311.

  88. Muzik M., Hamilton S.E. Use of Antidepressants During Pregnancy? What to Consider when Weighing Treatment with Antidepressants Against Untreated Depression. Matern. Child Health J. 2016. 20 (11): 2268–2279.

  89. Nevels R.M., Gontkovsky S.T., Williams B.E. Paroxetine – The Antidepressant from Hell? Probably Not, But Caution Required. Psychopharmacol. Bull. 2016. 46 (1): 77–104.

  90. Nikishin D.A., Ivashkin E.G., Mikaelyan A.S., Shmukler Y.B. Expression of serotonin receptors during early embryogenesis. Simpler Nervous Systems, IX East European Conference of the International Society for Invertebrate Neurobiology. 2009. P. 70 (Abstr).

  91. Nikishin D.A., Kremnyov S.V., Konduktorova V.V., Shmukler Yu.B. Expression of serotonergic system components during early Xenopus embryogenesis. Int. J. Developm. Biol. 2012. 56: 385–391.

  92. Nikishin D.A., Milošević I., Gojković M., Rakić Lj., Bezuglov V.V., Shmukler Yu.B. Expression and functional activity of neurotransmitter system components in sea urchins' early development. Zygote. 2016. 24 (2): 206–218.

  93. Nikishin D.A., Alyoshina N.M., Semenova M.L., Shmukler Yu.B. Analysis of Expression and Functional Activity of Aromatic L-Amino Acid Decarboxylase (DDC) and Serotonin Transporter (SERT) as Potential Sources of Serotonin in Mouse Ovary. Int. J. Mol. Sci. 2019. 20: 3070.

  94. Niu W., Wang Y., Wang Z.; Xin Q., Wang Y., Feng L., Zhao L., Wen J., Zhang H., Wang C., Xia G. JNK signaling regulates E-cadherin junctions in germline cysts and determines primordial follicle formation in mice. Development. 2016. 143, 1778–1787.

  95. Owens N.D., Blitz I.L., Lane M.A., Patrushev I., Overton J.D., Gilchrist M.J., Cho K.W., Khokha M.K. Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development. Cell Rep. 2016. 14 (3): 632–647.

  96. Peters M.A., Walenkamp A.M., Kema I.P., Meijer C., de Vries E.G., Oosting S.F. Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist Updat. 2014. 17 (4–6): 96–104.

  97. Preis K.A., Seidel G.Jr., Gardner D.K. Metabolic markers of developmental competence for in vitro-matured mouse oocytes. Reproduction. 2005. 130: 475–483.

  98. Ram D., Gandotra S. Antidepressants, anxiolytics, and hypnotics in pregnancy and lactation. Indian J Psychiatry. 2015. 57 (Suppl. 2): S354–S371.

  99. Robson J.M., Sullivan F.M. Serotonin as a Teratogen. BMJ. 1964. 5379: 370.

  100. Rudnick G., Nelson P.J. Platelet 5-hydroxytryptamine transport, an electroneutral mechanism coupled to potassium. Biochemistry. 1978. 17 (22): 4739–42.

  101. Rudnick G., Sandtner W. Serotonin transport in the 21st century. J. Gen. Physiol. 2019. 151 (11): 1248–1264.

  102. Salustri A., Yanagishita M., Underhill C.B., Laurent T.C., Hascall V.C. Localization and synthesis of hyaluronic acid in the cumulus cells and mural granulosa cells of the preovulatory follicle. Dev. Biol. 1992. 151 (2): 541–551.

  103. Sarrouilhe D., Mesnil M. Serotonin and human cancer: A critical view. Biochimie. 2019. 161: 46–50.

  104. Session A.M., Uno Y., Kwon T., Chapman J.A., Toyoda A., Takahashi S., Fukui A., Hikosaka A., Suzuki A., Kondo M., van Heeringen S.J., Quigley I., Heinz S., Ogino H., Ochi H., Hellsten U., Lyons J.B., Simakov O., Putnam N., Stites J., Kuroki Y., Tanaka T., Michiue T., Watanabe M., Bogdanovic O., Lister R., Georgiou G., Paranjpe S.S., van Kruijsbergen I., Shu S., Carlson J., Kinoshita T., Ohta Y., Mawaribuchi S., Jenkins J., Grimwood J., Schmutz J., Mitros T., Mozaffari S.V., Suzuki Y., Haramoto Y., Yamamoto T.S., Takagi C., Heald R., Miller K., Haudenschild C., Kitzman J., Nakayama T., Izutsu Y., Robert J., Fortriede J., Burns K., Lotay V., Karimi K., Yasuoka Y., Dichmann D.S., Flajnik M.F., Houston D.W., Shendure J., DuPasquier L., Vize P.D., Zorn A.M., Ito M., Marcotte E.M., Wallingford J.B., Ito Y., Asashima M., Ueno N., Matsuda Y., Veenstra G.J., Fujiyama A., Harland R.M., Taira M., Rokhsar D.S. Genome evolution in the allotetraploid frog Xenopus laevis. Nature. 2016. 538 (7625): 336–343.

  105. Sheng Y., Wang L., Liu X.S.J.S., Montplaisir V., Tiberi M., Baltz J.M., Liu X.J. A serotonin receptor antagonist induces oocyte maturation in both frogs and mice: evidence that the same G protein-coupled receptor is responsible for maintaining meiosis arrest in both species. J. Cell Physiol. 2005. 202: 777–786.

  106. Shmukler Yu.B. On the possibility of membrane reception of neurotransmitter in sea urchin early embryos. Comp. Biochem. Physiol. 1993. 106C (1): 269–273.

  107. Shmukler Y., Nikishin D. Transmitters in Blastomere Interactions. In: Cell Interactions (ed. S.Gowder), InTech, 2012, Ch. 2. P. 31–65.

  108. Shmukler Yu.B., Buznikov G.A., Whitaker M.J. Action of serotonin antagonists on cytoplasmic calcium level in early embryos of sea urchin Lytechinus pictus. Int. J. Dev. Biol. 1999. 42 (3): 179–182.

  109. Shmukler Yu.B., Grigoriev N.G., Buznikov G.A., Turpaev T.M. Regulation of cleavage divisions: participation of “prenervous” neurotransmitters coupled with second messengers. Comp. Biochem. Physiol. 1986. 83C (2): 423–427.

  110. Shuey D.L., Sadler T.W., Tamir H., Lauder J.M. Serotonin and morphogenesis. Transient expression of serotonin uptake and binding protein during craniofacial morphogenesis in the mouse. Anat. Embryol. (Berl). 1993. 187 (1): 75–85.

  111. Silvestre F., Boni R., Fissore R.A., and Tosti E. Ca2+ Signaling During Maturation of Cumulus–Oocyte Complex in Mammals. Molecular Reproduction & Development. 2011. 78: 744–756.

  112. Sneddon J.M. Sodium-dependent accumulation of 5-hydroxytryptamine by rat blood platelets. Br. J. Pharmacol. 1969. 37 (3): 680–688.

  113. Stępińska U., Kuwana T., Olszańska B. Serotonin receptors are selectively expressed in the avian germ cells and early embryos. Zygote. 2015. 23 (3): 394–405.

  114. Stricker S.A. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 1999. 211: 157–176.

  115. Stricker S.A., Smythe T.L. 5-HT causes an increase in cAMP that stimulates, rather than inhibits, oocyte maturation in marine nemertean worms. Development. 2001. 128 (8): 1415–1427.

  116. Tan M.H., Au K.F., Yablonovitch A.L., Wills A.E., Chuang J., Baker J.C., Wong W.H., Li J.B. RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. Genome Res. 2013. 23 (1): 201–216.

  117. Tanaka E., Baba N., Toshida K., Suzuki K. Serotonin stimulates steroidogenesis in rat preovulatory follicles: involvement of 5-HT2 receptor. Life Sci. 1993. 53: 563–570.

  118. Tinikul Y., Joffre Mercier A., Soonklang N., Sobhon P. Changes in the levels of serotonin and dopamine in the central nervous system and ovary, and their possible roles in the ovarian development in the giant freshwater prawn, Macrobrachium rosenbergii. Gen. Comp. Endocrinol. 2008. 158 (3): 250–258.

  119. Terranova P.F., Uilenbroek J.T., Saville L., Horst D., Nakamura Y. Serotonin enhances oestradiol production by hamster preovulatory follicles in vitro: effects of experimentally induced atresia. J. Endocrinol. 1990 125: 433–438.

  120. Vesela J., Rehak P., Mihalik J., Czikkova S., Pokorny J., Koppel J. Expression of serotonin receptors in mouse oocytes and preimplantation embryos. Physiol. Res. 2003. 52: 223–228.

  121. Voronezhskaya E.E., Khabarova M.Yu., Nezlin L.P. Apical sensory neurones mediate developmental retardation induced by conspecific environmental stimuli in freshwater pulmonate snails. Development. 2004. 131 (15): 3671–80. https://doi.org/10.1242/dev.01237

  122. Wang Q., He M. Molecular characterization and analysis of a putative 5-HT receptor involved in reproduction process of the pearl oyster Pinctada fucata. Gen. Comp. Endocrinol. 2014. 204: 71–79.

  123. Yang K., Hitomi M., Stacey D.W. Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. Cell Division. 2006. 1: 32.

  124. Zatylny C., Durantou F., Boucaud-Camou E., Henry J. Evidence of 5-hydroxytryptamine synthesis in the follicles of Sepia officinalis and direct involvement in the control of egglaying. Mol. Reprod. Dev. 2000. 55 (2): 182–188.

Дополнительные материалы отсутствуют.