Прикладная математика и механика, 2023, T. 87, № 6, стр. 984-994

Движение изменяемого тела с неподвижной точкой в зависящем от времени силовом поле

А. А. Буров 1*

1 ФИЦ ИУ РАН
Москва, Россия

* E-mail: jtm@narod.ru

Поступила в редакцию 30.05.2023
После доработки 30.09.2023
Принята к публикации 10.10.2023

Аннотация

Рассматривается задача о движении вокруг неподвижной точки изменяемого тела в зависящем от времени силовом поле. Указываются условия, при которых уравнения движения сводятся к классическим уравнениям Эйлера–Пуассона, описывающем движения твердого тела в поле притяжения. Обсуждаются вопросы существования первых интегралов и устойчивости установившихся движений.

Ключевые слова: движение изменяемого тела с неподвижной точкой, зависящее от времени силовое поле, замена времени, замена переменных, существование интегрируемых случаев, неинтегрируемость уравнений движения, существование установившихся движений, бифуркационные диаграммы

Список литературы

  1. Борисов А.В., Мамаев И.С. Динамика твердого тела. Гамильтоновы методы, интегрируемость, хаос. М.; Ижевск: Ин-т компьют. исслед., 2005. 576 с.

  2. Burov A.A., Chevallier D.P. On motion of a rigid body about a fixed point with respect to a rotating frame // R&C Dyn. 1998. V. 3. № 1. P. 66–76. DOI: RD1998v003n01ABEH000061

  3. Леви-Чивита Т., Амальди У. Курс теоретической механики. Т. 2. Ч. 2. Динамика систем с конечным числом степеней свободы. М.: Изд-во иностр. лит., 1951. 544 с.

  4. Виттенбург Й. Динамика систем твердых тел. М.: Мир, 1980. 294 с.

  5. Горр Г.В., Мазнев А.В., Котов Г.А. Движение гиростата с переменным гиростатическим моментом. Донецк: Изд-е ГУ Ин-т прикл. матем. и мех., 2017. 250 с.

  6. Голубев В.В. Лекции по интегрированию уравнений движения тяжелого твердого тела около неподвижной точки. М.: ГИТТЛ, 1953. 288 с.

  7. Гашененко И.Н., Горр Г.В., Ковалёв А.М. Классические задачи динамики твердого тела. Киев: Наук. думка, 2012. 402 с.

  8. Yehia H.M. Rigid BODY DYNAMICS. A Lagrangian Approach. Switzerland AG: Springer Nature, 2022. 460 p.

  9. Козлов В.В. Расщепление сепаратрис возмущенной задачи Эйлера–Пуансо // Вестн. Моск. ун-та. Сер. 1. Мат., мех. 1976. № 6. С. 99–104.

  10. Зиглин С.Л. Расщепление сепаратрис, ветвление, решение и несуществование интеграла в динамике твердого тела // Тр. ММО. 1980. Т. 41. С. 287–303.

  11. Козлов В.В. Интегрируемость и неинтегрируемость в гамильтоновой механике // УМН. 1983. Т. 38 (229). Вып. 1. С. 3–67.

  12. Yehia H.M. New integrable cases in dynamics of rigid bodies // Mech. Res. Com. 1986. V. 13. Iss. 3. P. 169–172.

  13. Яхья Х.М. Новые интегрируемые случаи задачи о движении гиростата // Вестн. Моск. ун-та. Сер. 1. Мат., мех. 1987. № 4. С. 88–90.

  14. Сретенский Л.Н. О некоторых случаях интегрируемости уравнений движения гиростата // Докл. АН СССР. 1963. Т. 149. Вып. 2. С. 292–294.

  15. Сретенский Л.Н. О некоторых случаях движения тяжелого твердого тела с гироскопом // Вест. Моск. ун-та. 1963. № 3. С. 60–71.

  16. Gavrilov L. Non-integrability of the equations of heavy gyrostat // Compos. Math. 1992. T. 82. № 3. P. 275–291.

  17. Каток С.Б. Бифуркационные множества и интегральные многообразия в задаче о движении тяжелого твердого тела // УМН. 1972. Т. 27. Вып. 2. С. 126–132.

  18. Рубановский В.Н. О бифуркации и устойчивости перманентных вращений тяжелого твердого тела с одной неподвижной точкой // Теор. и приложна мех. София. 1974. Т. 5. № 4. С. 55–70.

  19. Рубановский В.Н. О бифуркации и устойчивости стационарных движений в некоторых задачах динамики твердого тела // ПММ. 1974. Т. 38. Вып. 4. С. 616–627.

  20. Татаринов Я.В. Портреты классических интегралов задачи о вращении твердого тела вокруг неподвижной точки // Вестн. Моск. ун-та. Сер. 1. Мат., мех. 1974. № 6. С. 99–105.

  21. Gashenenko I.N., Richter P.H. Enveloping surfaces and admissible velocities of heavy rigid bodies // Int. J. Bifur. & Chaos. 2004. V. 14. № 08. P. 2525–2553.

  22. Карапетян А.В. Инвариантные множества в задаче Горячева–Чаплыгина: существование, устойчивость и ветвление // ПММ. 2006. Т. 70. Вып. 2. С. 221–224.

  23. Анчев А. О перманентных вращениях тяжелого гиростата, имеющего неподвижную точку // ПММ. 1967. Т. 31. Вып. 1. С. 49–58.

  24. Elipe A., Arribas M., Riaguas A. Complete analysis of bifurcations in the axial gyrostat problem // J. Phys. A: Math. Gen. 1997. V. 30. P. 587–601. https://doi.org/ 10.1088/0305-4470/30/2/021

  25. Гашененко И.Н. Бифуркации интегральных многообразий в задаче о движении тяжелого гиростата // Нелин. дин. 2005. Т. 1. № 1. С. 33–52. https://doi.org/ 10.20537/nd0501003

  26. Iñarrea M., Lanchares V., Pascual A.I., Elipe A. On the stability of a class of permanent rotations of a heavy asymmetric gyrostat // R&C Dyn. 2017. V. 22. P. 824–839. https://doi.org/ 10.1134/S156035471707005X

  27. Холостова О.В. Задачи динамики твердых тел с вибрирующим подвесом. Ижевск: ИКИ, 2016. 308 с.

  28. Bogoyavlensky O.I. New integrable problem of classical mechanics // Comm. in Math. Phys. 1984. V. 94. P. 255–269. https://doi.org/ 10.1007/BF01209304

  29. Brun F. Rotation kring fix punkt // Ofversigt at Kongl. Svenska Vetenskaps Akad. Forhadl. Stokholm. 1893. V. 7. P. 455–468.

  30. Brun F. Rotation kring fix punkt. II // Ark. Mat. Ast. Fys. 1907. V. 4. № 4. S. 1–4.

  31. Brun F. Rotation kring fix punkt. III // Ark. Mat. Ast. Fys. 1910. V.6. № 5. S. 1–10.

  32. Карапетян А.В. Инвариантные множества в задаче Клебша–Тиссерана: существование и устойчивость // ПММ. 2006. Т. 70. Вып. 6. С. 959–964.

  33. Зейлигер Д.Н. Теория движения подобно-изменяемого тела. Казань: тип. Казанского Императорского ун-та, 1892. 105 с.

  34. Четаев Н.Г. Об уравнениях движения подобно-изменяемого тела // Учен. зап. Казан. ун-та. 1954. V. 114. Казань: Казанский гос. ун-т. С. 5–7.

  35. Четаев Н.Г. Теоретическая механика. М.: Наука, 1987. 368 с.

  36. Sławianowski J.J. The mechanics of the homogeneously-deformable body. Dynamical models with high symmetries // ZAMM. 1982. V. 62. № 6. P. 229–240. https://doi.org/ 10.1002/zamm.19820620604

  37. Sławianowski J.J. Affinely rigid body and Hamiltonian systems on ${\mathbf{GL}}\left( {n{\mathbf{R}}} \right)$ // Rep. on Math. Phys. 1988. V. 26. Iss. 1. P. 73–119. https://doi.org/ 10.1016/0034-4877(88)90006-7 10.1016/0034-4877(88)90006-7

  38. Sławianowski J.J., Kovalchuk V., Gołubowska B., Martens A., Rożko E.E. Mechanics of affine bodies. Towards affine dynamical symmetry // J. Math. Anal. & Appl. 2017. V. 446. Iss. 1. P. 493–520. https://doi.org/ 10.1016/j.jmaa.2016.08.042

  39. Burov A.A., Chevallier D.P. Dynamics of affinely deformable bodies from the standpoint of theoretical mechanics and differential geometry // Rep. on Math. Phys. 2008. V. 62. Iss. 3. P. 283–321. https://doi.org/ 10.1016/S0034-4877(09)00003-2

  40. Iñarrea M., Lanchares V. Chaos in the reorientation process of a dual-spin spacecraft with time-dependent moments of inertia // Int. J. Bifur.&Chaos. 2000. V. 10. № 05. P. 997–1018. https://doi.org/ 10.1142/S0218127400000712

  41. Iñarrea M., Lanchares V., Rothos V.M., Salas J.P. Chaotic rotations of an asymmetric body with time-dependent moments of inertia and viscous drag // Int. J. Bifur.&Chaos. 2003. V. 13. № 02. P. 393–409. https://doi.org/ 10.1142/S0218127403006613

  42. Burov A., Guerman A., Kosenko I. Satellite with periodical mass redistribution: relative equilibria and their stability // Celest. Mech. & Dyn. Astron. 2019. V. 131. Art № 1. https://doi.org/ 10.1007/s10569-018-9874-0

  43. Дружинин Э.И. О перманентных вращениях уравновешенного неавтономного гиростата // ПММ. 1999. Т. 63. Вып. 5. С. 875–876.

  44. Волкова О.С., Гашененко И.Н. Маятниковые вращения тяжелого гиростата с переменным гиростатическим моментом // Мех. твердого тела: Межвед. сб. науч. тр. 2009. Вып. 39. С. 42–49.

  45. Мазнев А.В. Прецессионные движения гиростата с переменным гиростатическим моментом под действием потенциальных и гироскопических сил // Мех. твердого тела: Межвед. сб. науч. тр. 2010. Вып. 40. С. 91–104.

  46. Мазнев А.В. Регулярные прецессии гиростата с переменным гиростатическим моментом под действием потенциальных и гироскопических сил // Докл. НАНУ. 2011. № 8. С. 66–72.

  47. Горр Г.В., Мазнев А.В. О движении симметричного гиростата с переменным гиростатическим моментом в двух задачах динамики // Нелин. дин. 2012. Т. 8. № 2. С. 369–376. https://doi.org/ 10.20537/nd1202011

  48. Горр Г.В., Мазнев А.В. О двух линейных инвариантных соотношениях уравнений движения гиростата в случае переменного гиростатического момента // Дин. сист. 2012. Т. 2 (30). № 1; 2. С. 23–32.

  49. Горр Г.В. Об одном подходе в исследовании движения гиростата с переменным гиростатическим моментом // Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки. 2021. Т. 31. Вып. 1. С. 102–115. https://doi.org/ 10.35634/vm210108

  50. Горр Г.В., Белоконь Т.В. О решениях уравнений движения гиростата с переменным гиростатическим моментом // ПММ. 2021. Т. 85. Вып. 2. С. 139–151. https://doi.org/ 10.31857/S0032823521020053

  51. Ткаченко Д.Н. Новое решение уравнений движения гиростата с переменным гиростатическим моментом под действием потенциальных и гироскопических сил // Мех. твердого тела. 2021. Вып. 51. С. 34–43.

  52. Данилюк Д.А. Об одном решении уравнений Кирхгофа–Пуассона в задаче о движении гиростата с переменным гиростатическим моментом // Мех. твердого тела. 2021. Вып. 51. С. 44–56.

  53. Данилюк Д.А., Ткаченко Д.Н. Новое решение уравнений движения гиростата с переменным гиростатическим под действием потенциальных и гироскопических сил // Ж. теоретич. и прикл. мех. 2022. № 1 (78). С. 5–15. https://doi.org/ 10.24412/0136-4545-2022-1-5-15

  54. Горр Г.В. Об одном классе полурегулярных прецессий гиростата с переменным гиростатическим моментом // Изв. РАН. МТТ. 2023. № 2. С. 115–124. https://doi.org/ 10.31857/S0572329922600414

  55. Cveticanin L. Dynamics of Machines with Variable Mass (Stability and Control: Theory, Methods and Applications) Routledge. 1998. 252 p. https://doi.org/ 10.1201/9780203759066

  56. Ong J.J., O’Reilly O.M. On the equations of motion for rigid bodies with surface growth // Int. J. Engng Sci. 2004. V. 42. Iss. 19–20. P. 2159–2174. https://doi.org/ 10.1016/j.ijengsci.2004.07.010

  57. Irschik H., Humer A. A rational treatment of the relations of balance for mechanical systems with a time-variable mass and other non-classical supplies // in: Dyn. Mech. Syst. with Variable Mass. Int. Centre for Mech. Sci. Courses and Lectures. 2014. V. 557. P. 1–50.

Дополнительные материалы отсутствуют.