Журнал неорганической химии, 2023, T. 68, № 10, стр. 1422-1432

Синтез и физико-химические свойства лактатов РЗЭ иттриевой подгруппы Ln(C3H5O3)3 · 2H2O (Ln = Y, Tb–Lu)

М. В. Голикова a, А. Д. Япрынцев a*, Ч. Цзя b, Е. В. Фатюшина a, А. Е. Баранчиков a, В. К. Иванов ab

a Институт общей и неорганической химии им. Н.С. Курнакова РАН
119991 Москва, Ленинский пр-т, 31, Россия

b Московский государственный университет им. М.В. Ломоносова
119991 Москва, Ленинские горы, 1, Россия

* E-mail: yapryntsev@igic.ras.ru

Поступила в редакцию 24.04.2023
После доработки 14.06.2023
Принята к публикации 16.06.2023

Аннотация

Впервые получен ряд лактатов РЗЭ иттриевой подгруппы, изоструктурных лактату иттрия и имеющих состав [Ln(C3H5O3)3(H2O)2] (Ln = Tb–Lu). Синтез кристаллических лактатов РЗЭ проводили из растворов нитратов РЗЭ в присутствии L-молочной кислоты и гексаметилентетрамина. Состав и структура полученных соединений подтверждены методами рентгенофазового, термического и химического (CHN) анализа. Методом ИК-спектроскопии определен характер координации лактат-анионов к катионам РЗЭ. Термическое разложение лактатов РЗЭ при 800°С приводит к образованию нанокристаллических (20–40 нм) оксидов РЗЭ (Y, Tb–Lu).

Ключевые слова: гомогенное осаждение, ГМТА, кристаллы, L-молочная кислота, термический анализ

Список литературы

  1. Janicki R., Mondry A., Starynowicz P. // Coord. Chem. Rev. 2017. V. 340. P. 98. https://doi.org/10.1016/j.ccr.2016.12.001

  2. Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539. https://doi.org/10.1134/S1070328422090056

  3. Shmelev M.A., Voronina Y.K., Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 224. https://doi.org/10.1134/S1070328422040042

  4. Boskovic C. // Acc. Chem. Res. 2017. V. 50. № 9. P. 2205. https://doi.org/10.1021/acs.accounts.7b00197

  5. Stock N., Biswas S. // Chem. Rev. 2012. V. 112. № 2. P. 933. https://doi.org/10.1021/cr200304e

  6. Lu J., Wang R. // Encycl. Inorg. Bioinorg. Chem. John Wiley & Sons, Ltd, Chichester, UK, 2012. https://doi.org/10.1002/9781119951438.eibc2024

  7. Sun X., Yuan K., Zhang Y. // J. Rare Earths. 2020. V. 38. № 8. P. 801. https://doi.org/10.1016/j.jre.2020.01.012

  8. Zhang H., Ye K., Huang X. et al. // Inorg. Chem. Front. 2021. V. 8. № 14. P. 3433. https://doi.org/10.1039/D1QI00442E

  9. Shmychkov N.V., Orlova A.V., Vlasova K.Y. et al. // SSRN Electron. J. 2022. https://doi.org/10.2139/ssrn.4303491

  10. Rezende Souza E., Silva I.G.N., Teotonio E.E.S. et al. // J. Lumin. 2010. V. 130. № 2. P. 283. https://doi.org/10.1016/j.jlumin.2009.09.004

  11. Li L., Fang Y., Liu S. et al. // J. Rare Earths. 2023. V. 41. № 1. P. 100. https://doi.org/10.1016/j.jre.2022.02.019

  12. Yuan S., Feng L., Wang K. et al. // Adv. Mater. 2018. V. 30. № 37. P. 1. https://doi.org/10.1002/adma.201704303

  13. Zhao S.-N., Wang G., Poelman D. et al. // Materials (Basel). 2018. V. 11. № 4. P. 572. https://doi.org/10.3390/ma11040572

  14. Wahsner J., Gale E.M., Rodríguez-Rodríguez A. et al. // Chem. Rev. 2019. V. 119. № 2. P. 957. https://doi.org/10.1021/acs.chemrev.8b00363

  15. Chen W.-J., Gu Y.-H., Zhao G.-W. et al. // Plant Sci. 2000. V. 152. № 2. P. 145. https://doi.org/10.1016/S0168-9452(99)00235-6

  16. Nalbandian M., Takeda M. // Biology (Basel). 2016. V. 5. № 4. P. 38. https://doi.org/10.3390/biology5040038

  17. Adeva-Andany M., López-Ojén M., Funcasta-Calderón R. et al. // Mitochondrion. 2014. V. 17. P. 76. https://doi.org/10.1016/j.mito.2014.05.007

  18. Nash K.L., Johnson G., Brigham D. et al. // Procedia Chem. 2012. V. 7. P. 45. https://doi.org/10.1016/j.proche.2012.10.009

  19. Nash K.L. // Solvent Extr. Ion Exch. 2015. V. 33. № 1. P. 1. https://doi.org/10.1080/07366299.2014.985912

  20. Braley J.C., McAlister D.R., Philip Horwitz E. et al. // Solvent Extr. Ion Exch. 2013. V. 31. № 2. P. 107. https://doi.org/10.1080/07366299.2012.735503

  21. Tian G., Martin L.R., Rao L. // Inorg. Chem. 2010. V. 49. № 22. P. 10598. https://doi.org/10.1021/ic101592h

  22. Barkleit A., Kretzschmar J., Tsushima S. et al. // Dalton Trans. 2014. V. 43. № 29. P. 11221. https://doi.org/10.1039/C4DT00440J

  23. Li Y., Yan P., Hou G. et al. // J. Organomet. Chem. 2013. V. 723. P. 176. https://doi.org/10.1016/j.jorganchem.2012.09.015

  24. Qu Z.-R., Ye Q., Zhao H. et al. // Chem. – A Eur. J. 2008. V. 14. № 11. P. 3452. https://doi.org/10.1002/chem.200701449

  25. Ye Q., Fu D.-W., Tian H. et al. // Inorg. Chem. 2008. V. 47. № 3. P. 772. https://doi.org/10.1021/ic701828w

  26. Yapryntsev A.D., Baranchikov A.E., Churakov A.V. et al. // RSC Adv. 2021. V. 11. № 48. P. 30195. https://doi.org/10.1039/D1RA05923H

  27. Zhang Y., Karatchevtseva I., Kadi F. et al. // Polyhedron. 2015. V. 87. P. 377. https://doi.org/10.1016/j.poly.2014.12.006

  28. Alsowayigh M.M., Timco G.A., Borilovic I. et al. // Inorg. Chem. 2020. V. 59. № 21. P. 15796. https://doi.org/10.1021/acs.inorgchem.0c02249

  29. Powell J.E., Farrell J.L. // Some Observations Regarding Rare-Earth Lactates, Ames, IA (United States), 1962. https://doi.org/10.2172/4749791

  30. Gouveia M.A., de Carvalho R.G. // J. Inorg. Nucl. Chem. 1966. V. 28. № 3. P. 913. https://doi.org/10.1016/0022-1902(66)80432-3

  31. Choppin G.R., Chopoorian J.A. // J. Inorg. Nucl. Chem. 1961. V. 22. № 1–2. P. 97. https://doi.org/10.1016/0022-1902(61)80234-0

  32. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551

  33. Wenk H.-R. // Z. Krist.: Cryst. Mater. 1981. V. 154. № 1–2. P. 137. https://doi.org/10.1524/zkri.1981.154.1-2.137

  34. Grenthe I., Fermor J.H., Kjekshus A. et al. // Acta Chem. Scand. 1971. V. 25. P. 3721. https://doi.org/10.3891/acta.chem.scand.25-3721

  35. Kendin M., Tsymbarenko D. // Cryst. Growth Des. 2020. V. 20. № 5. P. 3316. https://doi.org/10.1021/acs.cgd.0c00110

  36. Nabar M.A., Barve S.D. // J. Appl. Crystallogr. 1984. V. 17. № 1. P. 39. https://doi.org/10.1107/S0021889884010979

  37. Jiang Z.-G., Lv Y.-K., Cheng J.-W. et al. // J. Solid State Chem. 2012. V. 185. P. 253. https://doi.org/10.1016/j.jssc.2011.11.012

  38. Socrates G. // Infrared and Raman characteristic group frequencies. Tables and charts, 2001.

  39. Maiwald M.M., Müller K., Heim K. et al. // New J. Chem. 2020. V. 44. № 39. P. 17033. https://doi.org/10.1039/D0NJ04291A

  40. Cassanas G., Morssli M., Fabrègue E. et al. // J. Raman Spectrosc. 1991. V. 22. № 7. P. 409. https://doi.org/10.1002/jrs.1250220709

  41. Ozga W., Brzyska W. // J. Therm. Anal. 1989. V. 35. P. 5. https://doi.org/10.1007/BF01914259

  42. Sugita Y., Ouchi A. // Bull. Chem. Soc. Jpn. 1987. V. 60. № 1. P. 171. https://doi.org/10.1246/bcsj.60.171

  43. Kraka E., Larsson J.A., Cremer D. // Comput. Spectrosc. Wiley. 2010. P. 105. https://doi.org/10.1002/9783527633272.ch4

  44. Комиссарова Л.Н., Пушкина Г.Я., Щербакова Л.Г. и др. Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты. М.: Наука, 1984.

  45. Wang X., Molokeev M.S., Zhu Q. et al. // Chem. - A Eur. J. 2017. V. 23. № 63. P. 16034. https://doi.org/10.1002/chem.201703282

  46. Langford J.I., Wilson A.J.C. // J. Appl. Crystallogr. 1978. V. 11. № 2. P. 102. https://doi.org/10.1107/S0021889878012844

Дополнительные материалы отсутствуют.