Журнал неорганической химии, 2022, T. 67, № 1, стр. 54-102

Комплексы металлов платиновой группы с ациклическими диаминокарбеновыми лигандами. Синтез и современные области применения (обзор)

М. А. Кинжалов a*, К. В. Лузянин b**

a Санкт-Петербургский государственный университет
199034 Санкт-Петербург, Университетская наб., 7–9, Россия

b Химический факультет Ливерпульского университета
L69 7ZD Ливерпуль, Краун-стрит, Великобритания

* E-mail: m.kinzhalov@spbu.ru
** E-mail: Konstantin.Luzyanin@liverpool.ac.uk

Поступила в редакцию 06.07.2021
После доработки 14.09.2021
Принята к публикации 15.09.2021

Аннотация

Комплексы металлов платиновой группы с ациклическими диаминокарбеновыми лигандами находят применение в таких разнообразных областях, как металлокомплексный катализ, фотолюминесцентные материалы, хемосенсоры и противоопухолевые препараты. В этом обзоре систематизированы исследования, опубликованные до настоящего времени, проведен анализ свойств и методов получения комплексов металлов платиновой группы с ациклическими диаминокарбеновыми лигандами и рассмотрены последние достижения в использовании этих соединений для разработки функциональных материалов.

Ключевые слова: карбены, N-гетероциклическиe карбены, металлокомплексный катализ, изоцианиды, палладий, платина, иридий, металлоорганическая активация

Список литературы

  1. Bourissou D., Guerret O., Gabbaï F., Bertrand G. // Chem. Rev. 2000. V. 100. P. 39. https://doi.org/10.1021/cr940472u

  2. Huynh H.V. // Chem. Rev. 2018. V. 118. P. 9457. https://doi.org/10.1021/acs.chemrev.8b00067

  3. Kuwata S., Hahn F.E. // Chem. Rev. 2018. V. 118. P. 9642. https://doi.org/10.1021/acs.chemrev.8b00176

  4. Nesterov V., Reiter D., Bag P. et al. // Chem. Rev. 2018. V. 118. P. 9678. https://doi.org/10.1021/acs.chemrev.8b00079

  5. Sipos G., Dorta R. // Coord. Chem. Rev. 2018. V. 375. P. 13. https://doi.org/10.1016/j.ccr.2017.10.019

  6. Trose M., Nahra F., Cazin C.S.J. // Coord. Chem. Rev. 2018. V. 355. P. 380. https://doi.org/https://doi.org/10.1016/j.ccr.2017.10.013

  7. Danopoulos A.A., Simler T., Braunstein P. // Chem. Rev. 2019. V. 119. P. 3730. https://doi.org/10.1021/acs.chemrev.8b00505

  8. Zhang L., Hou Z. // Chem. Sci. 2013. V. 4. P. 3395. https://doi.org/10.1039/C3SC51070K

  9. Lazreg F., Nahra F., Cazin C.S.J. // Coord. Chem. Rev. 2015. V. 293–294. P. 48. https://doi.org/10.1016/j.ccr.2014.12.019

  10. Gafurov Z.N., Kantyukov A.O., Kagilev A.A. et al. // Russ. Chem. Bull. 2017. V. 66. P. 1529. https://doi.org/10.1007/s11172-017-1920-7

  11. Gardiner M.G., Ho C.C. // Coord. Chem. Rev. 2018. V. 375. P. 373. https://doi.org/10.1016/j.ccr.2018.02.003

  12. Iglesias M., Oro L.A. // Chem. Soc. Rev. 2018. V. 47. P. 2772. https://doi.org/10.1039/C7CS00743D

  13. Peris E. // Chem. Rev. 2018. V. 118. P. 9988. https://doi.org/10.1021/acs.chemrev.6b00695

  14. Roland S., Suarez J.M., Sollogoub M. // Chem. Eur. J. 2018. V. 24. P. 12464. https://doi.org/10.1002/chem.201801278

  15. Wang W., Cui L., Sun P. et al. // Chem. Rev. 2018. V. 118. P. 9843. https://doi.org/10.1021/acs.chemrev.8b00057

  16. Mercs L., Albrecht M. // Chem. Soc. Rev. 2010. V. 39. P. 1903. https://doi.org/10.1039/B902238B

  17. Visbal R., Gimeno M.C. // Chem. Soc. Rev. 2014. V. 43. P. 3551. https://doi.org/10.1039/C3CS60466G

  18. Elie M., Renaud J.L., Gaillard S. // Polyhedron. 2018. V. 140. P. 158. https://doi.org/10.1016/j.poly.2017.11.045

  19. Bonfiglio A., Mauro M. // Eur. J. Inorg. Chem. 2020. V. 2020. P. 3427. https://doi.org/10.1002/ejic.202000509

  20. Gautier A., Cisnetti F. // Metallomics. 2012. V. 4. P. 23. https://doi.org/10.1039/C1MT00123J

  21. Ott I. Metal N-heterocyclic carbene complexes in medicinal chemistry // Medicinal Chemistry / Eds. Sadler P.J., VanEldik R. 2020. P. 121.

  22. Patil A., Hoagland A.P, Patil S.A, Bugarin A. // Future Med. Chem. 2020. V. 12. P. 2239. https://doi.org/10.4155/fmc-2020-0175

  23. Smith C.A., Narouz M.R., Lummis P.A. et al. // Chem. Rev. 2019. V. 119. P. 4986. https://doi.org/10.1021/acs.chemrev.8b00514

  24. Liu W., Gust R. // Coord. Chem. Rev. 2016. V. 329. P. 191. https://doi.org/10.1016/j.ccr.2016.09.004

  25. Ibáñez S., Poyatos M., Peris E. // Acc. Chem. Res. 2020. V. 53. P. 1401. https://doi.org/10.1021/acs.accounts.0c00312

  26. Boyarskiy V.P., Luzyanin K.V., Kukushkin V.Y. // Coord. Chem. Rev. 2012. V. 256. P. 2029. https://doi.org/10.1016/j.ccr.2012.04.022

  27. Slaughter L.M. // ACS Catal. 2012. V. 2. P. 1802. https://doi.org/10.1021/cs300300y

  28. Kinzhalov M.A., Luzyanin K.V. // Coord. Chem. Rev. 2019. V. 399. P. 213014. https://doi.org/10.1016/j.ccr.2019.213014

  29. Timofeeva S.A., Kinzhalov M.A., Valishina E.A. et al. // J. Catal. 2015. V. 329. P. 449. https://doi.org/10.1016/j.jcat.2015.06.001

  30. Mikhaylov V., Sorokoumov V., Liakhov D. et al. // Catalysts. 2018. V. 8. P. 141. https://doi.org/10.3390/catal8040141

  31. Fang Y., Wang S.-Y., Ji S.-J. // Tetrahedron. 2015. V. 71. P. 9679. https://doi.org/https://doi.org/10.1016/j.tet.2015.10.033

  32. Owusu M.O., Handa S., Slaughter L.M. // Appl. Organomet. Chem. 2012. V. 26. P. 712. https://doi.org/10.1002/aoc.2915

  33. Škoch K., Schulz J., Císařová I., Štěpnička P. // Organometallics. 2019. V. 38. P. 3060. https://doi.org/10.1021/acs.organomet.9b00398

  34. Rocha B.G.M., Valishina E.A., Chay R.S. et al. // J. Catal. 2014. V. 309. P. 79. https://doi.org/10.1016/j.jcat.2013.09.003

  35. Chay R.S., Rocha B.G.M., Pombeiro A.J.L. et al. // ACS Omega. 2018. V. 3. P. 863. https://doi.org/10.1021/acsomega.7b01688

  36. Afanasenko A.M., Chulkova T.G., Boyarskaya I.A. et al. // J. Organomet. Chem. 2020. V. 923. P. 121435. https://doi.org/https://doi.org/10.1016/j.jorganchem.2020.121435

  37. Kinzhalov M.A., Luzyanin K.V., Boyarskiy V.P. et al. // Organometallics. 2013. V. 32. P. 5212. https://doi.org/10.1021/om4007592

  38. Gee J.C., Fuller B.A., Lockett H.-M. et al. // Chem. Commun. 2018. V. 54. P. 9450. https://doi.org/10.1039/C8CC04287J

  39. Eremina A.A., Kinzhalov M.A., Katlenok E.A. et al. // Inorg. Chem. 2020. V. 59. P. 2209. https://doi.org/10.1021/acs.inorgchem.9b02833

  40. Na H., Lai P.N., Cañada L.M., Teets T.S. // Organometallics. 2018. V. 37. P. 3269. https://doi.org/10.1021/acs.organomet.8b00446

  41. Na H., Teets T.S. // J. Am. Chem. Soc. 2018. V. 140. P. 6353. https://doi.org/10.1021/jacs.8b02416

  42. Na H., Cañada Louise M., Wen Z. et al. // Chem. Sci. 2019. V. 10. P. 6254. https://doi.org/10.1039/C9SC01386E

  43. Lai S.-W., Chan M.C.W., Wang Y. et al. // J. Organomet. Chem. 2001. V. 617–618. P. 133. https://doi.org/10.1016/S0022-328X(00)00723-3

  44. Ng C.-O., Cheng S.-C., Chu W.-K. et al. // Inorg. Chem. 2016. V. 55. P. 7969. https://doi.org/10.1021/acs.inorgchem.6b01017

  45. Alves G., Morel L., El-Ghozzi M. et al. // Chem. Commun. 2011. V. 47. P. 7830. https://doi.org/10.1039/C1CC12228B

  46. Serebryanskaya T.V., Kinzhalov M.A., Bakulev V. et al. // New J. Chem. 2020. V. 44. P. 5762. https://doi.org/10.1039/D0NJ00060D

  47. Moreno M.T., Lalinde Peña E., Martínez-Junquera M. et al. // Dalton Trans. 2021. V. 50. P. 4539. https://doi.org/10.1039/D1DT00480H

  48. McNaught A.D., Wilkinson A., IUPAC. Compendium of Chemical Terminology. Oxford: Blackwell Scientific Publications, 1997.

  49. Нефедов О.М., Иоффе А.И., Мечников Л.Г. Химия карбенов. М.: Химия, 1990.

  50. Hoffmann R., Zeiss G.D., Vandine G.W. // J. Am. Chem. Soc. 1968. V. 90. P. 1485. https://doi.org/10.1021/ja01008a017

  51. Gleiter R., Hoffmann R. // J. Am. Chem. Soc. 1968. V. 90. P. 5457. https://doi.org/10.1021/ja01022a023

  52. Moss R.A., Mallon C.B. // J. Am. Chem. Soc. 1975. V. 97. P. 344. https://doi.org/10.1021/ja00835a020

  53. Koda S. // Chem. Phys. Lett. 1978. V. 55. P. 353. https://doi.org/10.1016/0009-2614(78)87037-7

  54. Baird N.C., Taylor K.F. // J. Am. Chem. Soc. 1978. V. 100. P. 1333. https://doi.org/10.1021/ja00473a001

  55. Schoeller W.W. // Chem. Commun. 1980. P. 124. https://doi.org/10.1039/c39800000124

  56. Pauling L. // Chem. Commun. 1980. P. 688. https://doi.org/10.1039/c39800000688

  57. Irikura K.K., Goddard W.A., Beauchamp J.L. // J. Am. Chem. Soc. 1992. V. 114. P. 48. https://doi.org/10.1021/ja00027a006

  58. Alder R.W., Blake M.E. // Chem. Commun. 1997. V. P. 1513. https://doi.org/10.1039/a703610h

  59. Moss R.A., Wlostowski M., Shen S. et al. // J. Am. Chem. Soc. 1988. V. 110. P. 4443. https://doi.org/10.1021/ja00221a071

  60. Alder R.W., Allen P.R., Murray M., Orpen A.G. // Angew. Chem., Int. Ed. 1996. V. 35. P. 1121. https://doi.org/10.1002/anie.199611211

  61. Wallbaum L., Weismann D., Löber D. et al. // Chem. Eur. J. 2019. V. 25. P. 1488. https://doi.org/10.1002/chem.201805307

  62. Alder R.W., Butts C.P., Orpen A.G. // J. Am. Chem. Soc. 1998. V. 120. P. 11526. https://doi.org/10.1021/ja9819312

  63. Frémont P., Marion N., Nolan S.P. // Coord. Chem. Rev. 2009. V. 253. P. 862. https://doi.org/10.1016/j.ccr.2008.05.018

  64. Jacobsen H., Correa A., Poater A. et al. // Coord. Chem. Rev. 2009. V. 253. P. 687. https://doi.org/10.1016/j.ccr.2008.06.006

  65. Crabtree R.H. // J. Organomet. Chem. 2005. V. 690. P. 5451. https://doi.org/10.1016/j.jorganchem.2005.07.099

  66. Antonova N.S., Carbo J.J., Poblet J.M. // Organometallics. 2009. V. 28. P. 4283. https://doi.org/10.1021/om900180m

  67. Lee M.T., Hu C.H. // Organometallics. 2004. V. 23. P. 976. https://doi.org/10.1021/om0341451

  68. Herrmann W.A., Ofele K., von Preysing D., Herdtweck E. // J. Organomet. Chem. 2003. V. 684. P. 235. https://doi.org/10.1016/s0022-328x(03)00754-x

  69. Fischer H., Schleu J., Troll C. // J. Organomet. Chem. 1994. V. 464. P. 83. https://doi.org/10.1016/0022-328X(94)87013-6

  70. Ruiz J., Perandones B.F. // Organometallics. 2009. V. 28. P. 830. https://doi.org/10.1021/om800888r

  71. Ruiz J., Sol D., Mateo M.A., Vivanco M. // Dalton Trans. 2018. V. 47. P. 6279. https://doi.org/10.1039/C8DT01200H

  72. Ruiz J., García L., Mejuto C. et al. // Organometallics. 2012. V. 31. P. 6420. https://doi.org/10.1021/om3006454

  73. Balch A.L., Miller J. // J. Am. Chem. Soc. 1972. V. 94. P. 417. https://doi.org/10.1021/ja00757a019

  74. Costanzo L.L., Giuffrida S., De Guidi G. et al. // J. Organomet. Chem. 1985. V. 289. P. 81. https://doi.org/10.1016/0022-328X(85)88029-3

  75. Angelici R.J., Christian P.A., Dombek B.D., Pfeffer G.A. // J. Organomet. Chem. 1974. V. 67. P. 287. https://doi.org/10.1016/S0022-328X(00)82356-6

  76. Yu I., Wallis C.J., Patrick B.O. et al. // Organometallics. 2010. V. 29. P. 6065. https://doi.org/10.1021/om100841j

  77. Ruiz J., Garcia L., Vivanco M. et al. // Dalton Trans. 2017. V. 46. P. 10387. https://doi.org/10.1039/C7DT02049J

  78. Johnson B.V., Shade J.E. // J. Organomet. Chem. 1979. V. 179. P. 357. https://doi.org/10.1016/S0022-328X(00)91751-0

  79. Paulus B.C., Nielsen K.C., Tichnell C.R. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 8086. https://doi.org/10.1021/jacs.1c02451

  80. Werner H., Heiser B., Otto H. // Chem. Ber. 1985. V. 118. P. 3932. https://doi.org/doi:10.1002/cber.19851181006

  81. Hirsch-Weil D., Snead D.R., Inagaki S. et al. // Chem. Commun. 2009. P. 2475. https://doi.org/10.1039/b821169h

  82. Schöllkopf U., Gerhart F. // Angew. Chem. 1967. V. 6. P. 990. https://doi.org/10.1002/ange.19670792232

  83. Tolman C.A. // Chem. Rev. 1977. V. 77. P. 313. https://doi.org/10.1021/cr60307a002

  84. Wolf S., Plenio H. // J. Organomet. Chem. 2009. V. 694. P. 1487. https://doi.org/10.1016/j.jorganchem.2008.12.047

  85. Kelly R.A., III, Clavier H., Giudice S. et al. // Organometallics 2008. V. 27. P. 202. https://doi.org/10.1021/om701001g

  86. Martin D., Canac Y., Lavallo V., Bertrand G. // J. Am. Chem. Soc. 2014. V. 136. P. 5023. https://doi.org/10.1021/ja412981x

  87. Denk K., Sirsch P., Herrmann W.A. // J. Organomet. Chem. 2002. V. 649. P. 219. https://doi.org/10.1016/S0022-328X(02)01133-6

  88. Collins M.S., Rosen E.L., Lynch V.M., Bielawski C.W. // Organometallics. 2010. V. 29. P. 3047. https://doi.org/10.1021/om1004226

  89. Meier M., Tan T.T.Y., Hahn F.E., Huynh H.V. // Organometallics. 2017. V. 36. P. 275. https://doi.org/10.1021/acs.organomet.6b00736

  90. Huynh H.V., Han Y., Jothibasu R., Yang J.A. // Organometallics. 2009. V. 28. P. 5395. https://doi.org/10.1021/om900667d

  91. Singh C., Kumar A., Huynh H.V. // Inorg. Chem. 2020. V. 59. P. 8451. https://doi.org/10.1021/acs.inorgchem.0c00886

  92. Jacobsen H., Correa A., Costabile C., Cavallo L. // J. Organomet. Chem. 2006. V. 691. P. 4350. https://doi.org/10.1016/j.jorganchem.2006.01.026

  93. Liske A., Verlinden K., Buhl H. et al. // Organometallics. 2013. V. 32. P. 5269. https://doi.org/10.1021/om400858y

  94. Schulz T., Weismann D., Wallbaum L. et al. // Chem. Eur. J. 2015. V. 21. P. 14107. https://doi.org/10.1002/chem.201502315

  95. Rosen E.L., Sanderson M.D., Saravanakumar S., Bielawski C.W. // Organometallics. 2007. V. 26. P. 5774. https://doi.org/10.1021/om7007925

  96. Jazzar R., Soleilhavoup M., Bertrand G. // Chem. Rev. 2020. V. 120. P. 4141. https://doi.org/10.1021/acs.chemrev.0c00043

  97. Siemeling U., Färber C., Bruhn C. et al. // Chem. Sci. 2010. V. 1. P. 697. https://doi.org/10.1039/C0SC00451K

  98. Alder R.W., Blake M.E., Oliva J.M. // J. Phys. Chem. A. 1999. V. 103. P. 11200. https://doi.org/10.1021/jp9934228

  99. Pazio A., Woźniak K., Grela K., Trzaskowski B. // Organometallics. 2015. V. 34. P. 563. https://doi.org/10.1021/om5006462

  100. Anisimova T.B., Guedes da Silva M.F.C., Kukushkin V.Y. et al. // Dalton Trans. 2014. V. 43. P. 15861. https://doi.org/10.1039/c4dt01917b

  101. Mikhaylov V.N., Sorokoumov V.N., Korvinson K.A. et al. // Organometallics. 2016. V. 35. P. 1684. https://doi.org/10.1021/acs.organomet.6b00144

  102. Zhang L., Yu W., Liu C. et al. // Organometallics. 2015. V. 34. P. 5697. https://doi.org/10.1021/acs.organomet.5b00746

  103. Kinzhalov M.A., Timofeeva S.A., Luzyanin K.V. et al. // Organometallics. 2016. V. 35. P. 218. https://doi.org/10.1021/acs.organomet.5b00936

  104. Kinzhalov M.A., Novikov A.S., Chernyshev A.N., Suslonov V.V. // Z. Kristallogr. – Cryst. Mater. 2017. V. 232. P. 299. https://doi.org/10.1515/zkri-2016-2018

  105. Ivanov D.M., Kinzhalov M.A., Novikov A.S. et al. // Cryst. Growth Des. 2017. V. 17. P. 1353. https://doi.org/10.1021/acs.cgd.6b01754

  106. Mikherdov A.S., Novikov A.S., Kinzhalov M.A. et al. // Inorg. Chem. 2018. V. 57. P. 3420. https://doi.org/10.1021/acs.inorgchem.8b00190

  107. Ramiro Z., Bartolomé C., Espinet P. // Eur. J. Inorg. Chem. 2014. V. 2014. P. 5499. https://doi.org/10.1002/ejic.201402744

  108. Wang Y.-M., Kuzniewski C.N., Rauniyar V. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 12972. https://doi.org/10.1021/ja205068j

  109. Bartolome C., Carrasco-Rando M., Coco S. et al. // Inorg. Chem. 2008. V. 47. P. 1616. https://doi.org/10.1021/ic702201e

  110. Bartolomé C., Carrasco-Rando M., Coco S. et al. // Organometallics. 2006. V. 25. P. 2700. https://doi.org/10.1021/om0601753

  111. Bartolomé C., Ramiro Z., Pérez-Galán P. et al. // Inorg. Chem. 2008. V. 47. P. 11391. https://doi.org/10.1021/ic801446v

  112. Bartolomé C., García-Cuadrado D., Ramiro Z., Espinet P. // Inorg. Chem. 2010. V. 49. P. 9758. https://doi.org/10.1021/ic101059c

  113. Shi Y.-C., Wang S., Xie S. // J. Coord. Chem. 2015. V. 68. P. 3852. https://doi.org/10.1080/00958972.2015.1079312

  114. Rosen E.L., Sung D.H., Chen Z. et al. // Organometallics. 2010. V. 29. P. 250. https://doi.org/10.1021/om9008718

  115. Mikherdov A.S., Kinzhalov M.A., Novikov A.S. et al. // Inorg. Chem. 2018. V. 57. P. 6722. https://doi.org/10.1021/acs.inorgchem.8b01027

  116. Mikhaylov V.N., Sorokoumov V.N., Novikov A.S. et al. // J. Organomet. Chem. 2020. V. 912. P. 121174. https://doi.org/10.1016/j.jorganchem.2020.121174

  117. Popov R.A., Mikherdov A.S., Novikov A.S. et al. // New J. Chem. 2021. V. 4. P. 1785. https://doi.org/10.1039/D0NJ05386D

  118. Eberhard M.R., van Vliet B., Durán Páchon L. et al. // Eur. J. Inorg. Chem. 2009. V. 2009. P. 1313. https://doi.org/10.1002/ejic.200801067

  119. Marchenko A., Koidan G., Hurieva A. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. P. 652. https://doi.org/10.1002/ejic.201701342

  120. Marchenko A., Koidan G., Hurieva A. et al. // Dalton Trans. 2016. V. 45. P. 1967. https://doi.org/10.1039/C5DT02250A

  121. Han J., Tang K.-M., Cheng S.-C. et al. // Inorg. Chem. Front. 2020. V. 7. P. 786. https://doi.org/10.1039/C9QI01278H

  122. Handa S., Slaughter L.M. // Angew. Chem. Int. Ed. 2012. V. 51. P. 2912. https://doi.org/10.1002/anie.201107789

  123. Scattolin T., Nolan S.P. // Trends in Chemistry. 2020. V. 2. P. 721. https://doi.org/10.1016/j.trechm.2020.06.001

  124. Benhamou L., Chardon E., Lavigne G. et al. // Chem. Rev. 2011. V. 111. P. 2705. https://doi.org/10.1021/cr100328e

  125. Vignolle J., Catton X., Bourissou D. // Chem. Rev. 2009. V. 109. P. 3333. https://doi.org/10.1021/cr800549j

  126. Herrmann W.A., Schutz J., Frey G.D., Herdtweck E. // Organometallics. 2006. V. 25. P. 2437. https://doi.org/10.1021/om0600801

  127. Alder R.W., Blake M.E., Bufali S. et al. // J. Chem. Soc., Perkin Trans. 1. 2001. P. 1586. https://doi.org/10.1039/b104110j

  128. Alder R.W., Chaker L., Paolini F.P.V. // Chem. Commun. 2004. P. 2172. https://doi.org/10.1039/B409112D

  129. Schoultz X., Gerber T.I.A., Hosten E.C. // Inorg. Chem. Commun. 2016. V. 68. P. 13. https://doi.org/10.1016/j.inoche.2016.03.020

  130. Bulak E., Dogan I., Varnali T. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. P. 2425. https://doi.org/10.1002/ejic.202100277

  131. Kremzow D., Seidel G., Lehmann C.W., Furstner A. // Chem. Eur. J. 2005. V. 11. P. 1833.

  132. Snead D.R., Inagaki S., Abboud K.A., Hong S. // Organometallics. 2010. V. 29. P. 1729. https://doi.org/10.1021/om901112n

  133. Snead D.R., Chiviriga I., Abboud K.A., Hong S. // Org. Lett. 2009. V. 11. P. 3274. https://doi.org/10.1021/ol9013156

  134. Michelin R.A., Pombeiro A.J.L., Guedes da Silva M.F.C. // Coord. Chem. Rev. 2001. V. 218. P. 75. https://doi.org/10.1016/S0010-8545(01)00358-7

  135. Boyarskiy V.P., Bokach N.A., Luzyanin K.V., Kukushkin V.Y. // Chem. Rev. 2015. V. 115. P. 2698. https://doi.org/10.1021/cr500380d

  136. Chugaev L., Skanavy-Grigorjeva M.J. // Russ. Chem. Soc. 1915. V. 47. P. 776.

  137. Luzyanin K.V., Pombeiro A.J.L. Carbene complexes derived from metal-bound isocyanides // Isocyanide chem. / Ed. Nenajdenko V. Wiley-VCH, 2012, P. 531.

  138. Kinzhalov M.A., Boyarskii V.P. // Russ. J. Gen. Chem. 2015. V. 85. P. 2313. https://doi.org/10.1134/S1070363215100175

  139. Fehlhammer W.P., Bartel K., Metzner R., Beck W. // Z. Anorg. Allg. Chem. 2008. V. 634. P. 1002. https://doi.org/10.1002/zaac.200700540

  140. Crociani B., Boschi T., Belluco U. // Inorg. Chem. 1970. V. 9. P. 2021. https://doi.org/10.1021/ic50091a013

  141. Arias J., Bardají M., Espinet P. // Inorg. Chem. 2008. V. 47. P. 3559. https://doi.org/10.1021/ic701831v

  142. Michelin R.A., Zanotto L., Braga D. et al. // Inorg. Chem. 1988. V. 27. P. 85. https://doi.org/10.1021/ic00274a019

  143. Canovese L., Visentin F., Uguagliati P., Crociani B. // J. Organomet. Chem. 1997. V. 543. P. 145. https://doi.org/10.1016/s0022-328x(97)00095-8

  144. Badley E.M., Chatt J., Richards R.L., Sim G.A. // Chem. Commun. 1969. P. 1322. https://doi.org/10.1039/c29690001322

  145. Knorn M., Lutsker E., Reiser O. // Organometallics. 2015. V. 34. P. 4515. https://doi.org/10.1021/acs.organomet.5b00516

  146. Rassadin V.A., Yakimanskiy A.A., Eliseenkov E.V., Boyarskiy V.P. // Inorg. Chem. Commun. 2015. V. 61. P. 21. https://doi.org/10.1016/j.inoche.2015.08.008

  147. Hashmi A.S.K., Lothschutz C., Boohling C., Rominger F. // Organometallics. 2011. V. 30. P. 2411. https://doi.org/10.1021/om200141s

  148. Singh C., Prakasham A.P., Gangwar M.K. et al. // ACS Omega. 2018. V. 3. P. 1740. https://doi.org/10.1021/acsomega.7b01974

  149. Hashmi A.S.K., Lothschütz C., Böhling C. et al. // Adv. Synth. Catal. 2010. V. 352. P. 3001. https://doi.org/10.1002/adsc.201000472

  150. Riedel D., Wurm T., Graf K. et al. // Adv. Synth. Catal. 2015. V. 357. P. 1515. https://doi.org/10.1002/adsc.201401131

  151. Lothschütz C., Wurm T., Zeiler A. et al. // Chem. Asian J. 2016. V. 11. P. 342. https://doi.org/10.1002/asia.201500353

  152. Kinzhalov M.A., Kashina M.V., Mikherdov A.S. et al. // Angew. Chem. Int. Ed. 2018. V. 57. P. 12785. https://doi.org/10.1002/anie.201807642

  153. Baikov S.V., Trukhanova Y.A., Tarasenko M.V., Kinzhalov M.A. // Russ. J. Gen. Chem. 2020. V. 90. P. 1892. https://doi.org/10.1134/S1070363220100126

  154. Kinzhalov M.A., Starova G.L., Boyarskiy V.P. // Inorg. Chim. Acta. 2017. V. 455. P. 607. https://doi.org/10.1016/j.ica.2016.05.014

  155. Zhang S.-W., Motoori F., Takahashi S. // J. Organomet. Chem. 1999. V. 574. P. 163. https://doi.org/https://doi.org/10.1016/S0022-328X(98)00937-1

  156. Zhang S.-W., Ishii R., Motoori F. et al. // Inorg. Chim. Acta. 1997. V. 265. P. 75. https://doi.org/10.1016/S0020-1693(97)05673-9

  157. Zhang S.-W., Kaharu T., Pirio N. et al. // J. Organomet. Chem. 1995. V. 489. P. C62. https://doi.org/10.1016/0022-328X(94)05287-L

  158. Bertani R., Mozzon M., Benetollo F. et al. // Dalton Trans. 1990. V. 1990. P. 1197. https://doi.org/10.1039/dt9900001197

  159. Fehlhammer W.P., Metzner R., Luger P., Dauter Z. // Chem. Ber. 1995. V. 128. P. 1061. https://doi.org/10.1002/cber.19951281102

  160. Zhang S.-W., Takahashi S. // Organometallics. 1998. V. 17. P. 4757. https://doi.org/10.1021/OM9805077

  161. Golubev P., Krasavin M. // Tetrahedron Lett. 2018. V. 59. P. 3532. https://doi.org/10.1016/j.tetlet.2018.08.025

  162. Fehlhammer W.P., Metzner R., Sperber W. // Chem. Ber. 1994. V. 127. P. 829. https://doi.org/10.1002/cber.19941270507

  163. Moderhack D. // Tetrahedron. 2012. V. 68. P. 5949. https://doi.org/10.1016/j.tet.2012.04.099

  164. Giustiniano M., Basso A., Mercalli V. et al. // Chem. Soc. Rev. 2017. V. 46. P. 1295. https://doi.org/10.1039/C6CS00444J

  165. Goldberg S.Z., Eisenberg R., Miller J.S. // Inorg. Chem. 1977. V. 16. P. 1502. https://doi.org/10.1021/ic50172a053

  166. Miller J.S., Balch A.L. // Inorg. Chem. 1972. V. 11. P. 2069. https://doi.org/10.1021/ic50115a017

  167. Stork J.R., Rios D., Pham D. et al. // Inorg. Chem. 2005. V. 44. P. 3466. https://doi.org/10.1021/ic048333a

  168. Zeiler A., Rudolph M., Rominger F., Hashmi A.S.K. // Chem. Eur. J. 2015. V. 21. P. 11065. https://doi.org/10.1002/chem.201500025

  169. Tanase T., Urabe M., Mori N. et al. // J. Organomet. Chem. 2019. V. 879. P. 47. https://doi.org/10.1016/j.jorganchem.2018.10.005

  170. Steinmetz A.L., Johnson B.V. // Organometallics. 1983. V. 2. P. 705. https://doi.org/10.1021/om00078a002

  171. Anding B.J., Ellern A., Woo L.K. // Organometallics. 2014. V. 33. P. 2219. https://doi.org/10.1021/om500081w

  172. Boschi T., Licoccia S., Paolesse R. et al. // Organometallics. 1989. V. 8. P. 330. https://doi.org/10.1021/om00104a010

  173. Wong K.-H., Cheung W.-M., Sung H.H.Y. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. P. 2085. https://doi.org/10.1002/ejic.202000208

  174. Na H., Maity A., Teets T.S. // Dalton Trans. 2017. V. 46. P. 5008. https://doi.org/10.1039/C7DT00694B

  175. Maity A., Le L.Q., Zhu Z. et al. // Inorg. Chem. 2016. V. 55. P. 2299. https://doi.org/10.1021/acs.inorgchem.5b02691

  176. Katlenok E.A., Kinzhalov M.A., Eremina A.A. et al. // Opt. Spectrosc. 2017. V. 122. P. 723. https://doi.org/10.1134/S0030400X17050113

  177. Islamova R.M., Dobrynin M.V., Vlasov A.V. et al. // Catal. Sci. Technol. 2017. V. 7. P. 5843. https://doi.org/10.1039/C7CY02013A

  178. Kinzhalov M.A., Eremina A.A., Smirnov A.S. et al. // Dalton Trans. 2019. V. 48. P. 7571. https://doi.org/10.1039/C9DT01138B

  179. Canovese L., Visentin F., Uguagliati P. et al. // J. Organomet. Chem. 1997. V. 535. P. 69. https://doi.org/10.1016/s0022-328x(96)06943-4

  180. Crociani B., Boschi T., Nicolini M., Belluco U. // Inorg. Chem. 1972. V. 11. P. 1292. https://doi.org/10.1021/ic50112a028

  181. Calligaro L., Uguagliati P., Crociani B., Belluco U. // J. Organomet. Chem. 1975. V. 92. P. 399. https://doi.org/10.1016/S0022-328X(00)85689-2

  182. Belluco U., Michelin R.A., Uguagliati P., Crociani B. // J. Organomet. Chem. 1983. V. 250. P. 565. https://doi.org/10.1016/0022-328X(83)85078-5

  183. Crociani B., Uguagliati P., Belluco U. // J. Organomet. Chem. 1976. V. 117. P. 189. https://doi.org/10.1016/S0022-328X(00)87271-X

  184. Kuznetsov M.L., Kukushkin V.Y. // Molecules. 2017. V. 22. P. 1141. https://doi.org/10.3390/molecules22071141

  185. Zhang X., Wu X., Lei Y. // J. Mol. Model. 2019. V. 25. P. 261. https://doi.org/10.1007/s00894-019-4145-x

  186. Casella G., Casarin M., Kukushkin V.Y., Kuznetsov M.L. // Molecules. 2018. V. 23. P. 2942. https://doi.org/10.3390/molecules23112942

  187. Tamm M., Ekkehardt Hahn F. // Coord. Chem. Rev. 1999. V. 182. P. 175. https://doi.org/10.1016/S0010-8545(98)00233-1

  188. Burke A., Balch A.L., Enemark J.H. // J. Am. Chem. Soc. 1970. V. 92. P. 2555. https://doi.org/10.1021/ja00711a063

  189. Rouschias G., Shaw B.L. // J. Chem. Soc. A. Inorg. Phys. Theor. 1971. P. 2097. https://doi.org/10.1039/J19710002097

  190. Butler W.M., Enemark J.H., Parks J., Balch A.L. // Inorg. Chem. 1973. V. 12. P. 451. https://doi.org/10.1021/ic50120a042

  191. Stork J.R., Olmstead M.M., Balch A.L. // J. Am. Chem. Soc. 2005. V. 127. P. 6512. https://doi.org/10.1021/ja050014a

  192. Stork J.R., Olmstead M.M., Fettinger J.C., Balch A.L. // Inorg. Chem. 2006. V. 45. P. 849. https://doi.org/10.1021/ic051252+

  193. Balch A.L., Parks J.E. // J. Am. Chem. Soc. 1974. V. 96. P. 4114. https://doi.org/10.1021/ja00820a009

  194. Butler W.M., Enemark J.H. // Inorg. Chem. 1971. V. 10. P. 2416. https://doi.org/10.1021/ic50105a010

  195. Moncada A.I., Khan M.A., Slaughter L.M. // Tetrahedron Lett. 2005. V. 46. P. 1399. https://doi.org/10.1016/j.tetlet.2005.01.033

  196. Moncada A.I., Tanski J.M., Slaughter L.M. // J. Organomet. Chem. 2005. V. 690. P. 6247. https://doi.org/10.1016/j.jorganchem.2005.07.019

  197. Moncada A.I., Manne S., Tanski J.M., Slaughter L.M. // Organometallics. 2006. V. 25. P. 491. https://doi.org/10.1021/om050786f

  198. Wanniarachchi Y.A., Slaughter L.M. // Organometallics. 2008. V. 27. P. 1055. https://doi.org/10.1021/om700866p

  199. Na H., Maity A., Morshed R., Teets T.S. // Organometallics. 2017. V. 36. P. 2965. https://doi.org/10.1021/acs.organomet.7b00428

  200. Usón R., Laguna A., Villacampa M.D. et al. // Dalton Trans. 1984. P. 2035. https://doi.org/10.1039/DT9840002035

  201. Edwards J.O., Pearson R.G. // J. Am. Chem. Soc. 1962. V. 84. P. 16. https://doi.org/10.1021/ja00860a005

  202. Carey F.A., Sundberg R.J. Advanced Organic Chemistry. Part A: Structure and Mechanisms. Berlin: Springer, 2007.

  203. Кукушкин Ю.Н. Реакционная способность координационных соединений. Ленинград: Химия, 1987.

  204. Valishina E.A., Guedes da Silva M.F.C., Kinzhalov M.A. et al. // J. Mol. Catal. A: Chem. 2014. V. 395. P. 162. https://doi.org/10.1016/j.molcata.2014.08.018

  205. Valishina E.A., Buslaeva T.M., Luzyanin K.V. // Russ. Chem. Bull. 2013. V. 62. P. 1361. https://doi.org/10.1007/s11172-013-0193-z

  206. Luzyanin K.V., Tskhovrebov A.G., Carias M.C. et al. // Organometallics. 2009. V. 28. P. 6559. https://doi.org/10.1021/om900682v

  207. Yakimanskiy A., Boyarskaya I., Boyarskiy V. // J. Coord. Chem. 2013. V. 66. P. 3592. https://doi.org/10.1080/00958972.2013.847185

  208. Boyarskaya D.V., Kinzhalov M.A., Suslonov V.V., Boyarskiy V.P. // Inorg. Chim. Acta. 2017. V. 458. P. 190. https://doi.org/10.1016/j.ica.2017.01.008

  209. Tšupova S., Rudolph M., Rominger F., Hashmi A.S.K. // Adv. Synth. Catal. 2016. V. 358. P. 3999. https://doi.org/10.1002/adsc.201600615

  210. Miltsov S.A., Karavan V.S., Boyarsky V.P. et al. // Tetrahedron Lett. 2013. V. 54. P. 1202. https://doi.org/10.1016/j.tetlet.2012.12.060

  211. Ryabukhin D.S., Sorokoumov V.N., Savicheva E.A. et al. // Tetrahedron Lett. 2013. V. 54. P. 2369. https://doi.org/10.1016/j.tetlet.2013.02.086

  212. Savicheva E.A., Kurandina D.V., Nikiforov V.A., Boyarskiy V.P. // Tetrahedron Lett. 2014. V. 55. P. 2101. https://doi.org/10.1016/j.tetlet.2014.02.044

  213. Kinzhalov M.A., Boyarskiy V.P., Luzyanin K.V. et al. // Dalton Trans. 2013. V. 42. P. 10394. https://doi.org/10.1039/c3dt51335a

  214. Lai S.-W., Chan M.C.-W., Cheung K.-K., Che C.-M. // Organometallics. 1999. V. 18. P. 3327. https://doi.org/10.1021/om990256h

  215. Tskhovrebov A.G., Luzyanin K.V., Dolgushin F.M. et al. // Organometallics. 2011. V. 30. P. 3362. https://doi.org/10.1021/om2002574

  216. Kinzhalov M.A., Luzyanin K.V., Boyarskiy V.P. et al. // Russ. Chem. Bull. 2013. V. 62. P. 758. https://doi.org/10.1007/s11172-013-0103-4

  217. Mikherdov A.S., Kinzhalov M.A., Novikov A.S. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 14129. https://doi.org/10.1021/jacs.6b09133

  218. Mikherdov A., Novikov A., Kinzhalov M. et al. // Crystals. 2018. V. 8. P. 112. https://doi.org/10.3390/cryst8030112

  219. Mikherdov A.S., Orekhova Y.A., Boyarskii V.P. // Russ. J. Gen. Chem. 2018. V. 88. P. 2119. https://doi.org/10.1134/s1070363218100158

  220. Mikherdov A.S., Tiuftiakov N.Y., Polukeev V.A., Boyarskii V.P. // Russ. J. Gen. Chem. 2018. V. 88. P. 713. https://doi.org/10.1134/s1070363218040151

  221. Singh C., Prakasham A.P., Gangwar M.K., Ghosh P. // Chem. Select. 2018. V. 3. P. 9361. https://doi.org/10.1002/slct.201801667

  222. Chay R.S., Luzyanin K.V. // Inorg. Chim. Acta. 2012. V. 380. P. 322. https://doi.org/10.1016/j.ica.2011.09.047

  223. Luzyanin K.V., Pombeiro A.J.L., Haukka M., Kukushkin V.Y. // Organometallics. 2008. V. 27. P. 5379. https://doi.org/10.1021/om800517c

  224. Chay R.S., Luzyanin K.V., Kukushkin V.Y. et al. // Organometallics. 2012. V. 31. P. 2379. https://doi.org/10.1021/om300020j

  225. Boyarskaya D.V., Chulkova T.G. // Russ. J. Org. Chem. 2020. V. 56. P. 1937. https://doi.org/10.1134/S107042802011007X

  226. Boyarskaya D.V., Bulatov E., Boyarskaya I.A. et al. // Organometallics. 2019. V. 38. P. 300. https://doi.org/10.1021/acs.organomet.8b00725

  227. Tskhovrebov A.G., Luzyanin K.V., Kuznetsov M.L. et al. // Organometallics. 2011. V. 30. P. 863. https://doi.org/10.1021/om101041g

  228. Katkova S.A., Kinzhalov M.A., Tolstoy P.M. et al. // Organometallics. 2017. V. 36. P. 4145. https://doi.org/10.1021/acs.organomet.7b00569

  229. Mikherdov A.S., Popov R.A., Kinzhalov M.A. et al. // Inorg. Chim. Acta. 2021. V. 514. P. 120012. https://doi.org/10.1016/j.ica.2020.120012

  230. Vicente J., Abad J.-A., López-Serrano J. et al. // Organometallics. 2005. V. 24. P. 5044. https://doi.org/10.1021/om050451y

  231. Fehlhammer W.P. // Z. Naturforsch., B. 1994. V. 49. P. 494. https://doi.org/doi:10.1515/znb-1994-0411

  232. Wanniarachchi Y.A., Kogiso Y., Slaughter L.M. // Organometallics. 2008. V. 27. P. 21. https://doi.org/10.1021/om701029j

  233. Wanniarachchi Y.A., Slaughter L.M. // Chem. Commun. 2007. V. 31. P. 3294. https://doi.org/10.1039/B703769D

  234. Wanniarachchi Y.A., Subramanium S.S., Slaughter L.M. // J. Organomet. Chem. 2009. V. 694. P. 3297. https://doi.org/10.1016/j.jorganchem.2009.06.007

  235. Qiu G., Ding Q., Wu J. // Chem. Soc. Rev. 2013. V. 42. P. 5257. https://doi.org/10.1039/C3CS35507A

  236. Altundas B., Marrazzo J.-P.R., Fleming F.F. // Org. Biomol. Chem. 2020. V. 18. P. 6467. https://doi.org/10.1039/D0OB01340D

  237. Lang S. // Chem. Soc. Rev. 2013. V. 42. P. 4867. https://doi.org/10.1039/C3CS60022J

  238. Suginome M., Ito Y. // Polymer Synthesis. 2004. V. 171. P. 77. https://doi.org/10.1007/b95531

  239. Collet J.W., Roose T.R., Ruijter E. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 540. https://doi.org/10.1002/anie.201905838

  240. Vlaar T., Ruijter E., Maes B.U.W., Orru R.V.A. // Angew. Chem., Int. Ed. 2013. V. 52. P. 7084. https://doi.org/10.1002/anie.201300942

  241. Martínez-Martínez A.J., Chicote M.T., Bautista D., Vicente J. // Organometallics. 2012. V. 31. P. 3711. https://doi.org/10.1021/om300201s

  242. Usón R., Fornies J., Espinet P., Lalinde E. // J. Organomet. Chem. 1987. V. 334. P. 399. https://doi.org/10.1016/0022-328X(87)80102-X

  243. Kelly C.M., Kwon D.-H., Ferguson M.J. et al. // Angew. Chem. Int. Ed. 2015. V. 54. P. 14498. https://doi.org/10.1002/anie.201506871

  244. Il'in M.V., Bolotin D.S., Novikov A.S. et al. // Inorg. Chim. Acta. 2019. V. 490. P. 267. https://doi.org/10.1016/j.ica.2019.03.026

  245. Melaimi M., Soleilhavoup M., Bertrand G. // Angew. Chem. Int. Ed. 2010. V. 49. P. 8810. https://doi.org/10.1002/anie.201000165

  246. Johansson Seechurn C.C.C., Kitching M.O., Colacot T.J., Snieckus V. // Angew. Chem. Int. Ed. 2012. V. 51. P. 5062. https://doi.org/10.1002/anie.201107017

  247. Rayadurgam J., Sana S., Sasikumar M., Gu Q. // Org. Chem. Front. 2021. V. 8. P. 384. https://doi.org/10.1039/d0qo01146k

  248. Buskes M.J., Blanco M.J. // Molecules. 2020. V. 25. 3493. https://doi.org/10.3390/molecules25153493

  249. Diccianni J.B., Diao T.N. // Trends in Chemistry. 2019. V. 1. P. 830. https://doi.org/10.1016/j.trechm.2019.08.004

  250. Tasker S.Z., Standley E.A., Jamison T.F. // Nature. 2014. V. 509. P. 299. https://doi.org/10.1038/nature13274

  251. Phapale V.B., Cardenas D.J. // Chem. Soc. Rev. 2009. V. 38. P. 1598. https://doi.org/10.1039/b805648j

  252. Han F.S. // Chem. Soc. Rev. 2013. V. 42. P. 5270. https://doi.org/10.1039/c3cs35521g

  253. Soliev S.B., Astakhov A.V., Pasyukov D.V., Chernyshev V.M. // Russ. Chem. Bull. 2020. V. 69. P. 683. https://doi.org/10.1007/s11172-020-2818-3

  254. Cahiez G., Moyeux A. // Chem. Rev. 2010. V. 110. P. 1435. https://doi.org/10.1021/cr9000786

  255. Gudmundsson A., Bäckvall J.E. // Molecules. 2020. V. 25. P. 1349. https://doi.org/10.3390/molecules25061349

  256. Furstner A. // Bull. Chem. Soc. Jpn. 2021. V. 94. P. 666. https://doi.org/10.1246/bcsj.20200319

  257. Furstner A., Leitner A., Mendez M., Krause H. // J. Am. Chem. Soc. 2002. V. 124. P. 13856. https://doi.org/10.1021/ja027190t

  258. Kantchev E.A.B., O’Brien C.J., Organ M.G. // Angew. Chem. Int. Ed. 2007. V. 46. P. 2768. https://doi.org/10.1002/anie.200601663

  259. Fortman G.C., Nolan S.P. // Chem. Soc. Rev. 2011. V. 40. P. 5151. https://doi.org/10.1039/c1cs15088j

  260. Martin R., Buchwald S.L. // Acc. Chem. Res. 2008. V. 41. P. 1461. https://doi.org/10.1021/ar800036s

  261. Kotha S., Lahiri K., Kashinath D. // Tetrahedron. 2002. V. 58. P. 9633. https://doi.org/10.1016/s0040-4020(02)01188-2

  262. Polshettiwar V., Decottignies A., Len C., Fihri A. // ChemSusChem. 2010. V. 3. P. 502. https://doi.org/10.1002/cssc.200900221

  263. Hooshmand S.E., Heidari B., Sedghi R., Varma R.S. // Green Chem. 2019. V. 21. P. 381. https://doi.org/10.1039/c8gc02860e

  264. Kinzhalov M.A., Borozdinova A.M., Boyarskaya I.A. et al. // Russ. J. Gen. Chem. 2014. V. 84. P. 2138. https://doi.org/10.1134/S1070363214110164

  265. Casalnuovo A.L., Calabrese J.C. // J. Am. Chem. Soc. 1990. V. 112. P. 4324.

  266. Wei J.-F., Jiao J., Feng J.-J. et al. // J. Org. Chem. 2009. V. 74. P. 6283.

  267. Moseley J.D., Murray P.M., Turp E.R. et al. // Tetrahedron. 2012. V. 68. P. 6010.

  268. Godoy F., Segarra C., Poyatos M., Peris E. // Organometallics. 2011. V. 30. P. 684.

  269. Mohajer F., Heravi M.M., Zadsirjan V., Poormohammad N. // RSC Adv. 2021. V. 11. P. 6885. https://doi.org/10.1039/d0ra10575a

  270. Kanwal I., Mujahid A., Rasool N. et al. // Catalysts. 2020. V. 10. P. 443. https://doi.org/10.3390/catal10040443

  271. Chinchilla R., Najera C. // Chem. Soc. Rev. 2011. V. 40. P. 5084. https://doi.org/10.1039/c1cs15071e

  272. Murashkina A.V., Mitrofanov A.Y., Beletskaya I.P. // Russ. J. Org. Chem. 2019. V. 55. P. 1445. https://doi.org/10.1134/s1070428019100014

  273. Eremin D.B., Ananikov V.P. // Chem. Soc. Rev. 2017. V. 346. P. 2. https://doi.org/10.1016/j.ccr.2016.12.021

  274. Chernyshev V.M., Khazipov O.V., Eremin D.B. et al. // Chem. Soc. Rev. 2021. V. 437. P. 213860. https://doi.org/10.1016/j.ccr.2021.213860

  275. Chernyshev V.M., Denisova E.A., Eremin D.B., Ananikov V.P. // Chem. Sci. 2020. V. 11. P. 6957. https://doi.org/10.1039/d0sc02629h

  276. Boyarskii V.P. // Russ. J. Gen. Chem. 2017. V. 87. P. 1663. https://doi.org/10.1134/s1070363217080035

  277. Boyarskaya D.V., Boyarskii V.P. // Russ. J. Gen. Chem. 2016. V. 86. P. 2033. https://doi.org/10.1134/s1070363216090085

  278. Handy C.J., Manoso A.S., McElroy W.T. et al. // Tetrahedron. 2005. V. 61. P. 12201. https://doi.org/https://doi.org/10.1016/j.tet.2005.08.057

  279. Rendler S., Oestreich M. // Synthesis. 2005. V. 2005. P. 1727.

  280. Beletskaya I.P., Cheprakov A.V. // Chem. Rev. 2000. V. 100. P. 3009. https://doi.org/10.1021/cr9903048

  281. Paul D., Das S., Saha S. et al. // Eur. J. Org. Chem. 2021. V. 14. P. 2057. https://doi.org/10.1002/ejoc.202100071

  282. Kadu B.S. // Catal. Sci. Technol. 2021. V. 11. P. 1186. https://doi.org/10.1039/D0CY02059A

  283. Ishiyama T., Murata M., Miyaura N. // J. Organomet. Chem. 1995. V. 60. P. 7508. https://doi.org/10.1021/jo00128a024

  284. Molnár Á. // Chem. Rev. 2011. V. 111. P. 2251. https://doi.org/10.1021/cr100355b

  285. Mikhaylov V.N., Sorokoumov V.N., Balova I.A. // Russ. Chem. Rev. 2017. V. 86. P. 459. https://doi.org/10.1070/rcr4715

  286. Magano J., Dunetz J.R. // Chem. Rev. 2011. V. 111. P. 2177. https://doi.org/10.1021/cr100346g

  287. Beletskaya I.P., Najera C., Yus M. // Russ. Chem. Rev. 2020. V. 89. P. 250. https://doi.org/10.1070/rcr4916

  288. Nakajima Y., Shimada S. // RSC Advances 2015. V. 5. P. 20603. https://doi.org/10.1039/C4RA17281G

  289. Parasram M., Gevorgyan V. // Chem. Soc. Rev. 2017. V. 46. P. 6227. https://doi.org/10.1039/C7CS00226B

  290. Chuentragool P., Kurandina D., Gevorgyan V. // Angew. Chem. Int. Ed. 2019. V. 58. P. 11586. https://doi.org/10.1002/anie.201813523

  291. Lee S., Han W.-S. // Inorg. Chem. Front. 2020. V. 7. P. 2396. https://doi.org/10.1039/D0QI00001A

  292. Chi Y., Chou P.-T. // Chem. Soc. Rev. 2010. V. 39. P. 638. https://doi.org/10.1039/B916237B

  293. To W.P., Wan Q.Y., Tong G.S.M., Che C.M. // Trends Chem. 2020. V. 2. P. 796. https://doi.org/10.1016/j.trechm.2020.06.004

  294. Bai R.B., Meng X.W., Wang X.X., He L. // Adv. Funct. Mater. 2020. V. 30. P. 1907169. https://doi.org/10.1002/adfm.201907169

  295. Zhuang Y.L., Guo S., Deng Y.J. et al. // Chem. Asian. J. 2019. V. 14. P. 3791. https://doi.org/10.1002/asia.201901209

  296. Housecroft C.E., Constable E.C. // Coord. Chem. Rev. 2017. V. 350. P. 155. https://doi.org/10.1016/j.ccr.2017.06.016

  297. Zhang Q.-C., Xiao H., Zhang X. et al. // Chem. Soc. Rev. 2019. V. 378. P. 121. https://doi.org/10.1016/j.ccr.2018.01.017

  298. Henwood A.F., Zysman-Colman E. // Top. Curr. Chem. 2016. V. 374. P. https://doi.org/10.1007/s41061-016-0036-0

  299. Colombo A., Dragonetti C., Guerchais V. et al. // Coord. Chem. Rev. 2020. V. 414. P. https://doi.org/10.1016/j.ccr.2020.213293

  300. Kinzhalov M.A., Grachova E.V., Luzyanin K.V. // 2021. V. -. P. in press.

  301. Baldo M.A., Lamansky S., Burrows P.E. et al. // Appl. Phys. Lett. 1999. V. 75. P. 4. https://doi.org/10.1063/1.124258

  302. O'Brien D.F., Baldo M.A., Thompson M.E., Forrest S.R. // Appl. Phys. Lett. 1999. V. 74. P. 442. https://doi.org/10.1063/1.123055

  303. Vlcek A., Zalis S. // Coord. Chem. Rev. 2007. V. 251. P. 258. https://doi.org/10.1016/j.ccr.2006.05.021

  304. Yang X.H., Neher D., Hertel D., Daubler T.K. // Adv. Mater. 2004. V. 16. P. 161. https://doi.org/10.1002/adma.200305621

  305. Yang X., Xu X., Zhou G. // J. Mater. Chem. C. 2015. V. 3. P. 913. https://doi.org/10.1039/C4TC02474E

  306. Yang X., Zhou G., Wong W.-Y. // Chem. Soc. Rev. 2015. V. 44. P. 8484. https://doi.org/10.1039/C5CS00424A

  307. Baldo M.A., O’Brien D.F., You Y. et al. // Nature. 1998. V. 395. P. 151. https://doi.org/10.1038/25954

  308. Lai S.W., Cheung K.K., Chan M.C.W., Che C.M. // Angew. Chem. Int. Ed. 1998. V. 37. P. 182. https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<182::AID-ANIE182>3.0.CO;2-X

  309. Wu Y., Wen Z., Wu J.I.-C., Teets T.S. // Chem. Eur. J. 2020. V. 26. P. 16028. https://doi.org/10.1002/chem.202002775

  310. Panchenko P.A., Fedorova O.A., Fedorov Y.V. // Russ. Chem. Rev. 2014. V. 83. P. 155. https://doi.org/10.1070/RC2014v083n02ABEH004380

  311. Bren V.A. // Russ. Chem. Rev. 2001. V. 70. P. 1017. https://doi.org/10.1070/RC2001v070n12ABEH000667

  312. Shi H., Wang Y., Lin S. et al. // Dalton Trans. 2021. V. 50. P. 6410. https://doi.org/10.1039/D1DT00592H

  313. Ma D.-L., Lin S., Wang W. et al. // Chem. Sci. 2017. V. 8. P. 878. https://doi.org/10.1039/C6SC04175B

  314. Ramón-Márquez T., Marín-Suárez M., Fernández-Gutiérrez A. et al. Iridium Complexes in the Development of Optical Sensors, in Iridium(III) // Optoelectronic and Photonics Applications / Ed. E. Zysman-Colman. John Wiley & Sons, 2017. 479 p.

  315. Rosenberg B., Van Camp L., Krigas T. // Nature. 1965. V. 205. P. 698. https://doi.org/10.1038/205698a0

  316. Rottenberg S., Disler C., Perego P. // Nat. Rev. Cancer. 2021. V. 21. P. 37. https://doi.org/10.1038/s41568-020-00308-y

  317. Kelland L. // Nat. Rev. Cancer. 2007. V. 7. P. 573. https://doi.org/10.1038/nrc2167

  318. Noffke A.L., Habtemariam A., Pizarro A.M., Sadler P.J. // Chem. Commun. 2012. V. 48. P. 5219. https://doi.org/10.1039/C2CC30678F

  319. Hillard E.A., Jaouen G. // Organometallics. 2011. V. 30. P. 20. https://doi.org/10.1021/om100964h

  320. Hussaini S.Y., Haque R.A., Razali M.R. // J. Organomet. Chem. 2019. V. 882. P. 96. https://doi.org/10.1016/j.jorganchem.2019.01.003

  321. Budagumpi S., Haque R.A., Endud S. et al. // Eur. J. Inorg. Chem. 2013. V. 2013. P. 4367. https://doi.org/10.1002/ejic.201300483

  322. Hindi K.M., Panzner M.J., Tessier C.A. et al. // Chem. Rev. 2009. V. 109. P. 3859. https://doi.org/10.1021/cr800500u

  323. Montanel-Perez S., Elizalde R., Laguna A. et al. // Eur. J. Inorg. Chem. 2019. V. 39-40. P. 44273. https://doi.org/10.1002/ejic.201900606

  324. Montanel-Pérez S., Herrera R.P., Laguna A. et al. // Dalton Trans. 2015. V. 44. P. 9052. https://doi.org/10.1039/C5DT00703H

  325. Bertrand B., Romanov A.S., Brooks M. et al. // Dalton Trans. 2017. V. 46. P. 15875. https://doi.org/10.1039/C7DT03189K

  326. Farrell N.P. // Chem. Soc. Rev. 2015. V. 44. P. 8773. https://doi.org/10.1039/C5CS00201J

  327. Komeda S., Moulaei T., Chikuma M. et al. // Nucleic Acids Res. 2010. V. 39. P. 325. https://doi.org/10.1093/nar/gkq723

  328. Komeda S., Moulaei T., Woods K.K. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 16092. https://doi.org/10.1021/ja062851y

Дополнительные материалы отсутствуют.