Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 6, стр. 851-861

Вклад трансглутаминазы в индукцию и поддержание долговременной синаптической потенциации в нейронах виноградной улитки

А. Б. Зюзина 1*, П. М. Балабан 1

1 Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия

* E-mail: lucky-a89@mail.ru

Поступила в редакцию 11.03.2022
После доработки 31.03.2022
Принята к публикации 26.04.2022

Аннотация

Ранее было показано, что для успешного формирования долговременной потенциации у наземной улитки Helix lucorum необходим нейромедиатор серотонин. В последнее время в литературе накапливается все больше данных о важной роли серотонина не только как агента, действующего через синаптические рецепторы, но также посредством ковалентного присоединения к своим белковым мишеням внутри клетки путем серотонилирования. Ферментом, обеспечивающим данную модификацию, является трансглутаминаза типа II (трансглутаминаза). В целом на сегодняшний день не сообщалось об исследованиях, направленных на выяснение роли трансглутаминаз в серотонин-зависимой пластичности. В текущем исследовании мы впервые изучили влияние блокады трансглутаминазы с помощью ингибитора монодансилкадаверина на формирование долговременной потенциации синаптических ответов в идентифицированных премоторных (командных) нейронах оборонительного поведения виноградной улитки. Мы показали, что применение ингибитора трансглутаминазы монодансилкадаверина нарушает позднюю фазу долговременной потенциации амплитуды синаптического ответа, вызванной пятикратной тетанизацией сенсорного нерва (второго кожного или интестинального), совмещенной с аппликацией серотонина на in vitro-препарате изолированной центральной нервной системы. Мы также обнаружили, что аппликация монодансилкадаверина сама по себе не влияет на синаптическую передачу в премоторных нейронах. Полученные результаты позволяют предположить, что для поддержания индуцированной серотонином поздней фазы долговременной потенциации синаптических ответов в премоторных (командных) нейронах оборонительного поведения виноградной улитки требуется опосредованное трансглутаминазой серотонилирование.

Ключевые слова: серотонин, синаптическая пластичность, долговременная потенциация, трансглутаминаза, монодансилкадаверин, виноградная улитка

Список литературы

  1. Abramova M.S., Nistratova V.L., Moskvitin A.A., Pivovarov A.S. Methiothepin-sensitive serotonin receptors are involved in the postsynaptic mechanism of sensitization of the defensive response in the common snail. Neurosci. Behav. Physiol. 2006. 36(6): 589–596.

  2. Agnihotri N., Kumar S., Mehta K. Tissue transglutaminase as a central mediator in inflammation-induced progression of breast cancer. Breast Cancer Res. 2013. 15(1): 202.

  3. Alberini C.M. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 2009. 89(1): 121–145.

  4. Alberini C.M., Kandel E.R. The regulation of transcription in memory consolidation. Cold Spring Harb. Perspect. Biol. 2014. 7(1): a021741.

  5. Allen K.D., Gourov A.V., Harte C., Gao P., Lee C., Sylvain D., Splett J.M., Oxberry W.C., van de Nes P.S., Troy-Regier M.J., Wolk J., Alarcon J.M., Hernández A.I. Nucleolar integrity is required for the maintenance of long-term synaptic plasticity. PLoS One. 2014. 9(8): e104364.

  6. Ambron R.T., Kremzner L.T. Post-translational modification of neuronal proteins: evidence for transglutaminase activity in R2, the giant cholinergic neuron of Aplysia. Proc Natl Acad Sci U S A. 1982. 79(11): 3442–3446.

  7. Anastas J.N., Shi Y. Histone Serotonylation: can the brain have “Happy”. Chromatin. Mol. Cell. 2019. 74(3): 418–420.

  8. Bader M. Serotonylation: Serotonin Signaling and Epigenetics. Front. Mol. Neurosci. 2019. 12: 288.

  9. Balaban P.M. Cellular mechanisms of behavioral plasticity in terrestrial snail. Neurosci. Biobehav. Rev. 2002. 26(5): 597–630.

  10. Balaban P.M., Vehovszky A., Maksimova O.A., Zakharov I.S. Effect of 5,7-dihydroxytryptamine on the food-aversive conditioning in the snail Helix lucorum L. Brain Research. 1987. 404(1–2): 201–210.

  11. Balaban P., Bravarenko N. Long-term sensitization and environmental conditioning in terrestrial snails. Exp. Brain Research. 1993. 96(3): 487–493.

  12. Balaban P.M., Korshunova T.A., Bravarenko N.I. Postsynaptic calcium contributes to reinforcement in a three-neuron network exhibiting associative plasticity. Eur. J. Neurosci. 2004. 19(2): 227–233.

  13. Balaban P.M., Vinarskaya A.K., Zuzina A.B., Ierusalimsky V.N., Malyshev A.Y. Impairment of the serotonergic neurons underlying reinforcement elicits extinction of the repeatedly reactivated context memory. Sci. Rep. 2016. 6: 36933.

  14. Ballestar E., Abad C., Franco L. Core histones are glutaminyl substrates for tissue transglutaminase. J. Biol. Chem. 1996. 271(31): 18817–18824.

  15. Ballestar E., Boix-Chornet M., Franco L. Conformational changes in the nucleosome followed by the selective accessibility of histone glutamines in the transglutaminase reaction: effects of ionic strength. Biochemistry. 2001. 40(7): 1922–1929.

  16. Berger M., Gray J.A., Roth B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009. 60: 355−366.

  17. Borodinova A.A., Balaban P.M. Epigenetic regulation as a basis for long-term changes in the nervous system: in search of specificity mechanisms. Biochemistry (Mosc.). 2020. 85(9): 994–1010.

  18. Bosler O., Calas A. Radioautographic investigation of monoaminergic neurons: An evaluation. Brain Res. Bull. 1982. 9(1–6): 151−169.

  19. Bravarenko N.I., Korshunova T.A., Malyshev A.Y., Balaban P.M. Synaptic contact between mechanosensory neuron and withdrawal interneuron in terrestrial snail is mediated by l-glutamate-like transmitter. Neurosci. Let. 2003. 341(3): 237–240.

  20. Calas A., Dupuy J.J., Gamrani H., Gonella J., Mourre C., Condamin M., Pellissier J.F., Van den Bosch P. Radioautographic investigation of serotonin cells. Adv. Exp. Med. Biol. 1981. 133: 51−66.

  21. Cavalieri V. The expanding constellation of histone post-translational modifications in the epigenetic landscape. Genes (Basel). 2021. 12(10): 1596.

  22. Csaba G., Sudar F. Localization of radioactively ́ labelled serotonin in the nucleus of adrenal medulla cells. Acta Anat. (Basel). 1978. 100(2): 237−240.

  23. Csaba G., Sudar F., Ubornyak L. Comparative ́ study of the internalization and nuclear localization of amino acid type hormones in Tetrahymena and rat lymphocytes. Exp. Clin. Endocrinol. Diabetes. 1982. 82(1): 61−67.

  24. Csaba G., Kovacs P. Perinuclear localization of ́ biogenic amines (serotonin and histamine) in rat immune cells. Cell Biol. Int. 2006. 30(11): 861−865.

  25. Csaba G., Kovacs P., Pallinger E. Hormones in ́ the nucleus. Immunologically demonstrable biogenic amines (serotonin, histamine) in the nucleus of rat peritoneal mast cells. Life Sci. 2006. 78(16): 1871−1877.

  26. Czaker R. Serotonin immunoreactivity in a highly enigmatic metazoan phylum, the pre-nervous Dicyemida. Cell Tissue Res. 2006. 326(3): 843−850.

  27. Dale G.L. Coated-platelets: an emerging component of the procoagulant response. J. Thromb. Haemost. 2005. 3(10): 2185–2192.

  28. Deryabina I.B., Muranova L.N., Andrianov V.V., Gainutdinov K.L. Impairing of serotonin synthesis by p-chlorphenylanine prevents the forgetting of contextual memory after reminder and the protein synthesis inhibition. Front. Pharmacol. 2018. 9: 607.

  29. Dudai Y. The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 2004. 55: 51–86.

  30. Eckert R.L., Kaartinen M.T., Nurminskaya M., Belkin A.M., Colak G., Johnson G.V., Mehta K. Transglutaminase regulation of cell function. Physiol. Rev. 2014. 94(2): 383–417.

  31. Emanuelsson H. Localization of serotonin in cleavage embryos of Ophryotrocha labronica La Greca and Bacci. Dev. Genes Evol. 1974. 175(4): 253−271.

  32. Facchiano F., Facchiano A., Facchiano A.M. The role of transglutaminase-2 and its substrates in human diseases. Front. Biosci. 2006. 11: 1758–1773.

  33. Facchiano F., Deloye F., Doussau F., Innamorati G., Ashton A.C., Dolly J.O., Beninati S., Facchiano A., Luini A., Poulain B., Benfenati F. Transglutaminase participates in the blockade of neurotransmitter release by tetanus toxin: evidence for a novel biological function. Amino Acids. 2010. 39(1): 257–269.

  34. Fagutao F.F., Maningas M.B., Kondo H., Aoki T., Hirono I. Transglutaminase regulates immune-related genes in shrimp. Fish Shellfish Immunol. 2012. 32(5): 711–715.

  35. Farrelly L.A., Thompson R.E., Zhao S., Lepack A.E., Lyu Y., Bhanu N.V., Zhang B., Loh Y.-H.E., Ramakrishnan A., Vadodaria K.C., Heard K.J., Erikson G., Nakadai T., Bastle R.M., Lukasak B.J., Zebroski H. 3rd, Alenina N., Bader M., Berton O., Roeder R.G., Molina H., Gage F.H., Shen L., Garcia B.A., Li H., Muir T.W., Maze I. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me. Nature. 2019. 567(7749): 535–539.

  36. Fu L., Zhang L. Serotonylation: a novel histone H3 marker. Signal Trans. Target Ther. 2019. 4: 15.

  37. Gundemir S., Colak G., Tucholski J., Johnson G.V. Transglutaminase 2: a molecular Swiss army knife. Biochim. Biophys. Acta. 2012. 1823(2): 406–419.

  38. Huang H., Sabari B.R., Garcia B.A., Allis C.D., Zhao Y. SnapShot: histone modifications. Cell. 2014. 159(2): 458.e1.

  39. Hummerich R., Costina V., Findeisen P., Schloss P. Monoaminylation of fibrinogen and glia-derived proteins: indication for similar mechanisms in posttranslational protein modification in blood and brain. ACS Chem. Neurosci. 2015. 6(7): 1130–1136.

  40. Ivashkin E., Khabarova M.Y., Melnikova V., Nezlin L.P., Kharchenko O., Voronezhskaya E.E., Adameyko I. Serotonin mediates maternal effects and directs developmental and behavioral changes in the progeny of snails. Cell Rep. 2015. 12(7): 1144–1158.

  41. Ivashkin E., Melnikova V., Kurtova A., Brun N.R., Obukhova A., Khabarova M.Y. Transglutaminase activity determines nuclear localization of serotonin immunoreactivity in the early embryos of invertebrates and vertebrates. ACS Chem. Neurosci. 2019. 10(8): 3888–3899.

  42. Johnson K.B., Petersen-Jones H., Thompson J.M., Hitomi K., Itoh M., Bakker E.N. Vena cava and aortic smooth muscle cells express transglutaminases 1 and 4 in addition to transglutaminase 2. Am. J. Physiol. Heart Circ. Physiol. 2012. 302(7): H1355–H1366.

  43. Junkunlo K., Söderhäll K., Söderhäll I. Transglutaminase inhibition stimulates hematopoiesis and reduces aggressive behavior of crayfish, Pacifastacus leniusculus. J. Biol. Chem. 2019. 294(2): 708–715.

  44. Junkunlo K., Söderhäll K., Söderhäll I. Transglutaminase 1 and 2 are localized in different blood cells in the freshwater crayfish Pacifastacus leniusculus. Fish Shellfish Immunol. 2020. 104: 83–91.

  45. Kandel E.R. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001. 294(5544): 1030–1038.

  46. Kandel E.R., Schwartz J.H. Molecular biology of an elementary form of learning: modulation of transmitter release by cuclic AMP. Science. 1982. 218(4571): 433–443.

  47. Klann E., Sweatt J.D. Altered protein synthesis is a trigger for long-term memory formation. Neurobiol. Learn. Mem. 2008. 89(3): 247–259.

  48. Korneliussen H. 5-Hydroxytryptamine: Autoradiographic evidence for uptake into fibroblast cell nuclei. Experientia. 1976. 32(4): 443−445.

  49. Kuo T.-F., Tatsukawa H., Kojima S. New insights into the functions and localization of nuclear transglutaminase 2. FEBS J. 2011. 278(24): 4756−4767.

  50. Lesort M., Tucholski J., Miller M.L., Johnson G.V. Tissue transglutaminase: a possible role in neurodegenerative diseases. Prog. Neurobiol. 2000. 61(5): 439–463.

  51. Lin J.C., Chou C.C., Tu Z., Yeh L.F., Wu S.C., Khoo K.H., Lin C.H. Characterization of protein serotonylation via bioorthogonal labeling and enrichment. J. Proteome Res. 2014. 13(8): 3523–3529.

  52. Malyshev A.Y., Balaban P.M. Identification of mechanoafferent neurons in terrestrial snail: response properties and synaptic connections. J. Neurophysiol. 2002. 87(5): 2364–2371.

  53. Mann A.P., Verma A., Sethi G., Manavathi B., Wang H., Fok J.Y., Kunnumakkara A.B., Kumar R., Aggarwal B.B., Mehta K. Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: delineation of a novel pathway. Cancer Res. 2006. 66(17): 8788–8795.

  54. Muma N.A., Mi Z. Serotonylation and transamidation of other monoamines. ACS Chem. Neurosci. 2015. 6(7): 961–969.

  55. Obara Y., Yanagihata Y., Abe T., Dafik L., Ishii K., Nakahata N. Gα(h)/transglutaminase-2 activity is required for maximal activation of adenylylcyclase 8 in human and rat glioma cells. Cell Signal. 2013. 25(3): 589–597.

  56. Paulmann N., Grohmann M., Voigt J.P., Bert B., Vowinckel J., Bader M., Skelin M., Jevsek M., Fink H., Rupnik M., Walther D.J. Intracellular serotonin modulates insulin secretion from pancreatic β-cells by protein serotonylation. PLoS Biol. 2009. 7(10): e1000229.

  57. Penumatsa K., Abualkhair S., Wei L., Warburton R., Preston I., Hill N.S., Watts S.W., Fanburg B.L., Toksoz D. Tissue transglutaminase promotes serotonin-induced AKT signaling and mitogenesis in pulmonary vascular smooth muscle cells. Cell. Signal. 2014. 26(12): 2818–2825.

  58. Piacentini M., D’Eletto M., Farrace M.G., Rodolfo C., Del Nonno F., Ippolito G., Falasca L. Characterization of distinct sub-cellular location of transglutaminase type II: changes in intracellular distribution in physiological and pathological states. Cell Tissue Res. 2014. 358(3): 793–805.

  59. Sato N., Ohtake Y., Kato H., Abe S., Kohno H., Ohkubo Y. Effects of polyamines on histone polymerization. J. Protein Chem. 2003. 22(3): 303–307.

  60. Satpathy M., Shao M., Emerson R., Donner D.B., Matei D. Tissue transglutaminase regulates matrix metalloproteinase-2 in ovarian cancer by modulating cAMP-response element-binding protein activity. J. Biol. Chem. 2009. 284(23): 15390–15399.

  61. Shibata T., Kawabata S.I. Pluripotency and a secretion mechanism of Drosophila transglutaminase. J. Biochem. 2018. 163(3): 165–176.

  62. Sileno S., D’Oria V., Stucchi R., Alessio M., Petrini S., Bonetto V., Maechler P., Bertuzzi F., Grasso V., Paolella K., Barbetti F., Massa O. A possible role of transglutaminase 2 in the nucleus of INS-1E and of cells of human pancreatic islets. J. Proteomics. 2014. 96(100): 314–327.

  63. Singer M.A., Hortsch M., Goodman C.S., Bentley D. Annulin, a protein expressed at limb segment boundaries in the grasshopper embryo, is homologous to protein cross-linking transglutaminases. Dev. Biol. 1992. 154(1): 143–159.

  64. Silva A.J., Kogan J.H., Frankland P.W., Kida S. CREB and memory. Annu. Rev. Neurosci. 1998. 21: 127–148.

  65. Sirikharin R., Utairungsee T., Srisala J., Roytrakul S., Thitamadee S., Sritunyalucksana K. Cell surface transglutaminase required for nodavirus entry into freshwater prawn hemocytes. Fish Shellfish Immunol. 2019. 89: 108–116.

  66. Solntseva S.V., Nikitin V.P. Neurochemical mechanisms of food aversion conditioning consolidation in snail Helix lucorum. Ross. Fiziol. Zh. Im. I. M. Sechenova. 2008. 94: 1259–1269.

  67. Sugino H., Terakawa Y., Yamasaki A., Nakamura K., Higuchi Y., Matsubara J., Kuniyoshi H., Ikegami S. Molecular characterization of a novel nuclear transglutaminase that is expressed during starfish embryogenesis. Eur. J. Biochem. 2002. 269(7): 1957–1967.

  68. Tatsukawa H., Fukaya Y., Frampton G., Martinez-Fuentes A., Suzuki K., Kuo T.F., Nagatsuma K., Shimokado K., Okuno M., Wu J., Iismaa S., Matsuura T., Tsukamoto H., Zern M.A., Graham R.M., Kojima S. Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1. Gastroenterology. 2009. 136(5): 1783–95.e10.

  69. Ter-Markarian A.G., Palikhova T.A., Sokolov E.N. The action of atropine and d-tubocurarine on the monosynaptic connections between identified neurons in the central nervous system of the edible snail. Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 1999. 40: 183–184.

  70. Walther D.J., Peter J.U., Winter S., Holtje M., Paulmann N., Grohmann M., Vowinckel J., Alamo-Bethencourt V., Wilhelm C.S., Ahnert-Hilger G., Bader M. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet α-granule release. Cell. 2003. 115(7): 851–862.

  71. Walther D.J., Stahlberg S., Vowinckel J. Novel roles for biogenic monoamines: from monoamines in transglutaminase-mediated post-translational protein wmodification to monoaminylation deregulation diseases. FEBS J. 2011. 278(24): 4740–4755.

  72. Wang Q., Wang D., Yan G., Qiao Y., Sun L., Zhu B., Wang X., Tang C. SERCA2a was serotonylated and may regulate sino-atrial node pacemaker activity. Biochem. Biophys. Res. Commun. 2016. 480(3): 492–497.

  73. Zhao S., Yue Y., Li Y., Li H. Identification and characterization of ‘readers’ for novel histone modifications. Curr. Opin. Chem. Biol. 2019. 51: 57–65.

  74. Zhu J., Shao Y., Chen K., Zhang W., Li C. A transglutaminase 2-like gene from sea cucumber Apostichopus japonicus mediates coelomocytes autophagy. Fish Shellfish Immunol. 2021. 119: 602–612. Zlotorynski E. Histone serotonylation boosts neuronal transcription. Nat. Rev. Mol. Cell Biol. 2019. 20(6): 323.

  75. Zuzina A.B., Vinarskaya A.K., Balaban P.M. Increase in serotonin precursor levels reinstates the context memory during reconsolidation. Invert. Neurosci. 2019. 19(3): 8.

Дополнительные материалы отсутствуют.