Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 6, стр. 768-782

Модули первичной зрительной коры млекопитающих

Н. С. Меркульева *

Институт физиологии им. И.П. Павлова РАН
Санкт-Петербург, Россия

* E-mail: mer-natalia@yandex.ru

Поступила в редакцию 14.12.2021
После доработки 15.02.2022
Принята к публикации 26.04.2022

Аннотация

Структурно-функциональными единицами зрительной коры являются регулярно распределенные в тангенциальной плоскости коры колонки (модули), организованные нейронами, объединенными общностью клеточного ответа. Заложение и начальное формирование корковых колонок происходит во время периода онтогенеза, независимого от зрительного опыта. Дальнейшее формирование колонок, их созревание находятся под влиянием зрительного опыта. В обзоре представлены данные о классификации корковых колонок и основных фазах их онтогенетического развития. Также представлено несколько фактов в пользу возможной связи между развитием корковых колонок и третьим проводящим каналом.

Ключевые слова: зрительная кора, корковые модули, ориентационная колонка, дирекциональная колонка, цитохромоксидазные блобы, онтогенез

Список литературы

  1. Краснощекова Е.И. Модульная организация нервных центров. СПб, Изд. Санкт-Петербургского Университета. 2007. с. 130.

  2. Лазарева Н.А., Кожухов С.А., Иванов Р.С., Новикова Р.В., Тихомиров А.С., Цуцкиридзе Д.Ю., Бондарь И.В. Сравнение ориентационной настройки и ее динамики у нейронов в функциональных доменах первичной зрительной коры. Журнал высш. нервн. деят. им. И.П.Павлова. 2013. 2: 205–217.

  3. Меркульева Н.С. Проводящие каналы зрительной системы. Третий канал. Журнал высш. нервн. деят. им. И.П.Павлова. 2021. 71: 785–802.

  4. Меркульева Н.С., Иванов Р.С., Бондарь И.В. Развитие корковых колонок поля 18 в условиях ритмической световой стимуляции. Сенсор. Сист. 2013. 27: 306–316.

  5. Меркульева Н.С., Макаров Ф.Н. Влияние кратковременной и длительной стимуляции мелькающим светом на систему цитохромоксидазных модулей слоя IV первичной зрительной коры котят. Рос. Физиол. Журнал. 2008. 94: 557–565.

  6. Anderson P.A., Olavarria J., Van Sluyters R.C. The overall pattern of ocular dominance bands in cat visual cortex. J. Neurosci. 1988. 8: 2183–2200.

  7. Antonini A., Stryker M.P. Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. J. Neurosci. 1993. 13: 3549–3573.

  8. Angevine Jr J.B., Sidman R.L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature. 1961. 192: 766–768.

  9. Barber M., Pierani A. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells. Dev. Neurobiol. 2016. 76: 847–881.

  10. Bartfeld E., Grinvald A. Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc. Natl. Acad. Sci. USA. 1992. 89: 11905–11909.

  11. Bittman K., Owens D.F., Kriegstein A.R., LoTurco J.J. Cell coupling and uncoupling in the ventricular zone of developing neocortex. J. Neurosci. 1997. 17: 7037–7044.

  12. Blakemore C., Van Sluyters R.C. Innate and environmental factors in the development of the kitten’s visual cortex. J. Physiol. 1975. 248: 663–716.

  13. Bonhoeffer T., Kim D.S., Malonek D., Shoham D., Grinvald A. Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex. Eur. J. Neurosci. 1995. 7: 1973–1988.

  14. Boothe R.G., Kiorpes L., Williams R.A., Teller D.Y. Operant measurements of contrast sensitivity in infant macaque monkeys during normal development. Vision Res. 1988. 28: 387–396.

  15. Boyd J.D., Casagrande V.A. Relationships between cytochrome oxidase (CO) blobs in primate primary visual cortex (V1) and the distribution of neurons projecting to the middle temporal area (MT). J. Comp. Neurol. 1999. 409: 573–591.

  16. Boyd J.D., Matsubara J.A. Laminar and columnar patterns of geniculocortical projections in the cat: relationship to cytochrome oxidase. J. Comp. Neurol. 1996. 365: 659–682.

  17. Boyd J.D., Matsubara J.A. Projections from V1 to lateral suprasylvian cortex: an efferent pathway in the cat’s visual cortex that originates preferentially from CO blob columns. Vis. Neurosci. 1999. 16: 849–860.

  18. Bradley A., Freeman R.D. Contrast sensitivity in children Vision Res. 1982. 22: 953–959.

  19. Buxhoeveden D.P., Casanova M.F. The minicolumn hypothesis in neuroscience. Brain. 2002. 125: 935–951.

  20. Cabelli R.J., Shelton D.L., Segal R.A., Shatz C.J. Blockade of endogenous ligands of trkB inhibits formation of ocular dominance columns. Neuron. 1997. 19: 63–76.

  21. Cai D., Rangan A.V., McLaughlin D.W. Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1. Proc. Natl. Acad. Sci. USA. 2005. 102: 5868–5873.

  22. Callaway E.M., Katz L. Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex. Proc. Natl. Acad. Sci. USA. 1991. 88: 745–749.

  23. Carroll E.W., Wong-Riley M.T.T. Neuronal uptake and laminar distribution of tririated aspartate, glutamate, gamma-aminobutirate and glycine in the prestriate cortex of squirrel monkeys: correlation with levels of cytochrome oxidase activity and their uptake in area 17. Neurosci. 1984. 22: 395–412.

  24. Casagrande V.A. A third parallel visual pathway to primate area V1. TINS. 1994. 17: 305–310.

  25. Casagrande V.A., Yazar F., Jones K.D., Ding Y. The morphology of the koniocellular axon pathway in the macaque monkey. Cereb. Cortex. 2007. 17: 2334–2345.

  26. Chiu C., Weliky M. Relationship of correlated spontaneous activity to functional ocular dominance columns in the developing visual cortex. Neuron. 2002. 35: 1123–1134.

  27. Chiu C., Weliky M. Spontaneous activity in developing ferret visual cortex in vivo. J. Neurosci. 2001. 21: 8906–8914.

  28. Conway B., Boyd J., Stewart T., Matsubara J. The projection from V1 to extrastriate area 21a: a second patchy efferent pathway that colocalizes with CO blob columns in cat visual cortex. Cereb. Cortex. 2000. 10: 149–159.

  29. Crair M.C., Gillespie D.C., Stryker M.P. The role of visual experience in the development of columns in cat visual cortex. Science. 1998. 279: 566–567.

  30. Crair M.C., Horton J.C., Antonini A., Stryker M.P. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age. J. Comp. Neurol. 2001. 430: 235–249.

  31. Crair M.C., Ruthazer E.S., Gillespie D.C., Stryker M.P. Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J. Neurophysiol. 1997. 77: 3381–3385.

  32. Crair M.C., Ruthazer E.S., Gillespie D.C., Stryker M.P. Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats. Neuron. 1997. 19: 307–318.

  33. Cramer K.S., Miko I.J. Eph-ephrin signaling in nervous system development. F1000Res. 2016. 30: F1000.

  34. Crowley J.C., Katz L.C. Development of ocular dominance columns in the absence of retinal input. Nature Neurosci. 1999. 2: 1125–1130.

  35. Crowley J.C., Katz L.C. Early development of ocular dominance columns. Science. 2000. 290: 1321–1324.

  36. Cucchiaro J., Guillery R.W. The development of the retinogeniculate pathways in normal and albino ferrets. Proc. R Soc. Lond. B Biol. Sci. 1984. 223: 141–164.

  37. Daw N.W. Visual development. New York, Springer. 2006. p. 408.

  38. DeBruyn E.J., Casagrande V.A., Beck P.D., Bonds A.B. Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): correlations with cortical layers and cytochrome oxidase patterns. J. Neurophysiol. 1993. 69: 3–18.

  39. des Rosiers M.H., Sakurada O., Jehle J., Shinohara M., Kennedy C., Sokoloff L. Functional plasticity in the immature striate cortex of the monkey shown by the [14C]deoxyglucose method. Science. 1978. 200: 447–449.

  40. Diamond I.T., Conley M., Itoh K., Fitzpatrick D. Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus. J. Comp. Neurol. 1985. 242: 584–610.

  41. Douglas R.J., Martin K.A.C. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 2004. 27: 419–451.

  42. Dupont E., Hanganu I.L., Kilb W., Hirsch S., Luhmann H.J. Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature. 2006. 439: 79–83.

  43. Durack J.C., Katz L.C. Development of horizontal projections in layer 2/3 of ferret visual cortex. Cereb. Cortex. 1996. 6: 178–183.

  44. Everson R.M., Prashanth A.K., Gabbay M., Knight B.W., Sirovich L., Kaplan E. Representation of spatial frequency and orientation in the visual cortex. Proc. Natl. Acad. Sci. USA. 1998. 95: 8334–8338.

  45. Famiglietti E.V. Starburst amacrine cells in cat retina are associated with bistratified, presumed directionally selective, ganglion cells. Brain Res. 1987. 413: 404–408.

  46. Favorov O.V., Kelly D.G. Minicolumnar organization within somatosensory cortical segregates: I. Development of afferent connections. Cereb. Cortex. 1994. 4: 408–427.

  47. Feller M.B., Butts D.A., Aaron H.L., Rokhsar D.S., Shatz C.J. Dynamic processes shape spatiotemporal properties of retinal waves. Neuron. 1997. 19: 293–306.

  48. Feller M.B. The role of nAChR-mediated spontaneous retinal activity in visual system development. J. Neurobiol. 2002. 53: 556–567.

  49. Feller M.B., Scanziani M. A precritical period for plasticity in visual cortex. Curr. Opin. Neurobiol. 2005. 15: 94–100.

  50. Fitzpatrick D., Itoh K., Diamond I.T. The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). J. Neurosci. 1983. 3: 673–702.

  51. Flanagan J.G., Vanderhaeghen P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 1998. 21: 309–345.

  52. Friauf E., McConnell S.K., Shatz C.J. Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex. J. Neurosci. 1990. 10: 2601–2613.

  53. Frisén J., Holmberg J., Barbacid M. Ephrins and their Eph receptors: multitalented directors of embryonic development. EMBO J. 1999. 18: 5159–5165.

  54. Fukuda T., Kosaka T., Singer W., Galuske R.A.W. Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J. Neurosci. 2006. 26: 3434–3443.

  55. Galuske R.A., Singer W. The origin and topography of long-range intrinsic projections in cat visual cortex: a developmental study. Cereb. Cortex. 1996. 6: 417–430.

  56. Ghisovan N., Nemri A., Shumikhina S., Molotchnikoff S. Long adaptation reveals mostly attractive shifts of orientation tuning in cat primary visual cortex. Neurosci. 2009. 164: 1274–1283.

  57. Ghosh A., Shatz C.J. A role for subplate neurons in the patterning of connections from thalamus to neocortex. Development. 1993. 117: 1031–1047.

  58. Gil V., Nocentini S., del Río J.A. Historical first descriptions of Cajal-Retzius cells: from pioneer studies to current knowledge. Front. Neuroanat. 2014. 8: 1–9.

  59. Gilbert C.D., Wiesel T.N. Clustered intrinsic connections in cat visual cortex. J. Neurosci. 1983. 3: 1116–1133.

  60. Gilbert C.D., Wiesel T.N. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 1989. 9: 2432–2442.

  61. Golding B., Pouchelon G., Bellone C., Murthy S., Di Nardo A.A., Govindan S., Ogawa M., Shimogori T., Lüscher C., Dayer A., Jabaudon D. Retinal input directs the recruitment of inhibitory interneurons into thalamic visual circuits. Neuron. 2014. 81: 1057–1069.

  62. Hebb D.O. The organization of behavior. In The first stage of perception: growth of the assembly. 1949. Wiley. New York. pp. 60–78.

  63. Hendrickson A.E., Hunt S.P., Wu J.Y. Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex. Nature. 1981. 292: 605–607.

  64. Hendry S.H., Yoshioka T. A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science. 1994. 264: 575–577.

  65. Hetherington P.A., Swindale N.V. Receptive field and orientation scatter studied by tetrode recordings in cat area 17. Vis. Neurosci. 1999. 16: 637–652.

  66. Hooks B.M., Chen C. Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse. Neuron. 2006. 52: 281–291.

  67. Horton J.C. Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. Philos. Trans. R Soc. Lond. B Biol. Sci. 1984. 304: 199–253.

  68. Horton J.C., Adams D.L. The cortical column: a structure without a function. Philos. Trans. R Soc. Lond. B Biol. Sci. 2005. 360: 837–862.

  69. Horton J.C., Hocking D.R. An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J. Neurosci. 1996. 16: 1791–1807.

  70. Horton J.C., Hocking D.R. Effect of early monocular enucleation upon ocular dominance columns and cytochrome oxidase activity in monkey and human visual cortex. Vis. Neurosci. 1998. 15: 289–303.

  71. Horton J.C., Hocking D.R. Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J. Neurosci. 1998. 18: 5433–5455.

  72. Horton J.C., Hocking D.R. Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J. Neurosci. 1997. 17: 3684–3709.

  73. Horton J.C., Hubel D.H. Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature. 1981. 292: 762–764.

  74. Hubel D.H. Blobs and color vision. Cell. Biophys. 1986. 9: 91–102.

  75. Hubel D.H., Wiesel T.N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc. R Soc. Lond. B Biol. Sci. 1977. 198: 1–59.

  76. Hubel D.H., Wiesel T.N. Receptive fields, binocular interaction and functional architecture in the cat visual cortex. J. Physiol. 1962. 160: 106–154.

  77. Hubel D.H., Wiesel T.N. Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 1974. 158: 267–293.

  78. Hubel D.H., Wiesel T.N., LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Phil. Trans. R Soc. Lond. B Biol. Sci. 1977. 278: 377–409.

  79. Hübener M., Shoham D., Grinvald A., Bonhoeffer T. Spatial relationships among three columnar systems in cat area 17. J. Neurosci. 1997. 17: 9270–9284.

  80. Huberman A.D., Speer C.M., Chapman B. Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in V1. Neuron. 2006. 52: 247–254.

  81. Issa N.P., Trachtenberg J.T., Chapman B., Zahs K.R., Stryker M.P. The critical period for ocular dominance plasticity in ferret visual cortex. J. Neurosci. 1999. 19: 6965–6978.

  82. Issa N.P., Trepel C., Stryker M.P. Spatial frequency maps in cat visual cortex. J. Neurosci. 2000. 20: 8604–8514.

  83. Jackson C.A., Peduzzi J.D., Hickey T.L. Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons. J. Neurosci. 1989. 9: 1242–1253.

  84. Kageyama G.H., Wong-Riley M. The localization of cytochrome oxidase in the LGN and striate cortex of postnatal kittens. J. Comp. Neurol. 1986. 243: 182–194.

  85. Kandler K., Katz L.C. Neuronal coupling and uncoupling in the developing nervous system. Curr. Opin. Neurobiol. 1995. 5: 98–105.

  86. Kanold P.O., Deng R., Meng X. The integrative function of silent synapses on subplate neurons in cortical development and dysfunction. Front. Neuroanat. 2019. 13: 41.

  87. Kanold P.O., Kara P., Reid R.C., Shatz C.J. Role of subplate neurons in functional maturation of visual cortical columns. Science. 2003. 301: 521–525.

  88. Kanold P.O., Luhmann H.J. The subplate and early cortical circuits. Annu. Rev. Neurosci. 2010. 33: 23–48.

  89. Kanold P.O., Shatz C.J. Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron. 2006. 51: 627–638.

  90. Kaschube M., Schnabel M., Löwel S., Coppola D.M., White L.E., Wolf F. Universality in the evolution of orientation columns in the visual cortex. Science. 2010. 330: 1113–1116.

  91. Kaschube M., Wolf F., Puhlmann M., Rathjen S., Schmidt K.-F., Geisel T., Löwel S. The pattern of ocular dominance columns in cat primary visual cortex: intra- and interindividual variability of column spacing and its dependence on genetic background. Europ. J. Neurosci. 2003. 18: 3215–3266.

  92. Kaskan P.M., Lu H.D., Dillenburger B.C., Roe A.W., Kaas J.H. Intrinsic-signal optical imaging reveals cryptic ocular dominance columns in primary visual cortex of New World owl monkeys. Front. Neurosci. 2007. 1: 67–75.

  93. Katz L.C., Crowley J.C. Development of cortical circuits: lessons from ocular dominance columns Nat Rev Neurosci. 2002. 3: 34–42.

  94. Kawano J. Cortical projections of the parvocellular laminae C of the dorsal lateral geniculate nucleus in the cat: an anterograde wheat germ agglutinin conjugated to horseradish peroxidase study. J. Comp. Neurol. 1998. 392: 439–457.

  95. Kirischuk S., Luhmann H.J., Kilb W. Cajal-Retzius cells: Update on structural and functional properties of these mystic neurons that bridged the 20th century. Neuroscience. 2014. 275: 33–46.

  96. Kolb H. Amacrine cells of the mammalian retina: neurocircuitry and functional roles. Eye (Lond). 1997. 11: 904–923.

  97. Kostovic I., Rakic P. Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J. Neurocytol. 1980. 9: 219–242.

  98. Kremkow J., Jin J., Wang Y., Alonso J.M. Principles underlying sensory map topography in primary visual cortex. Nature. 2016. 533: 52–57.

  99. Kuljis R.O., Rakic P. Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors. Proc. Natl. Acad. Sci. USA. 1990. 87: 5303–5306.

  100. Lachica E.A., Casagrande V.A. Development of primate retinogeniculate axon arbors. Vis Neurosci. 1988. 1: 103–123.

  101. Lachica E.A., Casagrande V.A. Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology. J. Comp. Neurol. 1992. 319: 141–158.

  102. Landisman C.E., Ts’o D.Y. Color processing in macaque striate cortex: electrophysiological properties. J. Neurophysiol. 2002. 87: 3138–3151.

  103. Landisman C.E., Ts’o D.Y. Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. J. Neurophysiol. 2002. 87: 3126–3137.

  104. Lein E.S., Finney E.M., McQuillen P.S., Shatz C.J. Subplate neuron ablation alters neurotrophin expression and ocular dominance column formation. Proc. Natl. Acad. Sci. USA. 1999. 96: 13491–13495.

  105. LeVay S., Hubel D.H., Wiesel T.N. The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J. Comp. Neurol. 1975. 159: 559–576.

  106. LeVay S., Stryker M.P., Shatz C.J. Ocular dominance columns and their development in layer IV of the cat’s visual cortex: a quantitative study. J. Comp. Neurol. 1978. 179: 223–244.

  107. LeVay S., Wiesel T.N., Hubel D. The development of ocular dominance columns in normal and visually deprived monkeys. J. Comp. Neurol. 1980. 191: 1–51.

  108. Lewis T.L., Maurer D. Multiple sensitive periods in human visual development: evidence from visually deprived children. Dev. Psychobiol. 2005. 46: 163–183.

  109. Linden D.C., Guillery R.W., Cucchiaro J. The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. J. Comp. Neurol. 1981. 203: 189–211.

  110. Livingstone M.S., Hubel D.H. Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. Proc. Natl. Acad. Sci. USA. 1982. 79: 6098–6101.

  111. Lorente de No R. The cerebral cortex: architecture, intracortical connections, and motor projections. In: Physiology of the nervous system. Oxford University Press. 1938. pp. 291–339.

  112. Löwel S., Singer W. The pattern of ocular dominance columns in flatmounts of the cat visual cortex. Exp. Brain Res. 1987. 68: 661–666.

  113. Luhmann H.J., Kilb W., Kirischuk S. In Synapse Development and Maturation (Second Edition) Comprehensive Developmental Neuroscience. 2020. pp. 485–505. Chapter 22. Cajal–Retzius and subplate cells: transient cortical neurons and circuits with long-term impact.

  114. Luhmann H.J., Singer W., Martínez-Millán L. Horizontal interactions in cat striate cortex: I. Anatomical substrate and postnatal development. Eur. J. Neurosci. 1990. 2: 344–357.

  115. Lund R.D., Mustari M.J. Development of the geniculocortical pathway in rats. J. Comp. Neurol. 1977. 173: 289–306.

  116. Luskin M.B., Shatz C.J. Neurogenesis of the cat’s primary visual cortex. J. Comp. Neurol. 1985. 242: 611–631.

  117. Malach R., Amir Y., Harel M., Grinvald A. Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc. Natl. Acad. Sci. USA. 1993. 90: 10469–10473.

  118. Malach R., Tootell R.B., Malonek D. Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2. Cereb. Cortex. 1994. 4: 151–165.

  119. Maldonado P.E., Gödecke I., Gray C.M., Bonhoeffer T. Orientation selectivity in pinwheel centers in cat striate cortex. Science. 1997. 276: 1551–1555.

  120. Marin-Padilla M. Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z. Anat. Entwicklungsgesch. 1971. 134: 117–145.

  121. Mastronarde D.N. Correlated firing of retinal ganglion cells. Trends Neurosci. 1983. 12: 75–80.

  122. Mayer D.L., Dobson V. Visual acuity development in infants and young children, as assessed by operant preferential looking Vision Res. 1982. 22: 1141–1151.

  123. McAllister A.K. Subplate neurons: a missing link among neurotrophins, activity, and ocular dominance plasticity? Proc. Natl. Acad. Sci. USA. 1999. 96: 13600–12602.

  124. McGuire B.A., Hornung J.-P., Gilbert C.D., Wiesel T.N. Pattern of synaptic input to layer 4 of cat striate cortex. J. Neurosci. 1984. 4: 3021–3033.

  125. Merkulyeva N., Mikhalkin A., Bondar I. Influence of rhythmic light stimulation on orientation signal within visual cortex columns in the cat. Acta Neurobiol. Exp. (Wars). 2019. 79: 225–231.

  126. Meister M., Wong R.O., Baylor D.A., Shatz C.J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science. 1991. 252: 939–943.

  127. Mountcastle V.B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol. 1957. 20: 408–434.

  128. Mountcastle V.B. The columnar organization of the neocortex. Brain 1997. 120: 701–722.

  129. Muir-Robinson G., Hwang B.J., Feller M.B. Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J. Neurosci. 2002. 22: 5259–5264.

  130. Murphy K.M., Duffy K.R., Jones D.G., Mitchell D.E. Development of cytochrome oxidase blobs in visual cortex of normal and visually deprived cats. Cereb. Cortex. 2001. 11: 122–135.

  131. Murphy K.M., Jones D.G., Van Sluyters R.C. Cytochrome-oxidase blobs in cat primary visual cortex. J. Neurosci. 1995. 15: 4196–4208.

  132. Murphy K.M., Van Sluyters R.C., Jones D.G. Cytochrome-oxidase activity in cat visual cortex: is it periodic? Soc Neurosci. Abstr. 1990. 16: 292.

  133. Myakhar O., Unichenko P., Kirischuk S. GABAergic projections from the subplate to Cajal-Retzius cells in the neocortex. Neuroreport. 2011. 22: 525–529.

  134. Ohki K., Chung S., Kara P., Hübener M., Bonhoeffer T., Reid R.C. Highly ordered arrangement of single neurons in orientation pinwheels. Nature. 2006. 442: 925–928.

  135. Patterson C.A., Wissig S.C., Kohn A. Distinct effects of brief and prolonged adaptation on orientation tuning in primary visual cortex. J. Neurosci. 2013. 33: 532–543.

  136. Penn A.A., Riquelme P.A., Feller M.B., Shatz C.J. Competition in retinogeniculate patterning driven by spontaneous activity. Science. 1998. 279: 2108–2112.

  137. Preuss T.M., Kaas J.H. Cytochrome oxidase blobs and other characteristics of primary visual cortex in a lemuroid primate, Cheirogaleus medius. Brain Behav. Evol. 1996. 47: 103–112.

  138. Rakic P. Confusing cortical columns. Proc. Natl. Acad. Sci. USA. 2008. 105: 12099–12100.

  139. Rakic P. Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc. Natl. Acad. Sci. USA. 1995. 92: 11323–11327.

  140. Rakic P. Specification of cerebral cortical areas. Science. 1988. 241: 170–176.

  141. Rakic P. Prenatal development of the visual system in rhesus monkey. Phil. Trans. R Soc. Lond. B Biol. Sci. 1977. 278: 245–260.

  142. Rakic P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature. 1976. 261: 467–471.

  143. Ramoa A.S., Campbell G., Shatz C.J. Dendritic growth and remodeling of cat retinal ganglion cells during fetal and postnatal development. J. Neurosci. 1988. 8: 4239–4261.

  144. Ramón y Cajal S. Histologie du système nerveux de l’homme et des vertébrés. Ed. française rev. & mise à jour par l’auteur, tr. de l’espagnol par L. Azoulay. Paris. Maloine. 1909.

  145. Rathjen S., Löwel S. Early postnatal development of functional ocular dominance columns in cat primary visual cortex. Neuroreport. 2000. 11: 2363–1267.

  146. Rathjen S., Schmidt K.E., Löwel S. Postnatal growth and column spacing in cat primary visual cortex. Exp. Brain Res. 2003. 149: 151–158.

  147. Ringach D.L., Shapley R.M., Hawken M.J. Orientation selectivity in macaque V1: diversity and laminar dependence. J. Neurosci. 2002. 22: 5639–5651.

  148. Rockland K.S. Five points on columns. Front Neuroanat. 2010. 4: 1–10.

  149. Rockland K.S., Lund J.S. Widespread periodic intrinsic connections in the tree shrew visual cortex. Science. 1982. 215: 1532–1534.

  150. Roe A.W., Garraghty P.E., Esguerra M., Sur M. Experimentally induced visual projections to the auditory thalamus in ferrets: evidence for a W cell pathway. J. Comp. Neurol. 1993. 334: 263–280.

  151. Roerig B., Feller M.B. Neurotransmitters and gap junctions in developing neural circuits. Brain Res. Brain Res. Rev. 2000. 32: 86–114.

  152. Rossi F.M., Pizzorusso T., Porciatti V., Marubio L.M., Maffei L., Changeux J.P. Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc. Natl. Acad. Sci. USA. 2001. 98: 6453–6458.

  153. Ruthazer E.S., Baker G.E., Stryker M.P. Development and organization of ocular dominance bands in primary visual cortex of the sable ferret. J. Comp. Neurol. 1999. 407: 151–65.

  154. Ruthazer E.S., Stryker M.P. The role of activity in the development of long-range horizontal connections in area 17 of the ferret. J. Neurosci. 1996. 15: 7253–7269.

  155. Sansom S.N., Livesey F.J. Gradients in the brain: the control of the development of form and function in the cerebral cortex. Cold. Spring. Harb. Perspect. Biol. 2009. 1: a002519.

  156. Sengpiel F., Kind P.C. The role of activity in development of the visual system. Curr. Biol. 2002. 12: R818–R826.

  157. Sesma M.A., Casagrande V.A., Kaas J.H. Cortical connections of area 17 in tree shrews. J. Comp. Neurol. 1984. 230: 337–351.

  158. Shapley R., Hawken M., Ringach D.L. Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron. 2003. 38: 689–699.

  159. Sharma J., Angelucci A., Sur M. Induction of visual orientation modules in auditory cortex. Nature. 2000. 404: 841–847.

  160. Sharon D., Jancke D., Chavane F., Na’aman S., Grinvald A. Cortical response field dynamics in cat visual cortex. Cereb. Cortex. 2007. 17: 2866–2877.

  161. Shatz C.J., Lindstrom S., Wiesel T.N. The distribution of afferents representing the right and left eyes in the cat’s visual system. Brain Res. 1977. 131: 103–116.

  162. Shatz C.J., Luskin M.B. The relationship between the geniculocortical afferents and their cortical target cells during development of the cat’s primary visual cortex. J. Neurosci. 1986. 6: 3655–3668.

  163. Shevelev I.A., Eysel U.T., Lazareva N.A., Sharaev G.A. The contribution of intracortical inhibition to dynamics of orientation tuning in cat striate cortex neurons. Neurosci. 1998. 84: 11–23.

  164. Shevelev I.A., Sharaev G.A., Lazareva N.A., Novikova R.V., Tikhomirov A.S. Dynamics of orientation tuning in the cat striate cortex neurons. Neurosci. 1993. 56: 865–876.

  165. Shmuel A., Grinvald A. Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J. Neurosci. 1996. 16: 6945–6964.

  166. Shoham D., Hübener M., Schultze S. Grinvald A., Bonhoeffer T. Spatio-temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex. Nature. 1997. 385: 529–533.

  167. Shostak Y., Ding Y., Mavity-Hudson J., Casagrande V.A. Cortical synaptic arrangements of the third visual pathway in three primate species: Macaca mulatta, Saimiri sciureus, and Aotus trivirgatus. J. Neurosci. 2002. 22: 2885–2893.

  168. Silverman M.S., Grosof D.H., De Valois R.L., Elfar S.D. Spatial-frequency organization in primate striate cortex. Proc. Natl. Acad. Sci. USA. 1989. 86: 711–715.

  169. Stepanyants A., Martinez L.M., Ferecskó A.S., Kisvárday Z.F. The fractions of short- and long-range connections in the visual cortex. Proc. Natl. Acad. Sci. USA. 2009. 106: 3555–3560.

  170. Stewart T.H., Boyd J.D., Matsubara J.A. Organization of efferent neurons in area 19: the projection to extrastriate area 21a. Brain Res. 2000. 881: 47–56.

  171. Stryker M.P., Harris W.A. Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci. 1986. 6: 2117–2133.

  172. Sur M., Garraghty P.E., Roe A.W. Experimentally induced visual projections into auditory thalamus and cortex. Science. 1988. 242: 1437–1441.

  173. Sur M., Rubenstein J.L.R. Patterning and plasticity of the cerebral cortex. Science. 2005. 310: 805–810.

  174. Swindale N.V., Grinvald A., Shmuel A. The spatial pattern of response magnitude and selectivity for orientation and direction in cat visual cortex. Cereb. Cortex. 2003. 13: 225–238.

  175. Szentágothai J. The modular architectonic principle of neural centers. Rev. Physiol. Biochem. Pharmacol. 1983. 98: 11–61.

  176. Tolner E.A., Sheikh A., Yukin A.Y., Kaila K., Kanold P.O. Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J. Neurosci. 2012. 32: 692–702.

  177. Tootell R.B., Hamilton S.L., Silverman M.S. Topography of cytochrome oxidase activity in owl monkey cortex. J. Neurosci. 1985. 5: 2786–2800.

  178. Tootell R.B., Hamilton S.L., Silverman M.S., Switkes E. Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions. J. Neurosci. 1988. 8: 1500–1530.

  179. Tootell R.B., Hamilton S.L., Switkes E. Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams. J. Neurosci. 1988. 8: 1594–1609.

  180. Tootell R.B., Silverman M.S., Hamilton S.L., De Valois R.L., Switkes E. Functional anatomy of macaque striate cortex. III. Color. J. Neurosci. 1988. 8: 1569–1593.

  181. Tootell R.B., Silverman M.S., Hamilton S.L., Switkes E., De Valois R.L. Functional anatomy of macaque striate cortex. V. Spatial frequency. J. Neurosci. 1988. 8: 1610–1624.

  182. Torii M., Hashimoto-Torii K., Levitt P., Rakic P. Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signalling. Nature. 2009. 461: 524–528.

  183. Ty M.T., Hendrickson A.E., Hendry S.H.C. Aggregation and innervation of koniocellular neurons in macaque LGN: initial events in laminar organization. Soc. Neurosci. Abstr. 1998. 24: 308.

  184. Valverde Salzmann M.F., Bartels A., Logothetis N.K., Schüz A. Color blobs in cortical areas V1 and V2 of the new world monkey Callithrix jacchus, revealed by non-differential optical imaging. J. Neurosci. 2012. 32: 7881–7894.

  185. Vanni M.P., Provost J., Casanova C., Lesage F. Bimodal modulation and continuous stimulation in optical imaging to map direction selectivity. Neuroimage. 2010. 49: 1416–1431.

  186. Warland D.K., Huberman A.D., Chalupa L.M. Dynamics of spontaneous activity in the fetal macaque retina during development of retinogeniculate pathways. J. Neurosci. 2006. 26: 5190–5197.

  187. Weber J.T., Huerta M.F., Kaas J.H., Harting J.K. The projections of the lateral geniculate nucleus of the squirrel monkey: studies of the interlaminar zones and the S layers. J. Comp. Neurol. 1983. 213: 135–145.

  188. Weinrich M., Zrenner E. Color-opponent mechanisms in cat retinal ganglion cells. In Color Vision: Physiology and Psychophysics (eds. J. Mollon and L. Sharpe). Academic Press. New York. 1983. pp. 183–194.

  189. Weliky M., Katz L.C. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature. 1997. 386: 680–685.

  190. Weliky M., Bosking W.H., Fitzpatrick D. A systematic map of direction preference in primary visual cortex. Nature. 1996. 379: 725–728.

  191. Wiesel T.N., Hubel D.H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 1965. 28: 1029–1040.

  192. Wiesel T.N., Hubel D.H. Extent of recovery from the effects of visual deprivation in kittens J Neurophysiol. 1965. 28: 1060-1072.

  193. Wiesel T.N., Hubel D.H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 1963. 26: 1003–1017.

  194. Willshaw D.J., von der Malsburg C. How patterned neural connections can be set up by self-organization. Proc. R Soc. Lond. B Biol. Sci. 1976. 194: 431–445.

  195. Wong R.O. Retinal waves and visual system development. Annu. Rev. Neurosci. 1999. 22: 29–47.

  196. Wong R.O., Meister M., Shatz C.J. Transient period of correlated bursting activity during development of the mammalian retina. Neuron. 1993. 11: 923–938.

  197. Wong W.T., Sanes J.R., Wong R.O. Developmentally regulated spontaneous activity in the embryonic chick retina. J. Neurosci. 1998. 18: 8839–8852.

  198. Wong-Riley M.T.T., Hevner R.F., Cutlan R., Earnest M., Egan R., Frost J., Nguyen T. Cytochrome oxidase in the human visual cortex: distribution in the developing and the adult brain. Vis. Neurosci. 1993. 10: 41–58.

  199. Yabuta N.H., Callaway E.M. Functional streams and local connections of layer 4C neurons in primary visual cortex of the macaque monkey. J Neurosci. 1998. 18: 9489–9499.

  200. Yang J.-W., An A., Sun J.-J., Reyes-Puerta V., Kindler L., Berger T., Kilb W., Luhmann H.J. Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. Cereb. Cortex. 2013. 23: 1299–1316.

Дополнительные материалы отсутствуют.