Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 6, стр. 741-767

Подходы к применению графового анализа для исследования ЭЭГ человека в норме и при церебральной патологии

К. Д. Вигасина 1*, Е. А. Прошина 2, П. М. Готовцев 34, Е. В. Шарова 1, В. А. Бордюг 34, Е. Л. Машеров 5, Г. Г. Князев 2

1 ФГБУН Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия

2 ФГБНУ “Научно-исследовательский институт нейронаук и медицины”
Новосибирск, Россия

3 Московский физико-технический институт
Москва, Россия

4 Национальный исследовательский центр “Курчатовский институт”
Москва, Россия

5 ФГАУ “НМИЦ нейрохирургии им. ак. Н.Н. Бурденко”
Москва, Россия

* E-mail: kristina.vigasina@yandex.ru

Поступила в редакцию 03.08.2021
После доработки 14.04.2022
Принята к публикации 26.04.2022

Аннотация

Информативность распространенного и значимого для оценки функциональной активности головного мозга метода ЭЭГ существенно повышается применением математического анализа, в котором важное место занимает характеристика пространственной синхронизации, или, иными словами, функциональной коннективности биопотенциалов (на основе корреляционного и когерентного анализа, фазовой синхронизации и др.). Успехи методов нейровизуализации последних лет не только подтверждают значимость этого показателя, но и способствуют совершенствованию подходов к его статистической оценке и визуализации. К числу перспективных для анализа нейросетевой организации головного мозга методов относится графовый анализ (ГА). Его преимуществами являются наглядное описание целостной структуры сети и ее отдельных компонентов, а также определение взаимосвязей между ними. Цель настоящего обзора – на основе анализа данных литературы представить подходы к применению графового анализа и возможности данного метода. В работе представлены общие сведения о сферах применения ГА, рассматриваются наиболее распространенные и информативные метрики, приводятся рекомендации по выбору программного обеспечения. Описываются модификации ГА ЭЭГ: без первичного нахождения источников генерации составляющих ЭЭГ и с их локализацией. Приводятся примеры эффективного использования графового анализа электроэнцефалограммы здорового и больного мозга.

Ключевые слова: ЭЭГ, коннективность, графовый анализ

Список литературы

  1. Адамович Т.В. Интеграция и сегрегация в функциональных сетях головного мозга. Теор. и эксперимент. психол. 2020. 13(3): 1–25.

  2. Анохин К.В. Когнитом: в поисках фундаментальной нейронаучной теории сознания. Журн. высш. нервн. деят. им. И.П. Павлова. 2021. 71(1): 39–71. https://doi.org/10.31857/S0044467721010032

  3. Болдырева Г.Н., Шарова Е.В., Добронравова И.С. Роль регуляторных структур в формировании ЭЭГ человека”. Физ. чел. 2000. 26(5): 19–34.

  4. Гнездицкий В.В. Обратная задача ЭЭГ и клиническая электроэнцефалография. М: Медпрессинформ. 2004. 624 с.

  5. Гриндель О.М. Оптимальный уровень когерентности ЭЭГ и его значение в оценке функционального состояния мозга человека. ЖВНД им. И.П. Павлова. 1980. 30(1): 62–70.

  6. Гриндель О.М., Сазонова О.Б. Введение в клиническую ЭЭГ. Нейрофизиологические исследования в клинике. М.: Антидор. 2001. С. 13–16.

  7. Гутман А.М. Биофизика внеклеточных токов мозга. М: Наука. 1980. 184 с.

  8. Егоров Ю.В., Кузнецова Г.Д. Мозг как объемный проводник. АН СССР. Ин-т высш. нервн. деят. и нейрофиз. М: Наука. 1976. 128 с.

  9. Жаворонкова Л.А. Межполушарная асимметрия мозга человека (правши-левши). 3-е изд., доп. М.: Юрайт. 2019. 217 с.

  10. Иванов Л.Б. Прикладная компьютерная электроэнцефалография. М: МБН. 2004. 352 с.

  11. Изнак А.Ф., Изнак Е.В., Мельникова Т.С. Параметры когерентности ЭЭГ как отражение нейропластичности мозга при психической патологии (обзор литературы). Психиатрия. 2018. 78(2): 127–137. https://doi.org/10.30629/2618-6667-2018-78-127-137

  12. Ливанов М.Н. Пространственная организация процессов головного мозга. М: Наука. 1972. 181 с.

  13. Лисачевa П.Д., Мельников М.Е., Штарк М.Б. Генетические аспекты фМРТ исследований головного мозга. Уcпехи физиол. наук. 2020. 51(1): 58–71. https://doi.org/10.31857/S0301179820010075

  14. Мартынова О.В., Сушинская-Тетерева А.О., Балаев В.В., Иваницкий А.М. Корреляция функциональной связанности областей мозга, активных в состоянии покоя, с поведенческими и психологическими показателями. Журн. высш. нервн. деят. им. И.П.Павлова. 2016. 66(5): 541–555. https://doi.org/10.7868/S0044467716050063

  15. Мачинская Р.И., Розовская Р.И., Курганский А.В., Печенкова Е.В. Корковое функциональное взаимодействие при удержании эмоционально окрашенных изображений в рабочей памяти. Анализ когерентности тета-ритма ЭЭГ в пространстве источников. Физиол. чел. 2016. 42(3): 56–73. https://doi.org/10.7868/S0131164616020120

  16. Меринов А.А., Кочкаров А.А. Анализ сетевой структуры коннектомов человеческого мозга и их классификация. Современ. наука. 2016. 3: 9–16.

  17. Пономарев В.А. Скрытые источники электроэнцефалограммы и связанных с событиями потенциалов и их значение: дис. ИФ им. И.П. Павлова РАН. 2016. 676 с.

  18. Русинов В.С., Гриндель О.М., Болдырева Г.Н., Вакар Е.М. Биопотенциалы мозга человека. М: Медицина. 1987. 254 с.

  19. Русинов В.С. Доминанта. М: Медицина. Акад. мед. наук СССР. 1969. 231 с.

  20. Свидерская Н.Е. Пространственная организация электроэнцефалограммы. М.: Издательство ВГМА. 2008. 573 с.

  21. Ушаков В.Л., Величковский Б.М. Визуализация крупномасштабных сетей головного мозга. Наука и инновации. 2015. 12(154): 22–25.

  22. Фекличева И.В., Чипеева Н.А., Захаров И.М., Исматуллина В.И., Масленникова Е.П., Табуева А.О., Солдатова Е.Л., Малых С.Б. Взаимосвязь интеллекта и функциональной связанности мозга в состоянии покоя. Теор. и эксперимент. психология. 2020. 13(30): 65–80.

  23. Харари Ф. Теория графов. М.: Мир. 1973. 304 с.

  24. Храмов А.Е., Фролов Н.С., Максименко В.А., Куркин С.А., Казанцев В.Б. Функциональные сети головного мозга: от восстановления связей до динамической интеграции. Успехи физических наук. 2021. 191(6): 614–650. https://doi.org/10.3367/UFNr.2020.06.038807

  25. Черний В.И, Андронова И.А., Городник Г.А., Назаренко К.В., Черний Т.В. Исследование ЭЭГ-предикторов нейромедиаторной и нейроглиальной активности, особенностей перестройки межцентральных отношений мозга у пациентов с тяжелой ЧМТ. Межд. невролог. журнал. 2016. 5(83): 41–54. https://doi.org/10.22141/2224-0713.5.83.2016.78470

  26. Шарова Е.В. Асимметрия когерентности ЭЭГ при посткоматозных бессознательных состояниях после тяжелой черепно-мозговой травмы. Функциональная межполушарная асимметрия (хрестоматия) (ред. Боголепова Н.Н., Фокина В.Ф.). М.: Научный мир. 2004. С. 578–585.

  27. Шарова Е.В. Современные возможности ЭЭГ в анализе функциональных нарушений при тяжелых повреждениях головного мозга. Нейронауки: теор. и клин. асп. (Украина). 2009. 5(1–2): 49–58.

  28. Шеповальников А.Н., Цицерошин М.Н., Погосян А.А. О роли различных зон коры и их связей в формировании пространственной упорядоченности поля биопотенциалов мозга в постнатальном онтогенезе. Физиол. чел. 1997. 23(2): 12–24.

  29. Abeyasinghe P.M., Ribeiro de Paula D., Khajehabdollahi S., Valluri S.R., Adrian M., Owen A.M., Soddu A. Role of Dimensionality in Predicting the Spontaneous Behavior of the Brain Using the Classical Ising Model and the Ising Model Implemented on a Structural Connectome. Brain Conect. 2018. 8(7): 444–455. https://doi.org/10.1089/brain.2017.0516

  30. Arnatkeviciūtė A., Fulcher B.D., Pocock R., Fornito A. Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome. PLoS Comput. Biol. 2018. 14(2): 1–32. https://doi.org/10.1371/journal.pcbi.1005989

  31. Avena-Koenigsberger A., Misic B., Sporns O. Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 2018. 19(1): 17–33.

  32. Awan F.G., Saleem O., Kiran A. Recent trends and advances in solving the inverse problem for EEG source localization. Inverse Probl. Sci. Eng. 2019. 27(11): 1521–1536.

  33. Babiloni C., Blinowska K., Bonanni L., Cichocki A., De Haan W., Claudio del Percio Dubois B., Escudero J., Fernández A., Frisoni G., Guntekin B. Hajos M., Hampel H., Ifeachor E., Kilborn K., Kumar S., Johnsen K., Johannsson M., Jeong J., LeBeau F., Lizio R., Lopes da Silva F., Maestú F., McGeown W.J., McKeith I., Moretti D.V., Nobili F., Olichney J., Onofrj M., Palop J.J., Rowan M., Stocchi F., Struzik Z.M., Tanila H., Teipel S., Taylor J.P., Weiergräber M., Yener G., Young-Pearse T., Drinkenburg W.H., Randall F. What Electrophysiology Tells Us About Alzheimer’s Disease: A Window into the Synchronization and Connectivity of Brain Neurons. Neurobiol. Aging. 2020. 85: 58–73. https://doi.org/10.1016/j.neurobiolaging.2019.09.008

  34. Bassett D.S., Meyer-Lindenberg A., Achard S., Duke T., Bullmore E. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. USA. 2006. 103(51): 19518–19523. https://doi.org/10.1073/pnas.0606005103

  35. Bassett D.S., Sporns O. Network neuroscience. Nat. Neurosci. 2017. 20(3): 353–364.

  36. Bassett D.S., Bullmore E.T. Small-world brain networks revisited. The Neuroscientist. 2017. 23(5): 499–516. https://doi.org/10.1177/1073858416667720

  37. Bernhardt B.C., Bonilha L., Gross D.W. Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy. Epilepsy & Behavior. 2015. 50: 162–170. https://doi.org/10.1016/j.yebeh.2015.06.005

  38. Boersma M., Smit D.J.A., de Bie H.M.A., Van Baa G.C.M., Boomsma D.I., de Geus E.J.C., Delemarre-van de Waa H.A., Stam C.J. Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Hum. Brain Mapp. 2011. 32(3): 413–425. https://doi.org/10.1002/hbm.21030

  39. Boersma M., Smit D.J.A., Boomsma D.I., De Geus E.J.C., Delemarre-van de Waal H.A., Stam C.J. Growing trees in child brains: graph theoretical analysis of electroencephalography-derived minimum spanning tree in 5-and 7-year-old children reflects brain maturation. Brain connectivity. 2013. 3(1): 50–60. https://doi.org/10.1089/brain.2012.0106

  40. Boldyreva G.N., Zhavoronkova L.A., Sharova E.V., Dobronravova I.S. Electroencephalografic intercentral interaction as a reflection of normal and pathological human brain activity. Span. J. Psychol. 2007. 10(1): 169–179. https://doi.org/10.1017/s1138741600006430

  41. Bordier C., Nicolini C., Bifone A. Graph analysis and modularity of brain functional connectivity networks: searching for the optimal threshold. Front. Neurosci. 2017. 11: 1–9. https://doi.org/10.3389/fnins.2017.0041

  42. Bornholdt S., Schuster H.G. (eds.) Handbook of graphs and networks: from the genome to the Internet. Weinheim: Wiley-VCH. 2003. 416 p. https://doi.org/10.1002/3527602755

  43. Bosch-Bayard J., Girini K., Biscay R.J., Valdes-Sosa P., Evans A.C., Chiarenza G.A. Resting EEG effective connectivity at the sources in developmental dysphonetic dyslexia. Differences with non-specific reading delay. Int. J. Psychophysiol. 2020. 153: 135–147. https://doi.org/10.1016/j.ijpsycho.2020.04.021

  44. Buchanan C.R., Bastin M.E., Ritchie S.J., Liewald D.C., Madole J.W., Tucker-Drob E.M., Deary I.J., Cox S.R. The effect of network thresholding and weighting on structural brain networks in the UK Biobank. NeuroImage. 2020. 211: 1–14. https://doi.org/10.1016/j.neuroimage.2019.116443

  45. Buckner R.L., Sepulcre J., Talukdar T., Krienen F.M., Liu H., Hedden T., Johnson K.A. Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer’s Disease. J. Neurosci. 2009. 29(6): 1860–1873. https://doi.org/10.1523/jneurosci.5062-08.2009

  46. Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009. 10(3): 186–198. https://doi.org/10.1038/nrn2575

  47. Bullmore E., Sporns O. The economy of brain network organization. Nat. Rev. Neurosci. 2012. 13(5): 336–349. https://doi.org/10.1038/nrn3214

  48. Cacciola A., Naro A., Milardi D., Bramanti A., Malatacca L., Spitaleri M., Leo A., Muscoloni A., Cannistraci C.V., Bramanti P., Calabrò R.S., Anastasi G.P. Functional brain network topology discriminates between patients with minimally conscious state and unresponsive wakefulness syndrome. Int. J. Clin. Med. 2019. 8(3): 1–22. https://doi.org/10.3390/jcm8030306

  49. Cao Z., Lin C.T., Chuang C.H., Lai K.L., Yang A.C., Fuh J.L., Wang S.J. Resting-state EEG power and coherence vary between migraine phases. J. Headache Pain. 2016. 17(1): 1–9. https://doi.org/10.1186/s10194-016-0697-7

  50. Cao R., Hao Y., Wang X., Gao Y., Shi H., Huo S., Wang B., Guo H., Xiang J. EEG Functional Connectivity Underlying Emotional Valance and Arousal Using Minimum Spanning Trees. Front. Neurosci. 2020. 14: 1–12. https://doi.org/10.3389/FNINS.2020.00355/BIBTEX

  51. Carrasco-Gómez M., Keijzer H.M., Ruijter B.J., Bruña R., Tjepkema-Cloostermans M.C., Hofmeijer J., van Putten M.J. EEG functional connectivity contributes to outcome prediction of postanoxic coma. Clin Neurophysiol. 2021. 132: 1312–1320. https://doi.org/10.1016/j.clinph.2021.02.011

  52. Chen Z.J., He Y., Rosa-Neto P., Germann J., Evansa C. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb. Cortex. 2008. 18(10): 2374–2381. https://doi.org/10.1093/cercor/bhn003

  53. Chen Y., Huang X., Wu M., Li K., Hu X., Jiang P., Chen L., He N., Dai J., Wang S., He M., Guo L., Sweeney J.A., Gong Q. Disrupted brain functional networks in drug-naive children with attention deficit hyperactivity disorder assessed using graph theory analysis. Hum Brain Mapp. 2019. 40(17): 4877–4887. https://doi.org/10.1002/hbm.24743

  54. Chennu S., Finoia P., Kamau E., Allanson J., Williams G.B., Monti M.M., Noreika V., Arnatkeviciute A., Canales-Johnson A., Olivares F., Cabezas-Soto D., Menon D.K., Pickard J.D., Owen A.M., Bekinschtein T.A. Spectral Signatures of Reorganised Brain Networks in Disorders of Consciousness. PLoS Comput Biol. 2014. 10(10): 1–16. https://doi.org/10.1371/journal.pcbi.1003887

  55. Chennu S., Annen J., Wannez S., Thibaut A., Chatelle C., Cassol H., Martens G., Schnakers C., Gosseries O., Menon D., Laureys S. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness. Brain. 2017. 140(8): 2120–2132. https://doi.org/10.1093/brain/awx163

  56. Collin G., van den Heuvel M.P. The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the life span. Neuroscientist. 2013. 19(6): 616–628. https://doi.org/10.1177/1073858413503712

  57. Crobe A., Demuru M., Didaci L., Marcialis G.L., Fraschini M. Minimum spanning tree and k-core decomposition as measure of subject-specific EEG traits. Biomed. Phys. Eng. Express 2016. 2(1): 1–16. https://doi.org/10.1088/2057-1976/2/1/017001

  58. Dai Z., de Souza J., Lim J., Ho P.M., Chen Y., Li J., Thakor N., Bezerianos A., Sun Y. EEG cortical connectivity analysis of working memory reveals topological reorganization in theta and alpha bands. Front. Hum. Neurosci. 2017. 11: 1–13. https://doi.org/10.3389/fnhum.2017.00237

  59. Dai Z., Lin Q., Li T., Wang X., Yuan H., Yu X., He Y., Wang H. Disrupted structural and functional brain networks in Alzheimer’s disease. Neurobiol. Aging. 2019. 75: 71–82. https://doi.org/10.1016/j.neurobiolaging.2018.11.005

  60. Dehaene S., Changeux J.-P., Naccache L., Sackur J., Sergent C. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn. 2006. 10(5): 204–211. https://doi.org/10.1016/j.tics.2006.03.007

  61. Dehaene S., Changeux J.-P., Naccache L. The Global Neuronal Workspace Model of Conscious Access: From Neuronal Architectures to Clinical Applications. In: Dehaene S., Christen Y. (eds) Characterizing Consciousness: From Cognition to the Clinic? Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. 2011. 18: 55–84. https://doi.org/10.1007/978-3-642-18015-6_4

  62. Dell’Italia J., Johnson M.A., Vespa P.M., Monti M.M. Network analysis in disorders of consciousness: four problems and one proposed solution (exponential random graph models). Front. Neurol. 2018. 9: 439–459.

  63. Demertzi A., Tagliazucchi E., Dehaene S., Deco G., Barttfeld P., Raimondo F., Martial C., Fernández-Espejo D., Rohaut B., Voss H.U., Schiff N.D., Owen A.M., Laureys S., Naccache L., Sitt J.D. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci. Adv. 2019. 5(2): 1–11. https://doi.org/10.1126/sciadv.aat7603

  64. Dickie D.A., Shenkin S.D., Anblagan D., Lee J., Blesa C.M., Rodriguez D., Wardlaw J.M. Whole Brain Magnetic Resonance Image Atlases: A Systematic Review of Existing Atlases and Caveats for Use in Population Imaging. Front. Neuroinform. 2017. 11: 1–15. https://doi.org/10.3389/fninf.2017.00001

  65. Douw L., Schoonheim M.M., Landi D., Van der Meer M.L., Geurts J.J., Reuneveld J.C., Klein M., Stam C.J. Cognition is related to resting-state small-world network topology: an magnetoencephalographic study. Neuroscience. 2011. 175: 169–177. https://doi.org/10.1016/j.neuroscience.2010.11.039

  66. Douw L., van Dellen E., Gouw A.A., Griffa A., de Haan W., van den Heuvenl M., Hillebrand A., van Meighem P., Nissen I.A., Otte W.M., Reijmer Y.D., Schoonheim M.M., Senden M., van Straaten E.C.W., Tijms B.M., Tewarie P., Stam C.J. The road ahead in clinical network neuroscience. Network Neuroscience. 2019. 3(4): 969–993. https://doi.org/10.1162/netn_a_00103

  67. Faber J., Antoneli P.C., Via G., Araújo N.S., Pinheiro D.J.L.L., Cavalheiro E. Critical elements for connectivity analysis of brain networks. In: Tsytsarev V., Yamamoto V., Zhong N. (eds) Functional Brain Mapping: Methods and Aims. 2020. P. 67–107. Brain Inform. https://doi.org/10.1007/978-981-15-6883-1_4

  68. Fagiolo G. Clustering in complex directed networks. Phys. Rev. E. 2007. 76(2): 1–16.

  69. Farahani F.V., Karwowski W., Lighthall N.R. Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Frontiers Neurosci. 2019. 13: 1–27. https://doi.org/10.3389/fnins.2019.00585

  70. Farashi S., Khosrowabadi R. EEG based emotion recognition using minimum spanning tree. Phys. Eng. Sci. Med. 2020. 43(3): 985–996. https://doi.org/10.1007/s13246-020-00895-y

  71. Finotelli P., Forlim C.G., Klock L., Pini A., Bächle J., Stoll L., Giemsa P., Fuchsd M., Schoofs N., Montag C., Dulioa P., Gallinat J., Kühnb S. New graph-theoretical-multimodal approach using temporal and structural correlations reveals disruption in the thalamo-cortical network in patients with schizophrenia. Brain Connect. 2019. 9(10): 760–769. https://doi.org/10.1089/brain.2018.0654

  72. Fornito A., Bullmore E.T. Connectomics: a new paradigm for understanding brain disease. Eur. Neuropsychopharmacol. 2015. 25(5): 733–748. https://doi.org/10.1016/j.euroneuro.2014.02.011

  73. Fox P.T., Friston K.J. Distributed processing: distributed functions? Neuroimage. 2012. 61(2): 407–426. https://doi.org/10.1016/j.neuroimage.2011.12.051

  74. Franciotti R., Falasca N.W., Arnaldi D., Famà F., Babiloni C., Onofrj M., Nobili F.M., Bonanni L. Cortical network topology in prodromal and mild dementia due to Alzheimer’s disease: graph theory applied to resting state EEG. Brain topogr. 2019. 32(1): 127–141. https://doi.org/10.1007/s10548-018-0674-3

  75. Fries P. Rhythms for Cognition: Communication Through Coherence. Neuron. 2015. 88(1): 220–235. https://doi.org/10.1016/j.neuron.2015.09.034

  76. Friston K.J., Frith C.D., Liddle P.F., Frackowiak R.S. Functional connectivity: the principal- component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 1993. 13(1): 5–14. https://doi.org/10.1038/jcbfm.1993.4

  77. Friston K.J. Functional and effective connectivity in neuroimaging: a synthesis. Hum. brain mapp. 1994. 2(1–2): 56–78.

  78. Friston K.J. The free-energy principle: a rough guide to the brain? Trends Cogn. 2009. 13(7): 293–301. https://doi.org/10.1016/j.tics.2009.04.005

  79. Girn M., Mills C., Christoff K. Linking brain network reconfiguration and intelligence: Are we there yet? Trends Neurosci. Educ. 2019. 15: 62–70. https://doi.org/10.1016/j.tine.2019.04.001

  80. Gong G., He Y., Concha L., Lebel C., Gross D.W., Evans A.C., Beaulieu C. Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using In Vivo Diffusion Tensor Imaging Tractography.Cereb. Cortex. 2009. 19(3): 524–536. https://doi.org/10.1093/cercor/bhn102

  81. Guye M., Bettus G., Bartolomei F., Cozzone P.J. Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks. MAGMA. 2010. 23(5): 409–421. https://doi.org/10.1007/s10334-010-0205-z

  82. Habas Ch. (Ed). The Neuroimaging of Brain Diseases. Springer Int. Publishing AG. 2018. 353 p. https://doi.org/10.1007/978-3-319-78926-2

  83. Hagmann P., Kurant M., Gigandet X., Thiran P., Wedeen V.J., Meuli R., Thiran J.P. Mapping human whole-brain structural networks with diffusion MRI. PloS one. 2007. 2(7): 1–9. https://doi.org/10.1371/journal.pone.0000597

  84. Hagmann P., Cammoun L., Gigandet X., Meuli R., Honey C.J., Wedeen V.J., Sporns O. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008. 6(7): 1479–1493. https://doi.org/10.1371/journal.pbio.0060159

  85. Hamzeh M., Vahidi B., Nematollahi A.F. Optimizing configuration of cyber network considering graph theory structure and teaching learning-based optimization (GT-TLBO). IEEE Trans. Industr. Inform. 2019. 15(4): 2083–2090. https://doi.org/10.1109/TII.2018.2860984

  86. Hassan M., Dufor O., Merlet I., Berrou C., Wendling F. EEG source connectivity analysis: from dense array recordings to brain networks. PloS one. 2014. 9(8): 1–15. https://doi.org/10.1371/journal.pone.0105041

  87. Hasan M.A.H., Khan M.U., Mishra D.A. Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation. BioMed Research International. 2020. 2020: 1–13. https://doi.org/10.1155/2020/1838140

  88. Hatlestad-Hall C., Bruña R., Syvertsen M.R., Erichsen A., Andersson V., Vecchio F., Miraglia F., Rossini P. M., Renvall H., Taubøll E., Maestú F., Haraldsen I.H. Source-level EEG and graph theory reveal widespread functional network alterations in focal epilepsy. Clinical Neurophysiology. 2021. 132(7): 1663–1676.

  89. He Y., Chen Z.J., Evans A.C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex. 2007. 17(10): 2407–2419. https://doi.org/10.1093/cercor/bhl149

  90. Hilgetag C.C., Kaiser M. Clustered organization of cortical connectivity. Neuroinformatics. 2004. 2(2): 353–360. https://doi.org/10.1385/NI:2:3:353

  91. Hilgetag C.C., Beul S.F., van Albada S.J., Goulas A. An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Network neuroscience. 2019. 3(4): 905–923. https://doi.org/10.1162/netn_a_00100

  92. Humphries M.D., Gurney K. Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PloS one. 2008. 3(4): 1–10. https://doi.org/10.1371/journal.pone.0002051

  93. Ioannou P. Computational Modelling of Working Memory. PhD thesis. University of Surrey (United Kingdom). 2014. P. 1–104.

  94. Ion A., Kropatsch W.G., Haxhimusa Y. Considerations regarding the minimum spanning tree pyramid segmentation method. In: Proc. 11 th Workshop Structural, Syntactic, and Statistical Pattern Recognition (SSPR). LNCS. 2006. 4109: 182–190.

  95. Iturria-Medina Y., Sotero R.C., Canales-Rodriguez E.J., Aleman-Gomez Y., Melie-Garcia L. Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage. 2008. 40(3): 1064–1076.

  96. Jatoi M.A., Kamel N. Brain source localization using EEG signal analysis. CRC Press. 2017. 248 p.

  97. Kennedy H., Van Essen D.C., Christen Y. Micro-, Meso- and Macro-Connectomics of the Brain Springer Nature. 2016. 166 p.

  98. Knyazev G.G., Volf N.V., Belousova L.V. Age-related differences in electroencephalogram connectivity and network topology.Neurobiology of aging. 2015. 36(5): 1849–1859.

  99. Koessler L., Maillard L., Benhadid A., Vignal J.P., Felblinger J., Vespignani H., Braun M. Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. Neuroimage. 2009. 46(1): 64–72.

  100. Kunszenti-Kovács D., Lovász L., Szegedy B. Measures on the square as sparse graph limits. J. Comb. Theory. Ser. B. 2019. 138: 1–40.

  101. Larsen J.C. Electrical network theory of countable graphs. IEEETrans. Circuits Syst. I. Regul. Pap. 1997. 44(11): 1045–1055.

  102. Latora V., Marchiori M. Efficient behavior of small-world networks. Phys. Rev. Lett. 2001. 87: 1–4. https://doi.org/10.1103/PhysRevLett.87.198701

  103. Liao X., Vasilakos A.V., He Y. Small-world human brain networks: perspectives and challenges. Neurosci. Biobehav. Rev. 2017. 77: 286–300. https://doi.org/10.1016/j.neubiorev.2017.03.018

  104. Liégeois R., Ziegler E., Geurts P., Gomez F., Bahri M.A., Phillips C., Soddu A., Vanhaudenhuyse A., Laureys S., Sepulchre R. Cerebral functional connectivity periodically (de)synchronizes with anatomical constraints. Brain Struct. Func. 2014. 221(6): 2985–2997. https://doi.org/10.1007/s00429-015-1083-y

  105. Liégeois R., Santos A., Matta V., Van De Ville D., Sayed A.H. Revisiting correlation-based functional connectivity and its relationship with structural connectivity. Network Neurosci. 2020. 4(4): 1235–1251.

  106. Lin P., Sun J., Yu G., Wu Y., Yang Y., Liang M., Liu X. Global and local brain network reorganization in attention-deficit/hyperactivity disorder. Brain Imaging Behav. 2014. 8(4): 558–569. https://doi.org/10.1007/s11682-013-9279-3

  107. Lopes da Silva F. EEG: Origin and Measurement. EEG-fMRI, Physiological Basis, Technique and Applications. Mulert C., Lemieux L. (eds.) Berlin Heidelberg: Springer Verlag. 2010. 968 p.

  108. Lord L.D., Stevner A.B., Deco G., Kringelbach M.L. Understanding principles of integration and segregation using whole-brain computational connectomics: implications for neuropsychiatric disorders. Philos. Trans. A. Math. Phys. Eng. Sci. 2017. 375: 1–21. https://doi.org/10.1098/rsta.2016.0283

  109. Maksimenko V.A., Runnova A.E., Frolov N.S., Makarov V.V., Nedaivozov V., Koronovskii A.A., Pisarchik A., Alexander E. Hramov A.E. Multiscale neural connectivity during human sensory processing in the brain. Phys. Rev. E. 2018. 97: 1–10. https://doi.org/10.1103/PhysRevE.97.052405

  110. Mannil M., Winklhofer S.F.-X. (ed). Neuroimaging Techniques in Clinical Practice. Springer Nature Switzerland AG. 2020. 342 p. https://doi.org/10.1007/978-3-030-48419-4

  111. McColgan P., Blom T., Rees G., Seunarine K.K., Gregory S., Johnson E., Durr A., Roos R., Scahill1 R.I., Clark C.A., Tabrizi S.J., Adeel Razi A. Stability and sensitivity of structural connectomes: effect of thresholding and filtering and demonstration in neurodegeneration. bioRxiv preprint. https://doi.org/10.1101/416826

  112. Meier J., Tewarie P., Hillebrand A., Douw L., van Dijk B.W., Stufflebeam S.M., Van Mieghem P. Mapping Between Structural and Functional Brain Networks. Brain Connectivity. 2016. 6(4): 298–311. https://doi.org/10.1089/brain.2015.0408

  113. Michel C.M., Brunet D. EEG source imaging: a practical review of the analysis steps. Frontiers in neurology. 2019. 10: 1–18. https://doi.org/10.3389/fneur.2019.00325

  114. Micheloyannis S. Graph-based network analysis in schizophrenia.World J Psychiatry. 2012. 2(1): 1–12. https://doi.org/10.5498/wjp.v2.i1.1

  115. Micheloyannis S., Pachou E., Stam C.J., Breakspear M., Bitsios P., Vourkas M., Zervakis M. Small-world networks and disturbed functional connectivity in schizophrenia.Schizophrenia research. 2006. 87(1–3): 60–66.

  116. Miraglia F., Vecchio F., Bramanti P., Rossini P.M. EEG characteristics in “eyes-open” versus “eyes-closed” conditions: small-world network architecture in healthy aging and age-related brain degeneration. Clinical Neurophysiology. 2016. 127(2): 1261–1268.

  117. Newman M.E.J. The Structure and Function of Complex Networks. SIAM Review. 2003. 45(2): 167–256.

  118. Newman M.E.J. Modularity and community structure in networks.Proceedings of the National Academy of Sciences. United States National Academy of Sciences. 2006. 103(23): 8577–8696. https://doi.org/10.1073/pnas.0601602103

  119. Nunez P.L. Electric fields of the brain. The Neurophysics of EEG. Oxford University Press. 1981. 626 p.

  120. Olejarczyk E., Jernajczyk W. Graph-based analysis of brain connectivity in schizophrenia. PLoS One. 2017. 12(11): 1–28. https://doi.org/10.1371/journal.pone.0188629

  121. Onnela J.P., Saramäki J., Kertész J., Kaski K. Intensity and coherence of motifs in weighted complex networks. Physical Review E. 2005. 71(6): 1–5. https://doi.org/10.1103/physreve.71.065103

  122. Pascual-Marqui R.D., Biscay R.J., Bosch-Bayard J., Lehmann D., Kochi K., Kinoshita T., Yamada N., Sadato N. Assessing direct paths of intracortical causal information flow of oscillatory activity with the isolated effective coherence (iCoh). Front. Hum. Neurosci. 2014. 8(448): 1–12. https://doi.org/10.3389/fnhum.2014.00448

  123. Pascual-Marqui R.D., Esslen M., Kochi K., Lehmann D. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol. 2002. 24: 91–95.

  124. Pascual-Marqui R.D., Lehmann D., Koukkou M., Kochi K., Anderer P., Saletu B., Tanaka H., Hirata K., John E.R., Prichep L., Biscay-Lirio R., Kinoshita T. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos. Trans. R. Soc. A. 2011. 369(1952): 3768–3784.

  125. Peraza L.R., Asghar A.U., Green G., Halliday D.M. Volume conduction effects in brain network inference from electroencephalographic recordings using phase lag index. J Neurosci Methods. 2012. 207(2): 189–199. https://doi.org/10.1016/j.jneumeth.2012.04.007

  126. Pfurtscheller G., Schwerdtfeger A.R., Seither-Preisler A, Brunner C., Stefan A.C., Brito J., Carmo M.P., Andrade A. Brain-heart communication: Evidence for “central pacemaker” oscillations with a dominant frequency at 0.1 Hz in the cingulum. Clin. Neurophysiol. 2017. 128(1): 183–193. https://doi.org/10.1016/j.clinph.2016.10.097

  127. Phillips D.J., McGlaughlina A., Rutha D., Jager L.R., Soldan A. Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer’s disease: The importance of graph creation methods. NeuroImage: Clin. 2015. 2015(7): 377–390. https://doi.org/10.1016/j.nicl.2015.01.007

  128. Pospelov N., Nechaev S., Anokhin K., Valba O., Avetisov V., Gorsky A. Spectral peculiarity and criticality of a human connectome. Phys. Life. Rev. 2021. 31: 240–256.

  129. Požar R., Giordani B., Kavcic V. Effective differentiation of mild cognitive impairment by functional brain graph analysis and computerized testing. PloS one. 2020. 15(3): 1–19. https://doi.org/10.1371/journal.pone.0230099

  130. Proshina E.A., Savostyanov A.N., Bocharov A.V., Knyazev G.G. Effect of 5-HTTLPR on current source density, connectivity, and topological properties of resting state EEG networks. Brain research, 2018. 1697: 67–75. https://doi.org/10.1016/j.brainres.2018.06.018

  131. Rubinov M., Sporns O. Complex network measures of brain connectivity: uses and interpretations.Neuroimage. 2010. 52(3):1059–1069

  132. Rubinov M., Ypma R.J., Watson C., Bullmore E.T. Wiring cost and topological participation of the mouse brain connectome.Proc. Natl. Acad. Sci. USA. 2015. 112(32): 10032–10037. https://doi.org/10.1073/pnas.1420315112

  133. Saramäki J., Kivelä M., Onnela J.P., Kaski K., Kertész J. Generalizations of the clustering coefficient to weighted complex networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2007. 75(2): 1–4. https://doi.org/10.1103/PhysRevE.75.027105

  134. Schoffelen J.M., Gross J. Source connectivity analysis with MEG and EEG.Hum Brain Mapp. 2009. 30: 1857–1865. https://doi.org/10.1002/hbm.20745

  135. Sharaev M.G., Zavyalova V.V., Ushakov V.L., Kartashov S.I., Velichkovsky B.M. Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data.Front. Hum. Neurosci. 2016. 10: 1–9. https://doi.org/10.3389/fnhum.2016.00014

  136. Sharova E.V., Pogosbekyan E.L., Korobkova E.V., Zaitsev O.S., Zakharova N.E., Chelyapina M.V., Fadeeva L.M., Oknina L.B., Pronin I.N., Potapov A.A. Interhemispheric connectivity and attention in patients with disorders of consciousness after severe traumatic brain injury. J. Neurol. Stroke. 2018. 8(4): 245‒253. https://doi.org/10.15406/jnsk.2018.08.00319

  137. Shine J.M., Breakspear M., Bell P.T., Ehgoetz Martens K.A., Shine R., Koyejo O., Sporns O., Poldrack R.A. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat. Neurosci. 2019. 22(2): 289–296. https://doi.org/10.1038/s41593-018-0312-0

  138. Simard D., Nadeau L., Kröger H. Fastest learning in small-world neural networks. Phys. Lett. A. 2005. 336(1): 8–15.

  139. Singer W. Distributed processing and temporal codes in neuronal networks.Cogn. Neurodyn. 2009. 3(3): 189–196.

  140. Sporns O., Zwi J.D. The small world of the cerebral cortex. Neuroinformatics. 2004. 2(2): 145–162.

  141. Sporns O., Honey C.J., Kötter R. Identification and classification of hubs in brain networks. PloS one. 2007. 2(10): 10–49.

  142. Sporns O. Networks of the Brain. Cambridge, MA: MIT Press. 2010. 424 p.

  143. Sporns O. Graph theory methods: applications in brain networks. Dialogues in clinical neuroscience. 2018. 20(2): 111–121.

  144. Steriade M., Gloor P., Llinás R.R., Lopes da Silva F.H., Mesulam M.M. Basic mechanisms of cerebral rhythmic activities. EEG and Clinical Neurophysiology. 1990. 76(6): 481–508.

  145. Stumme J., Jockwitz C., Hoffstaedter F., Amunts K., Caspers S. Functional network reorganization in older adults: Graph-theoretical analyses of age, cognition and sex. NeuroImage. 2020. 214: 1–15. https://doi.org/10.1016/j.neuroimage.2020.116756

  146. Suárez L.E., Markello R.D., Betzel R.F., Misic B. Linking structure and function in macroscale brain networks.Tr. Cog. Sci. 2020. 24(4): 302–315. https://doi.org/10.1016/j.tics.2020.01.008

  147. Szalkai B., Kerepesi C., Varga B., Grolmusz V. Parameterizable consensus connectomes from the human connectome project: The budapest reference connectome server v3. 0. Cogn. neurodyn. 2017. 11(1): 113–116. https://doi.org/10.1007/s11571-016-9407-z

  148. Tan B., Kong X., Yang P., Jin Z., Li L. The difference of brain functional connectivity between eyes-closed and eyes-open using graph theoretical analysis. Comput Math Methods Med. 2013. 2013: 1–15. https://doi.org/10.1155/2013/976365

  149. Termenon M., Jaillard A., Delon-Martin C., Achard S. Reliability of graph analysis of resting state fMRI using test-retest dataset from the Human Connectome Project. Neuroimage. 2016. 142: 172–187. https://doi.org/10.1016/j.neuroimage.2016.05.062

  150. Tononi G., Sporns O., Edelman G.M. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences. 1994. 91(11): 5033–5037.

  151. Tóth B., Urbán G., Háden G.P., Márk M., Török M., Stam C.J., Winkler I. Large-scale network organization of EEG functional connectivity in newborn infants.Human brain mapping. 2017. 38(8): 4019–4033. https://doi.org/10.1002/hbm.23645

  152. Ustimenko V. On computations with Double Schubert Automaton and stable maps of Multivariate Cryptography. arXiv preprint. 2021. https://doi.org/10.48550/arXiv.2108.08288

  153. Vaessen M.J., Hofman P.A., Tijssen H.N., Aldenkamp A.P., Jansen J.F., Backes W.H. The effect and reproducibility of different clinical DTI gradient sets on small world brain con-nectivity measures. Neuroimage. 2010. 51(3): 1106–1116.

  154. Van den Heuvel M.P., Hulshoff Pol H.E. Exploring the brain network: A review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 2010. 20: 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008

  155. Van den Heuvel M.P., Sporns O. An Anatomical Substrate for Integration among Functional Networks in Human Cortex. J. Neurosci. 2013. 33(36): 14489–14500. https://doi.org/10.1523/jneurosci.2128-13.2013

  156. Van den Heuvel M.P., Sporns O. A cross-disorder connectome landscape of brain dysconnectivity. Nat. rev. neurosci. 2019. 20(7): 435–446.

  157. Vecchio F., Miraglia F., Rossini M.P. Connectome: Graph theory application in functional brain network architecture. Clin. Neurophysiol. Pract. 2017. 24(2): 206–213. https://doi.org/10.1016/j.cnp.2017.09.003

  158. Vecchio F., Gorgoni M., Ferrara M., Iberite F., Bramanti P., Gennaro L., Rossini P.M. Cortical connectivity modulation during sleep onset: A study via graph theory on EEG data. Hum. Brain Mapp. 2017. 38(11): 5456–5464. https://doi.org/10.1002/hbm.23736

  159. Vecchio F., Miraglia F., Rossini P.M. Connectome: Graph theory application in functional brain network architecture. Clinical Neurophysiology. 2017. 2: 206–213. https://doi.org/10.1016/j.cnp.2017.09.003

  160. Viola E., Wigderson A. Local expanders. Comput. Complex. 2018. 27(2): 225–244.

  161. Wang J., Zuo X., He Y. Graph-based network analysis of resting-state functional MRI. Front. Syst. Neurosci. 2010. 4(16): https://doi.org/10.3389/fnsys.2010.00016

  162. Watanabe H., Shinoda S. Soul of circuit theory. a review on research activities of graphs and circuits in Japan. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 1999. 46(1): 83–94.

  163. Watts D.J., Strogatz S.H. Collective dynamics of ‘small-world’networks. Nature. 1998. 393 (6684): 440–442.

  164. Wendelken C., Ferrer E., Ghetti S., Bailey S.K., Cutting L., Bunge S.A. Frontoparietal structural connectivity in childhood predicts development of functional connectivity and reasoning ability: A large-scale longitudinal investigation. J. Neurosci. 2017. 37(35): 8549–8558. https://doi.org/10.1523/JNEUROSCI.3726-16.2017

  165. Wu G., Munsell B., Laurienti P., Chung M.K. GRAND: Unbiased Connectome Atlas of Brain Network by Groupwise Graph Shrinkage and Network Diffusion. In: Wu G., Rekik I., Schirmer M., Chung A., Munsell B. (eds) Connectomics in NeuroImaging. CNI 2018. Lecture Notes in Computer Science. Springer, Cham. 2018. 11083: 127–135. https://doi.org/10.1007/978-3-030-00755-3_14

  166. Xia M., Wang J., He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PloS one. 2013. 8(7): 1–15. https://doi.org/10.1371/journal.pone.0068910

  167. Zeng K., Kang J., Ouyang G., Li J., Han J., Wang Y., Sokhadze E.M., Casanova M.F., Li X. Disrupted Brain Network in Children with Autism Spectrum Disorder. Sci. Rep. 2017. 7(1): 1–12. https://doi.org/10.1038/s41598-017-16440-z

  168. Zhu G., Li Y., Wen P.P. Analysis and Classification of Sleep Stages Based on Difference Visibility Graphs From a Single-Channel EEG Signal. IEEE Journal of Biomedical and Health Informatics. 2014. 18(6): 1813–1821. https://doi.org/10.1109/JBHI.2014.2303991

Дополнительные материалы отсутствуют.