Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 5, стр. 678-689
Транскраниальная электростимуляция постоянным током модулирует компонент негативности результата действия в монетарной игре
А. А. Горин 1, 2, *, В. А. Ключников 1, И. И. Дутов 1, В. В. Моисеева 1, В. А. Ключарев 1, А. Н. Шестакова 1
1 Институт когнитивных нейронаук, Национальный исследовательский университет
Высшая школа экономики
Москва, Россия
2 Центр нейробиологии и нейрореабилитации имени В. Зельмана,
Сколковский институт науки и технологий
Москва, Россия
* E-mail: gorinspbu@gmail.com
Поступила в редакцию 15.03.2022
После доработки 10.05.2022
Принята к публикации 27.06.2022
- EDN: RPXSMP
- DOI: 10.31857/S0044467722050069
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Аннотация
Настоящее исследование было направлено на изучение нейрофизиологических эффектов транскраниальной стимуляции постоянным электрическим током (tDCS) в отношении компонента вызванных потенциалов, называемого “негативность результата действия” (feedback-related negativity, FRN). Испытуемые выполняли задачу на отложенное денежное подкрепление, во время которой пытались избежать денежных потерь различной величины. Мы сравнили амплитуду FRN в ответ на информацию о денежной потере в контрольной группе с группой, получавшей катодную стимуляцию вентромедиальной префронтальной коры. Основываясь на имеющихся в литературе данных, мы предположили, что катодная tDCS будет подавлять амплитуду компонента FRN. Вопреки нашей гипотезе, величина компонента в группе стимуляции была значимо выше, чем в контрольной группе. Данные результаты могут служить как дополнительным свидетельством усиливающего действия катодной tDCS, так и привести к предположению о том, что нейросети, участвующие в генерации сигнала при обработке денежной потери, отличаются от таковых при игре, не связанной с денежным вознаграждением.
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Список литературы
Alexander W.H., Brown J.W. Medial prefrontal cortex as an action-outcome predictor. Nature neuroscience. 2011. 14(10): 1338–1344.
Baker T.E., Holroyd C.B. Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200. Biological psychology. 2011. 87(1): 25–34.
Becker M.P., Nitsch A.M., Miltner W.H., Straube T. A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task. Journal of Neuroscience. 2014. 34(8): 3005–3012.
Been G., Ngo T.T., Miller S.M., Fitzgerald P.B. The use of tDCS and CVS as methods of non-invasive brain stimulation. Brain research reviews. 2007. 56(2): 346–36.
Boroda E., Sponheim S.R., Fiecas M., Lim K.O. Transcranial direct current stimulation (tDCS) elicits stimulus-specific enhancement of cortical plasticity. Neuroimage. 2020. 211: 116598.
Broyd S.J., Richards H.J., Helps S.K., Chronaki G., Bamford S., Sonuga-Barke E.J. An electrophysiological monetary incentive delay (e-MID) task: a way to decompose the different components of neural response to positive and negative monetary reinforcement. Journal of neuroscience methods. 2012. 209(1): 40–49.
Carlson J.M., Foti D., Mujica-Parodi L.R., Harmon-Jones E., Hajcak G. Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: a combined ERP and fMRI study.Neuroimage. 2011. 57(4): 1608–1616.
Carlson J.M., Foti D., Harmon-Jones E., Proudfit G.H. Midbrain volume predicts fMRI and ERP measures of reward reactivity. Brain Structure and Function. 2015. 220(3): 1861–1866.
Dockery C.A., Hueckel-Weng R., Birbaumer N., Plewnia C. Enhancement of planning ability by transcranial direct current stimulation. Journal of Neuroscience, 2009. 29(22): 7271–7277.
Doñamayor N., Schoenfeld M.A., Münte T.F. Magneto-and electroencephalographic manifestations of reward anticipation and delivery. Neuroimage. 2012. 62(1): 17–29.
Falkenstein M. Effects of errors in choice reaction tasks on the ERP under focused and divided attention. Psychophysiological brain research. 1990.
Foti D., Carlson J.M., Sauder C.L., Proudfit G.H. Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype.NeuroImage. 2014. 101: 50–58.
Garrido M.I., Friston K.J., Kiebel S.J., Stephan K.E., Baldeweg T., Kilner J.M. The functional anatomy of the MMN: a DCM study of the roving paradigm. .Neuroimage. 2008. 42(2): 936–944.
Gehring W.J., Willoughby A.R. The medial frontal cortex and the rapid processing of monetary gains and losses. Science. 2002. 295(5563): 2279–2282.
Gehring W.J., Goss B., Coles M.G., Meyer D.E., Donchin E. A neural system for error detection and compensation. Psychological science. 1993. 4(6): 385–390.
Gehring W.J., Liu Y., Orr J.M., Carp J. The error-related negativity (ERN/Ne). The Oxford handbook of event-related potential components. 2012. 231–291.
Glazer J.E., Kelley N.J., Pornpattananangkul N., Mittal V.A., Nusslock R. Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. International Journal of Psychophysiology. 2018. 132: 184–202.
Glimcher P.W. Decisions, uncertainty, and the brain: The science of neuroeconomics. MIT Press. 2003.
Gordon P.C., Zrenner C., Desideri D., Belardinelli P., Zrenner B., Brunoni A.R., Ziemann U. Modulation of cortical responses by transcranial direct current stimulation of dorsolateral prefrontal cortex: A resting-state EEG and TMS-EEG study. Brain Stimulation. 2018. 11(5): 1024–1032
Gorin A., Krugliakova E., Nikulin V., Kuznetsova A., Moiseeva V., Klucharev V., Shestakova A. Cortical plasticity elicited by acoustically cued monetary losses: an ERP study. Scientific reports. 2020. 10(1): 1–14.
Goyer J.P., Woldorff M.G., Huettel S.A. Rapid electrophysiological brain responses are influenced by both valence and magnitude of monetary rewards. Journal of cognitive neuroscience. 2008. 20(11): 2058–2069.
Hajcak G., Holroyd C.B., Moser J.S., Simons R.F. Brain potentials associated with expected and unexpected good and bad outcomes. Psychophysiology. 2005. 42(2): 161–170.
Hajcak G., Moser J.S., Holroyd C.B., Simons R.F. It’s worse than you thought: The feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology. 2007 44(6): 905–912.
Hanley C.J., Singh K.D., McGonigle D.J. Transcranial modulation of brain oscillatory responses: A concurrent tDCS–MEG investigation. Neuroimage. – 2016. 140: 20–32.
Holroyd C.B., Coles M.G.H. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological review. 2002. 109(4): 679.
Holroyd C.B., Pakzad-Vaezi K.L., Krigolson O.E. The feedback correct-related positivity: Sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology. 2008. 45(5): 688–697.
Holroyd C.B., Krigolson O.E., Lee S. Reward positivity elicited by predictive cues. Neuroreport. 2011. 22(5): 249–252.
Knutson B., Taylor J., Kaufman M., Peterson R., Glover G. Distributed neural representation of expected value. Journal of Neuroscience. 2005. 25(19): 4806–4812.
Knutson B., Westdorp A., Kaiser E., Hommer D. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage. 2000. 12(1): 20–27.
Krigolson O.E. Event-related brain potentials and the study of reward processing: Methodological considerations. International Journal of Psychophysiology. 2018. 132, 175–183.
Krugliakova E., Klucharev V., Fedele T., Gorin A., Kuznetsova A., Shestakova A. Correlation of cue-locked FRN and feedback-locked FRN in the auditory monetary incentive delay task. Experimental Brain Research. 2018. 236(1): 141–151.
Krugliakova E., Gorin A., Fedele T., Shtyrov Y., Moiseeva V., Klucharev V., Shestakova A. The monetary incentive delay (MID) task induces changes in sensory processing: ERP evidence. Frontiers in Human Neuroscience. 2019. 13: 382.
Matsushita R., Puschmann S., Baillet S., Zatorre R.J. Inhibitory effect of tDCS on auditory evoked response: Simultaneous MEG-tDCS reveals causal role of right auditory cortex in pitch learning. NeuroImage. 2021. 233: 117915.
Miltner W.H.R., Braun C.H., Coles M.G.H. Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a “generic” neural system for error detection. Journal of cognitive neuroscience. 1997. 9(6): 788–798.
Miniussi C., Harris J.A., Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neuroscience & Biobehavioral Reviews, 2013. 37(8), 1702–1712.
Näätänen R., Pakarinen S., Rinne T., Takegata R. The mismatch negativity (MMN): towards the optimal paradigm. Clinical neurophysiology. 2004. 115(1): 140–144.
Nieuwenhuis S., Heslenfeld D.J., von Geusau N.J.A., Mars R.B., Holroyd C.B., Yeung N. Activity in human reward-sensitive brain areas is strongly context dependent. Neuroimage. 2005. 25(4): 1302–1309.
Noreika V., Kamke M.R., Canales-Johnson A., Chennu S., Bekinschtein T.A., Mattingley J.B. Alertness fluctuations when performing a task modulate cortical evoked responses to transcranial magnetic stimulation. NeuroImage. 2020. 223, 117305.
Potts G.F., Martin L.E., Burton P., Montague P.R. When things are better or worse than expected: the medial frontal cortex and the allocation of processing resources. Journal of cognitive neuroscience. 2006. 18(7): 1112–1119.
Rahimi V., Mohamadkhani G., Alaghband-Rad J., Kermani F.R., Nikfarjad H., Marofizade S. Modulation of temporal resolution and speech long-latency auditory-evoked potentials by transcranial direct current stimulation in children and adolescents with dyslexia. Experimental Brain Research. 2019. 237(3): 873–882.
Reinhart R.M.G., Woodman G.F. Causal control of medial–frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning. Journal of Neuroscience. 2014. 34(12): 4214–4227.
Ruchsow M., Grothe J., Spitzer M., Kiefer M. Human anterior cingulate cortex is activated by negative feedback: evidence from event-related potentials in a guessing task. Neuroscience letters. 2002. 325(3): 203–206.
Sambrook T.D., Goslin J. Mediofrontal event-related potentials in response to positive, negative and unsigned prediction errors. Neuropsychologia. 2014. 61: 1–10.
San Martín R. Event-related potential studies of outcome processing and feedback-guided learning. Frontiers in human neuroscience. 2012. 6: 304.
Schaworonkow N., Triesch J., Ziemann U., Zrenner C. EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities. Brain stimulation. 2019. 12(1): 110–118.
Tadel F., Baillet S., Mosher J.C., Pantazis D., Leahy R.M. Brainstorm: a user-friendly application for MEG/EEG analysis. Computational intelligence and neuroscience. 2011.
Thomas J., Vanni-Mercier G., Dreher J.C. Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans. Frontiers in neuroscience. 2013. 7: 214.
Walsh M.M., Anderson J.R. Learning from experience: event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience & Biobehavioral Reviews. 2012. 36(8): 1870–1884.
Watts A.T.M., Bachman M.D., Bernat E.M. Expectancy effects in feedback processing are explained primarily by time-frequency delta not theta. Biological psychology. 2017. 129: 242–252.
Wiethoff S., Hamada M., Rothwell J.C. Variability in response to transcranial direct current stimulation of the motor cortex. Brain stimulation. 20147(3), 468–475.
Wu Y., Zhou X. The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain research. 2009. 1286: 114–122.
Zhou Z., Yu R., Zhou X. To do or not to do? Action enlarges the FRN and P300 effects in outcome evaluation. Neuropsychologia. 2010. 48(12) : 3606–3613.
Дополнительные материалы отсутствуют.
Инструменты
Журнал высшей нервной деятельности им. И.П. Павлова