Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 3, стр. 405-420
Дефицит гиппокамп-зависимого обучения не коррелирует с подавлением долговременной посттетанической потенциации при системной блокаде НМДА-рецепторов
В. А. Коршунов 1, *, **, Ш. С. Узаков 1
1 Федеральное государственное бюджетное учреждение науки
Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия
* E-mail: korav-md@mail.ru
** E-mail: vkorshunov@ihna.ru
Поступила в редакцию 07.08.2021
После доработки 17.11.2021
Принята к публикации 20.12.2021
- EDN: GOFCQP
- DOI: 10.31857/S0044467722030054
Полные тексты статей выпуска доступны только авторизованным пользователям.
Аннотация
Обучение и поведение более чувствительны к блокаде НМДА-рецепторов (НМДАр), чем ДПП-подобная пластичность. Интраперитонеальные и интравентрикулярные инъекции низких, нетоксичных доз неконкурентного антагониста НМДАр MK-801 не блокируют ДПП в гиппокампе, но нарушают гиппокамп-зависимые формы обучения и пространственного поведения как в алло-, так и в эгоцентрической координатных системах и препятствуют воспроизведению ранее выработанных реакций у хорошо обученных животных. Наши результаты не подтверждают связь ДПП-подобной пластичности с пространственным обучением.
Полные тексты статей выпуска доступны только авторизованным пользователям.
Список литературы
Александров Ю.И. Научение и память: традиционный и системный подходы. Журн. высш. нервн. деят. им. И.П. Павлова. 2005. 55(6): 842–860.
Зайченко M.И., Григорьян Г.А., Маркевич В.А. Влияние МК-801 на реконсолидацию пространственной памяти в 8-канальном радиальном лабиринте зависит от условий ее реактивации. Журн. высш. нервн. деят. им. И.П. Павлова. 2018. 68(2): 216–226. https://doi.org/10.7868/S0044467718020077
Коршунов В.А. Проблемы адекватности методов, применяемых для тестирования синаптической пластичности при обучении. Журн. высш. нервн. деят. им. И.П. Павлова. 2001. 51(2): 267–278. PMID: 11548613
Коршунов В.А. Дефицит гиппокамп-зависимых форм обучения при блокаде НМДА-рецепторов не связан с нарушениями долговременной посттетанической потенциации (ДПП). II-Всероссийская конференция с международным участием “Гиппокамп и память: норма и патология”. 10–14 сентября 2012 г., Пущино, Россия. с. 13–14.
Коршунов В.А. Метод исправления перспективных искажений при видеотрекинге животных в бассейне Морриса. Журн. высш. нервн. деят. им. И.П. Павлова. 2014. 64(2): 240–245. https://doi.org/10.7868/S0044467714020117
Коршунов В.А. Простые индексы для оценки выполнения задач в бассейне Морриса. 15-й Международный Междисциплинарный Конгресс “Нейронаука для Медицины и Психологии”. Судак, Крым, Россия, 30 мая–10 июня 2019 г. с. 237. https://doi.org/10.29003/m442.sudak.ns2019-15/237
Abraham W.C., Kairiss E.W. Effects of NMDA-antagonist 2AP5 on complex spike discharge by hippocampal pyramidal cells. Neurosci. Lett. 1988. 89(1): 36–42. https://doi.org/10.1016/0304-3940(88)90477-6
Adams W.K., Halberstadt A.L., Van den Buuse M. Hippocampal serotonin depletion unmasks differences in the hyperlocomotor effects of phencyclidine and MK-801: quantitative versus qualitative analyses. Front. Pharmacol. 2013. 4: 109. https://doi.org/10.3389/fphar.2013.00109
Ahlander M., Misane I., Schott P.A., Ogren S.O. A behavioral analysis of the spatial learning deficit induced by the NMDA receptor antagonist MK-801 (dizocilpine) in the rat. Neuropsychopharmacology. 1999. 21(3): 414–426. https://doi.org/10.1016/S0893-133X(98)00116-X
Bannerman D.M., Butcher S.P., Good M.A., Morris R.G. Intracerebroventricular infusion of the NMDA receptor-associated glycine site antagonist 7-chlorokynurenate impairs water maze performance but fails to block hippocampal long-term potentiation in vivo. Neurobiol. Learn. Mem. 1997. 68(3): 252–270. https://doi.org/10.1006/nlme.1997.3797
Bliss T.V.P., Collingridge G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993. 361 (6407): 31–39. https://doi.org/10.1038/361031a0
Butcher S.P., Davis S., Morris R.G. A dose-related impairment of spatial learning by the NMDA receptor antagonist, 2-amino-5-phosphonovalerate (AP5). Eur. Neuropsychopharmacol. 1990. 1(1): 15–20. https://doi.org/10.1016/0924-977x(90)90005-u
Butelman E.R. A novel NMDA antagonist, MK-801, impairs performance in a hippocampal-dependent spatial learning task. Pharmacol Biochem Behav. 1989. 34(1): 13–16. PMID: 2696982https://doi.org/10.1016/0091-3057(89)90345-6
Castro C.A., Silbert L.H., McNaughton B.L., Barnes C.A. Recovery of spatial learning deficits after decay of electrically induced synaptic enhancement in the hippocampus. Nature (London). 1989. 342(6249): 545–548.
Cercato M.C., Colettis N., Snitcofsky M., Aguirre A.I., Kornisiuk E.E., Baez M.V., Jerusalinsky D.A. Hippocampal NMDA Receptors and the Previous Experience Effect on Memory. J. Physiol. Paris, 2014. 108(4–6): 263–269. https://doi.org/10.1016/j.jphysparis.2014.08.001
Cercato M.C., Vázquez C.A., Kornisiuk E., Aguirre A.I., Colettis N., Snitcofsky V., Jerusalinsky D.A., Baez M.V. GluN1 and GluN2A NMDA Receptor Subunits Increase in the Hippocampus During Memory Consolidation in the Rat. Front. Behav. Neurosci. 2017. 10: 242. https://doi.org/10.3389/fnbeh.2016.00242
Chan M., Austen J.M., Eacott M.J., Easton A., Sanderson D.J. The NMDA receptor antagonist MK-801 fails to impair long-term recognition memory in mice when the state-dependency of memory is controlled. Neurobiol. Learn. Mem. 2019. 161: 57–62. https://doi.org/10.1016/j.nlm.2019.03.006
Christian E.P., Deadwyler S.A. Behavioral Functions and Hippocampal Cell Types: Evidence for Two Nonoverlapping Populations in the Rat. J. Neurophysiol. 1986. 55(2): 331–348. https://doi.org/10.1152/jn.1986.55.2.331
Cooper B.G., Mizumori S.J.Y. Temporary Inactivation of the Retrosplenial Cortex Causes a Transient Reorganization of Spatial Coding in the Hippocampus.J. Neurosci. 2001. 21(11): 3986–4001.
Ezrokhi V.L., Zosimovskii V.A., Korshunov V.A., Markevich V.A. Restoration of Decaying Long-term Potentiation in the Hippocampal Formation by Stimulation of Neuromodulatory Nuclei in Freely Moving Rats. Neurosci. 1999. 88(3): 741–753. https://doi.org/10.1016/s0306-4522(98)00232-2
Holscher C. Synaptic Plasticity and Learning and Memory: LTP and Beyond. J. Neurosci. Research. 1999. 58: 62–75. PMID: 10491572
Jeffery K.J. LTP and Spatial Learning—Where to Next? Hippocampus. 1997. 7: 95–110. https://doi.org/10.1002/(SICI)1098-1063(1997)7:1 <95::AID-HIPO10>3.0.CO;2-D
Keith J.R., Rudy J.W. Why NMDA-receptor-depenent long-term potentiation may not be a mechanism of learning and memory: reappraisal of the NMDA-receptor blockade strategy. Physiology. 1990. 18: 251–257. https://doi.org/10.3758/BF03327238
Kikusui T., Aoyagi A., Kaneko T. Spatial Working Memory Is Independent of Hippocampal CA1 Long-Term Potentiation in Rats. Behavioral Neuroscience. 2000. 114 (4): 700–706. PMID: 10959528
Korol D.L., Abel T.W., Church L.T., Barnes C.A., McNaughton B.L. Hippocampal synaptic enhancement and spatial learning in the Morris swim task. Hippocampus, 1993. 3: 127–132.
Korshunov V.A, Averkin R.G. A Method of Extracellular Recording of Neuronal Activity in Swimming Mice. J. Neurosci. Methods. 2007. 165: 244–250. https://doi.org/10.1016/j.jneumeth.2007.06.014
Korshunov V.A. Miniature multichannel preamplifier for extracellular recordings of single unit activity in freely moving and swimming small animals. J. Neurosci. Methods. 2012. 206: 15–22. https://doi.org/10.1016/j.jneumeth.2012.02.007
Lamberty Y., Gower A.J. Simplifying environmental cues in a Morris-type water maze improves place learning in old NMRI mice. Behav. Neural. Biol. 1991. 56 (1): 89–100. https://doi.org/10.1016/0163-1047(91)90315-h
Leung L.W.S., Desborough K.A. APV, an N-methyl-D-aspartate receptor antagonist, blocks the hippocampal theta rhytm in behaving rats. Brain Res. 1988. 463: 148–152. https://doi.org/10.1016/0006-8993(88)90538-0
McNamara R.K., Kirkby R.D., dePape G.E., Skelton R.W., Corcoran M.E. Differential effects of kindling and kindled seizures on place learning in the Morris water maze. Hippocampus. 1993. 3: 149–152.
McNaughton N., Ruan M., Woodnorth M.A. Restoring theta-like rhythmicity in rats restores initial learning in the Morris water maze. Hippocampus. 2006. 16(12): 1102–1110. https://doi.org/10.1002/hipo.20235
Monaghan D.T., Cotman C.W. Distribution of N-metyl-D-aspartate-sensitive L-[3H] glutamate-binding sites in rat brain. J. Neurosci. 1985. 5: 2909–2919. https://doi.org/10.1523/JNEUROSCI.05-11-02909.1985
Morris R.G.M. NMDA receptors and memory encoding. Neuropharmacology. 2013. 74: 32–40. https://doi.org/10.1016/j.neuropharm.2013.04.014
Morris R.G.M., Steele R.J., Bell J.E., Martin S.J. N-methyl-d-aspartate receptors, Learning and memory: Chronic intraventricular infusion of the NMDA receptor antagonist d-AP5 interacts directly with the neural mechanisms of spatial learning. European Journal of Neuroscience. 2013. 37(5): 700–717. https://doi.org/10.1111/ejn.12086
Morris R.G.M. The neural basis of learning with Particular Reference to the Role of Synaptic Plasticity. Where Are We a Century after Cajal’s Speculations? -in “Animal learning and Cognition”, Ed. N.J. Mackintosh, Academic press, 1994.
Morris R.G. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. Journal of Neuroscience. 1989. 9(9): 3040–3057. https://doi.org/10.1523/JNEUROSCI.09-09-03040.1989
Moser E.I., Mathiesen I., Andersen P. Assosiation between brain temperature and dentate field potentials in exploring and swimming rats. Science. 1993. 259: 1324–1326.
Nakazawa K., Quirk M.C., Chitwood R.A., Watanabe M., Yeckel M.F., Sun L.D., Kato A., Carr C.A., Johnston D., Wilson M.A., Tonegawa S. Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall. Science. 2002. 279: 211–218. https://doi.org/10.1126/science.1071795
Olney J.W., Sesma M.A., Wozniak D.F. Glutamatergic, Cholinergic and GABAergic Systems in Posterior Cingulate Cortex: Interactions and Possible Mechanisms of Limbic System Disease, in: Vogt, BA, Gabriel, M (Eds.), Neurobiology of Cingulate Cortex and Limbic Thalamus. A Comprehensive Handbook. Birkhauser, Boston, Basel, Berlin, 1993. 557–580 pp.
Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. Fourth edition, Acad. Press, 1998.
Peet M.J., Curry K., Magnuson D.S.K., McLennan H. The N-methyl-D-aspartate receptor and burst firing of CA1 hippocampal pyramidal neurons. Neuroscience. 1987. 22: 563–571. https://doi.org/10.1016/0306-4522(87)90353-8
Priestley T., Marshall G.R., Hill R.G., Kemp J.A. L‑687,414, a low efficacy NMDA receptor glycine site partial agonist in vitro, does not prevent hippocampal LTP in vivo at plasma levels known to be neuroprotective. Br. J. Pharmacol. 1998. 124(8): 1767–1773.
Prusky G.T., Harker K.T., Douglas R.M., Whishaw I.Q. Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behav Brain Res. 2002. 136(2): 339–348. https://doi.org/10.1016/s0166-4328(02)00126-2
Rossato J.I., Moreno A., Genzel L., Yamasaki M., Takeuchi T., Canals S., Morris R.G.M. Silent Learning. Curr Biol. 2018. 28(21): 3508–3515. https://doi.org/10.1016/j.cub.2018.09.012
Sengar A.S., Li H., Zhang W., Leung C., Ramani A.K., Saw N.M., Wang Y., Tu Y., Ross P.J., Scherer S.W., Ellis J., Brudno M., Jia Z., Salter M.W. Control of Long-Term Synaptic Potentiation and Learning by Alternative Splicing of the NMDA Receptor Subunit GluN1. Cell Rep. 2019. 29(13): 4285–4294.e5. https://doi.org/10.1016/j.celrep.2019.11.087
Saucier D., Cain D.P. Spatial learning without NMDA receptor-dependent long-term potentiation. Nature. 1995. 378(6553): 186–189. https://doi.org/10.1038/378186a0
Shors T.J., Seib T.B., Levine S., Thompson R.F. Inescapable Versus Escapable Shock Modulates Long-Term Potentiation in the Rat Hippocampus. Science. 1989. 244(4901): 224–226.
Tan S., Kirk R.C., Abraham W.C., McNaughton N. Effects of the NMDA antagonists CPP and MK-801 on delayed conditional discrimination. Psychopharmacology (Berl). 1989. 98(4): 556–60. PMID: 2505299 https://doi.org/10.1007/BF004419592505299
Tricklebank M.D., Singh L., Oles R.J., Preston C., Iversen S.D. The behavioral effects of MK-801: a comparision with antagonists acting competitevely at the NMDA-receptor. Eur. J. Pharmacol. 1989. 167: 127–135. https://doi.org/10.1016/0014-2999(89)90754-1
Ward L., Mason S.E., Abraham W.C. Effects of the NMDA antagonists CPP and MK-801 on radial arm maze performance in rats. Pharmacol Biochem Behav. 1990. 35(4): 785–790. PMID: 2189143https://doi.org/10.1016/0091-3057(90)90359-p
Whishaw I.Q., Maaswinkel H., Gonzalez C.L.R., Kolb B. Deficits in allothetic and idiothetic spatial behavior in rats with posterior cingulate cortex lesions. Behavioural Brain Research. 2001. 118: 67–76.
Whishaw I.Q. Posterior neocortical (visual cortex) lesions in the rat impair matching-to-place navigation in a swimming pool: a reevaluation of cortical contributions to spatial behavior using a new assessment of spatial versus non-spatial behavior. Behav. Brain Res. 2004. 155(2): 177–184. https://doi.org/10.1016/j.bbr.2004.04.013
Whitlock J., Heynen A., Shuler M., Bear M. Learning induces long-term potentiation in the hippocampus. Science. 2006. 313(5790): 1093–1097. https://doi.org/10.1126/science.1128134
Дополнительные материалы отсутствуют.
Инструменты
Журнал высшей нервной деятельности им. И.П. Павлова