Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 3, стр. 317-342

Роль зубчатой извилины в осуществлении функций гиппокампа: здоровый мозг

В. Ф. Кичигина 1*, Л. В. Шубина 1, И. Ю. Попова 1

1 ФГБУН Институт теоретической и экспериментальной биофизики РАН
Пущино, Россия

* E-mail: vkitchigina@gmail.com

Поступила в редакцию 28.10.2021
После доработки 03.12.2021
Принята к публикации 20.12.2021

Аннотация

Зубчатая извилина (ЗИ), входящая в состав гиппокамповой формации, является основной мишенью получаемых гиппокампом неокортикальных и субкортикальных афферентов, что составляет анатомическую основу его участия в когнитивных процессах, таких как внимание и память. ЗИ участвует в организации многих когнитивных функций гиппокампа и мозга в целом, включая детекцию новизны, разделение и завершение паттернов (pattern separation and pattern completion), пространственную рабочую память, кодирование информации и консолидацию памяти. Именно в ЗИ впервые была обнаружена долговременная потенциация – пластические изменения в синапсах, схожие с теми, которые происходят при запоминании информации. ЗИ представляет собой уникальную область мозга, одну из немногих, где обнаруживается нейрогенез у взрослых млекопитающих, включая человека. Другой особенностью ЗИ, отличающей ее от гиппокампа, является наличие в ней двух типов глутаматергических нейронов – гранулярных и мшистых клеток. Гранулярные клетки, в норме обладая низкой активностью, ограничивают возбудимость пирамидных нейронов гиппокампа в неблагоприятных условиях. Функции мшистых нейронов ЗИ наименее ясны; эти клетки, иннервируя как глутаматергические, так и ГАМКергические нейроны, вероятно, участвуют в организации сложной сетевой активности как в самой ЗИ, так и в гиппокампе. Несмотря на интенсивное исследование ЗИ, ее роль в деятельности гиппокампа еще во многом неясна. В предлагаемом обзоре рассматриваются анатомические, гистохимические и функциональные особенности ЗИ, активность отдельных клеточных элементов, а также ее роль в гиппокампальных функциях нормального мозга.

Ключевые слова: зубчатая извилина, гранулярные нейроны, мшистые клетки, гигантские синапсы, нейрогенез, длительная потенциация, шипики, паттерн разделения, паттерн завершения, защитная функция

Список литературы

  1. Брагин А.Г. Характер ответов пирамид поля СА3 гиппокампа на электрическую стимуляцию зубчатой фасции. Лимбическая система мозга. Под ред А.Н. Черкашина и К.Н Культас, Пущино, 1973, стр. 141–160.

  2. Брагин А.Г., Виноградова О.С. Явление хронической потенциации в кортикальном афферентном входе пирамид поля СА3 гиппокампа. Физиологические механизмы памяти. Пущино-на-Оке: Изд-во НЦБИ Пущино. 1973. С. 8–24.

  3. Брагин А.Г., Виноградова О.С., Емельянов В.В. Пространственная организация нейронов поля СА3 гиппокампа на электрическую стимуляцию зубчатой фасции. Журнал высшей нервной деятельности им. И.П. Павлова. 1976. 26(3), 605–611.

  4. Виноградова О.С. Гиппокамп и память. Москва, Наука, 1975.

  5. Виноградова О.С., Дудаева К.И. О компараторной функции гиппокампа. Доклады АН СССР. 1972. 202(1), 241–244.

  6. Кичигина В.Ф., Брагин А.Г. Функциональные характеристики основных внутренних систем связей гиппокампа. Нейрофизиология 1976. 6(3): 259–266.

  7. Abraham W.C., Christie B.R., Logan B., Lawlor P., Dragunow M. Immediate early gene expression associated with the persistence of heterosynaptic long-term depression in the hippocampus. Proc. Natl. Acad Sci. USA. 1994. 91: 10049–10053.

  8. Abraham W.C., Logan B., Greenwood J.M., Dragunow M. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J. Neurosci. 2002. 22: 9626–9634.

  9. Abraham W.C., Mason-Parker S.E., Bear M.F., Webb S., Tate W.P. Heterosynaptic metaplasticity in the hippocampus in vivo: A BCM-like modifiable threshold for LTP. Proc. Natl. Acad. Sci. USA 2001. 98: 10924–10929.

  10. Acsady L., Kamondi A., Sik A., Freund T., Buzsaki G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci. 1998. 18: 3386–3403.

  11. Adams B., Lee M., Fahnestock M., Racine R. Long-term potentiation trains induce mossy fiber sprouting. Brain Res. 1997. 775: 193–197.

  12. Aizenman E., Stout A.K., Hartnett K.A., Dineley K.E., McLaughlin B., Reynolds I.J. Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J. Neurochem. 2000. 75: 1878–1888.

  13. Aggleton J.P., Brown M.W., Albasser M.M. Contrasting brain activity patterns for item recognition memory and associative recognition memory: insights from immediate-early gene functional imaging. Neuropsychologia. 2013. 50: 3141–3155.

  14. Althaus A., Zhang H., Parent J. Axonal plasticity of age-defined dentate granule cells in a rat model of mesial temporal lobe epilepsy. Neurobiol. Dis. 2016. 86: 187–96.

  15. Alvarez-Salvado E., Pallares V., Moreno A., Canals S. Functional MRI of long-term potentiation: imaging network plasticity. Phil. Trans. R. Soc. B. 2014. 369: 20130152.

  16. Amaral D.G. A golgi study of cell types in the hilar region of the hippocampus in the rat. J. Comp. Neurol. 1978. 15: 851–914.

  17. Amaral D.G., Campbell M.J. Transmitter systems in the primate dentate gyrus. Hum. Neurobiol. 1986. 5: 169–180.

  18. Amaral D.G., Dent J.A. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol. 1981. 195: 51–86.

  19. Amaral D.G., Ishizuka N., Claiborne B. Neurons, numbers and the hippocampal network. Prog. Brain Res. 1990. 83: 1–11.

  20. Amaral D.G., Scharfman H.E., Lavenex P. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog. Brain Res. 2007. 163: 3–22.

  21. Axmacher N., Elger C.E., Fell J. Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain J. Neurol. 2008. 131: 1806–1817.

  22. Beck H., Blumcke I., Kral T., Clusmann H., Schramm J., Wiestler, O.D., Elger, C.E. Properties of a delayed rectifier potassium current in dentate granule cells isolated from the hippocampus of patients with chronic temporal lobe epilepsy. Epilepsia. 1996. 37. 892–901.

  23. Bekinschtein P., Kent B.A., Oomen C.A., Clemenson G.D., Gage F.H., Saksida L.M., Bussey T.J. Brain-derived neurotrophic factor interacts with adult-born immature cells in the dentate gyrus during consolidation of overlapping memories. Hippocampus. 2014. 24: 905–911.

  24. Bekirov I.H., Nagy V., Svoronos A., Huntley G.W., Benson D.L. Cadherin-8 and N-cadherin differentially regulate pre- and postsynaptic development of the hippocampal mossy fiber pathway. Hippocampus 2008. 18: 349–63.

  25. Berger T.W., Semple-Rowland S., Bassett J.L. Hippocampal polymorph neurons are the cells of origin for ipsilateral association and commissural afferents to the dentate gyrus. Brain Res. 1981. 224: 329–336.

  26. Binder D.K., Croll S.D., Gall C.M., Scharfman H.E. BDNF and epilepsy: too much of a good thing? Trends Neurosci. 2001. 24: 47–53.

  27. Bittencourt S., Covolan L., Hamani C., Longo B., Faria F., Freymuller E., Ottersen O.P., Mello L.E. Replacement of asymmetric synaptic profiles in the molecular layer of dentate gyrus following cycloheximide in the pilocarpine model in rats. Front Psychiatry. 2015. 6: 157.

  28. Blackstad T.W., Brink K., Hem J., Jeun B. Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. J. Compar. Neurol. 1970. 138: 433–447.

  29. Blackstad T.W., Kjaerheim A. Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J. Comp. Neurol. 1961. 117: 133–159.

  30. Blasco-Ibáñez J.M., Freund T.F. Distribution, ultrastructure, and connectivity of calretinin immunoreactive mossy cells of the mouse dentate gyrus. Hippocampus. 1997. 7: 307–320.

  31. Bliss T.V., Gardner-Medwin A.R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J. Physiol. 1973. 232: 357–374.

  32. Bliss T.V., Collingridge G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993. 361: 31–39.

  33. Bliss T.V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 1973. 232: 331–356.

  34. Blümcke I., Zuschratter W., Schewe J.C., Suter B., Lie A.A., Riederer B.M., Meyer B., Schramm J., Elger C.E., Wiestler O.D. Cellular pathology of hilar neurons in Ammon’s horn sclerosis. The Journal of Comparative Neurology. 1999. 414: 437–453.

  35. Bragin A., Jandó G., Nádasdy Z., van Landeghem M., Buzsáki G. Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat. J. Neurophysiol. 1995. 73: 1691–1705.

  36. Bromer C., Bartol T.M., Bowden J.B., Hubbard D.D., Hanka D.C., Gonzalez P.V., Kuwajima M., Mendenhall J.M., Parker P.H., Abraham W.C., Sejnowski T.J., Harris K.M. Long-term potentiation expands information content of hippocampal dentate gyrus synapses. Proc. Natl. Acad. Sci. U S A. 2018. 115(10): E2410-E2418.

  37. Bronzino J.D., Kehoe P., Mallinson K., Fortin D.A. Increased extracellular release of hippocampal NE is associated with tetanization of the medial perforant pathway in the freely moving adult male rat. Hippocampus. 2001. 11: 423–429.

  38. Brown R.A., Walling S.G., Milway J.S., Harley C.W. Locus ceruleus activation suppresses feedforward interneurons and reduces β-γ electroencephalogram frequencies while it enhances θ frequencies in rat dentate gyrus. J. Neurosci. 2005. 25: 1985–1991.

  39. Buckmaster P. Does mossy fiber sprouting give rise to the epileptic state? In: Scharfman H., Buckmaster P., editors. Issues in Clinical Epileptology: A View From the Bench, Advances in Experimental Medicine and Biology. Vol. 813. Dordrecht: Springer. 2014.

  40. Buckmaster P.S., Strowbridge B.W., Kunkel D.D., Schmiege D.L., Schwartzkroin P.A. Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice. Hippocampus. 1992. 2: 349–362.

  41. Buckmaster P.S., Abrams E., Wen X. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. J. Comp. Neurol. 2017. 525(11): 2592–2610.

  42. Buckmaster P.S., Wenzel H.J., Kunkel D.D., Schwartzkroin P.A. Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J. Comp Neurol. 1996. 366: 271–292.

  43. Buonomano D.V. Distinct Functional Types of Associative Long-Term Potentiation in Neocortical and Hippocampal Pyramidal Neurons. J. Neurosci. 1999. 19(16): 6748–6754.

  44. Burgess N., Maguire E., O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron 2002. 35: 625–641.

  45. Burghardt N.S., Park E.H., Hen R., Fenton A.A. Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus. 2012. 22: 1795–1808.

  46. Chawla M.K., Guzowski J.F., Ramirez-Amaya V., Lipa P., Hoffman K.L., Marriott L.K., Worley P.F., McNaughton B.L., Barnes C.A. Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus. 2005. 15: 579–586.

  47. Chicurel M.E., Harris K.M. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 1992. 325: 169–182.

  48. Clelland C.D., Choi M., Romberg C., Clemenson G.D. Jr., Fragniere A., Tyers P., Jessberger S., Saksida L.M., Barker R.A., Gage F.H., Bussey T.J. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009. 325: 210–213.

  49. Cole T.B., Wenzel H.J., Kafer K.E., Schwartzkroin P.A., Palmiter R.D. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc. Natl. Acad. Sci. U S A. 1999. 96: 1716 –1721.

  50. Colling S., Khana M., Collinge J., Jefferys J. Mossy fibre reorganization in the hippocampus of prion protein null mice. Brain Res. 1997. 755: 28–35.

  51. Colom L.V., Castañeda M.T., Reyna T., Hernandez S., Garrido-Sanabria E. Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse. 2005. 58: 151–164.

  52. Conquet F., Bashir Z.I., Davies C.H., Daniel H., Ferraguti F., Bordi F., Franz-Bacon K., Reggiani A., Matarese V., Conde F., Collingridge G.L. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature. 1994. 372: 237–243.

  53. Cossart R., Dinocourt C., Hirsch J.C., Merchan-Perez A., De F.J., Ben-Ari Y., Esclapez M., Bernard C. Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat. Neurosci. 2001. 4: 52–62.

  54. Coulter D.A., Carlson G.C. Functional regulation of the dentate gyrus by GABA-mediated inhibition. Prog. Brain Res. 2007. 163: 235–243.

  55. Cronin J., Obenaus A., Houser C., Dudek F. Electrophysiology of dentate granule cells after kainate-induced synaptic reorganization of the mossy fibers. Brain Res. 1992. 573: 305–310.

  56. Danielson N.B., Kaifosh P., Zaremba J.D., Lovett-Barron M., Tsai J., Denny C.A., et al. Distinct Contribution of Adult-Born Hippocampal Granule Cells to Context Encoding. Neuron. 2016. 90: 101–112.

  57. Das A., Wallace G.C., Holmes C., McDowell M.L., Smith J.A., Marshall JD, Bonilha L., Edwards J.C., Glazier S.S., Ray S.K., Banik N.L. Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience. 2012. 220: 237–246.

  58. Deller T., Nitsch R., Frotscher M. Phaseolus vulgaris–leucoagglutinin tracing of commissural fibers to the rat dentate gyrus: evidence for a previously unknown commissural projection to the outer molecular layer. J. Comp. Neurol. 1995. 352: 55–68.

  59. Deller T., Katona I., Cozzari C., Frotscher M., Freund T.F. Cholinergic innervation of mossy cells in the rat fascia dentata. Hippocampus. 1999. 9: 314–320.

  60. Deng W., Mayford M., Gage F.H. Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. Elife. 2013. 2: e00312.

  61. Dengler C.G., Coulter D.A. Normal and epilepsy-associated pathologic function of the dentate gyrus. Prog. Brain Res. 2016. 226: 155–178.

  62. Denny C.A., Kheirbek M.A., Alba E.L., Tanaka K.F., Brachman R.A., Laughman K.B., Tomm N.K., Turi G.F., Losonczy A., Hen R. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron. 2014. 83: 189–201.

  63. van Dijk M.T., Fenton A.A. On How the Dentate Gyrus Contributes to Memory Discrimination. Neuron. 2018. 98: 832–845.e5.

  64. Douglas R.M., Goddard G.V. Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res. 1975. 86: 205–215.

  65. Doyère V., Srebro B., Laroche S. Heterosynaptic LTD, depotentiation in the medial perforant path of the dentate gyrus in the freely moving rat. J. Neurophysiol. 1997. 77: 571–578.

  66. El Bahh B., Lespinet V., Lurton D., Coussemacq M., Le Gal La Salle G, Rougier A. Correlations between granule cell dispersion, mossy fiber sprouting, and hippocampal cell loss in temporal lobe epilepsy. Epilepsia. 1999. 40: 1393–1401.

  67. Elmer E., Kokaia Z., Kokaia M., Lindvall O., McIntyre D. Mossy fibre sprouting: evidence against a facilitatory role in epileptogenesis. Neuroreport. 1997. 8: 1193–1196.

  68. Engel Jr.J. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia. 2001. 42: 796–803.

  69. Etter G., Krezel W. Dopamine D2 receptor controls hilar mossy cells excitability. Hippocampus. 2014. 24: 725–732.

  70. Ezrokhi V.L., Zosimovskii V.A., Korshunov V.A., Markevich V.A. Restoration of decaying long-term potentiation in the hippocampal formation by stimulation of neuromodulatory nuclei in freely moving rats. Neuroscience. 1999. 88: 741–753.

  71. Frederickson C.J. Neurobiology of zinc and zinc containing neurons. Int. Rev. Neurobiol. 1989. 31: 145–238.

  72. Frederickson C.J., Bush A.I. Synaptically released zinc: physiological functions and pathological effects. Biometals. 2001. 14: 353–366.

  73. Freund T.F. GABAergic septal and serotonergic median raphe afferents preferentially innervate inhibitory interneurons in the hippocampus and dentate gyrus. Epilepsy Res. Suppl. 1992. 7: 79–91.

  74. Freund T.F., Buzsaki, G. Interneurons of the hippocampus. Hippocampus. 1996. 4: 347–470.

  75. Freund T.F., Hajos N., Acsady L., Gorcs T.J., Katona I. Mossy cells of the rat dentate gyrus are immunoreactive for calcitonin gene-related peptide (CGRP). Eur. J. Neurosci. 1997. 9: 1815–1830.

  76. Fricke R., Prince D. Electrophysiology of dentate gyrus granule cells. J. Neurophysiol. 1984. 51: 195–209.

  77. Frotscher M., Seress L., Schwerdtfeger W.K., Buhl E. The mossy cells of the fascia dentata: a comparative study of their fine structure and synaptic connections in rodents and primates. J. Comp. Neurol. 1991. 312: 145–163.

  78. Hainmueller T., Bartos M. Parallel emergence of stable and dynamic memory engrams in the hippocampus. Nature. 2018. 558: 292–296.

  79. Hagena H., Manahan-Vaughan D. Learning-facilitated longterm depression and long-term potentiation at mossy fiber-CA3 synapses requires activation of b-adrenergic receptors. Frontiers Integr. Neurosci. 2012. 6: 23.

  80. Halasy K., Somogyi P. Subdivisions in the multiple GABAergic innervation of granule cells in the dentate gyrus of the rat hippocampus. Eur. J. Neurosci. 1993. 5: 411–429.

  81. Halabisky B., Parada I., Buckmaster P.S., Prince D.A. Excitatory Input Onto Hilar Somatostatin Interneurons Is Increased in a Chronic Model of Epilepsy. J. Neurophysiol. 2010. 104(4): 2214–2223.

  82. Hamlyn L.H. An electron microscope study of pyramidal neurons in the Ammon’s Horn of the rabbit. J. Anat. 1963. 97(Pt 2): 189–201.

  83. Han Z.S., Buhl E.H., Lorinczi Z., Somogyi P. A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur. J. Neurosci. 1993. 5: 395–410.

  84. Hansen N., Manahan-Vaughan D. Locus coeruleus stimulation facilitates long-term depression in the dentate gyrus that requires activation of b-adrenergic receptors. Cereb Cortex. 2015 Jul; 25(7): 1889–1896.

  85. Hashimotodani Y., Karube F., Yanagawa Y., Fujiyama F., Kano M. Supramammillary Nucleus Afferents to the Dentate Gyrus Co-release Glutamate and GABA and Potentiate Granule Cell Output. Cell Rep. 2018. 25(10): 2704-2715.e4.

  86. Haug F.M. Electron microscopical localization of the zinc in hippocampal mossy fibre synapses by a modified sulfide silver procedure. Histochemie. 1967. 8: 355–368.

  87. Hendricks L., Chen Y., Bensen A., Westbrook G., Schnell E. Short-term depression of sprouted mossy fiber synapses from adult-born granule cells. J. Neurosci. 2017. 37: 5722–5735.

  88. Heng K, Haney M, Buckmaster P. High-dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy. Epilepsia. 2013. 54: 1535–1341.

  89. Henze D.A., Wittner L., Buzsáki G. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat. Neurosci. 2002. 5: 790–795.

  90. Henze D.A., Buzsáki G. Hilar mossy cells: functional identification and activity in vivo. Prog. Brain Res. 2007. 163: 199–216.

  91. Hetherington P.A., Austin K.B., Shapiro M.L. Ipsilateral associational pathway in the dentate gyrus: an excitatory feedback system that supports N-methyl-D-aspartate–dependent long-term potentiation. Hippocampus. 1994. 4: 422–438.

  92. Hofmann M.E., Frazier C.J. Muscarinic receptor activation modulates the excitability of hilar mossy cells through the induction of an afterdepolarization. Brain Res. 2010. 1318: 42–51.

  93. Holtmaat A., Gorter J., De Wit J., Tolner E., Spijker S., Giger R., Lopes da Silva F.H., Verhaagen J. Transient downregulation of Sema3A mRNA in a rat model for temporal lobe epilepsy. A novel molecular event potentially contributing to mossy fiber sprouting. Exp. Neurol. 2003. 182: 142–150.

  94. Honoré E., Khlaifia A., Bosson A., Lacaille J.-C. Hippocampal Somatostatin Interneurons, Long-Term Synaptic Plasticity and Memory. Front. Neural. Circuits. 2021. 15: 687558.

  95. Houser C.R. Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. Prog. Brain Res. 2007. 163: 217–232.

  96. Houser C.R., Peng Z., Wei X., Huang C.S., Mody I. Mossy Cells in the Dorsal and Ventral Dentate Gyrus Differ in Their Patterns of Axonal Projections. J. Neurosci. 2021. 41(5): 991–1004.

  97. Hsia A.Y., Salin P.A., Catillo P.E., Abeliovich A., Tonegawa S., Nicoll R.A. Evidence against a role for metabotropic glutamate receptors in mossy fibre LTP: the use of mutant mice and pharmacological antagonists. Neuropharmacology. 1995. 34: 1567–1572.

  98. Hsu T.T., Lee C.T., Tai M.H., Lien C.C. Differential recruitment of dentate gyrus interneuron types by commissural versus perforant pathways. Cereb. Cortex. 2016. 26: 2715–2727.

  99. Hunsaker M.R., Rosenberg J.S., Kesner R.P. The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty. Hippocampus. 2008. 18: 1064–1073.

  100. Hunsaker M.R., Mooy G.G., Swift J.S., Kesner R.P. Dissociations of the medial and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatial and nonspatial (visual object) information processing. Behav. Neurosci. 2007. 121(4): 742–750.

  101. Igarashi K.M., Lu L., Colgin, L.L., Moser M.B., Moser E.I. Coordination of entorhinal-hippocampal ensemble activity during associative learning. Nature. 2014. 510: 143–147.

  102. Ikegaya Y. Abnormal targeting of developing hippocampal mossy fibers after epileptiform activities via L-type Ca2+channel activation in vitro. J. Neurosci. 1999. 19: 802–812.

  103. Ishizuka N., Weber J., Amaral D.G. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol. 1990. 295: 580–623.

  104. Garthe A., Behr J., Kempermann G. Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS One. 2009. 4: e5464.

  105. Gaykema R.P., Luiten P.G., Nyakas C., Traber J. Cortical projection patterns of the medial septum-diagonal band complex. J. Comp. Neurol. 1990. 293: 103–124.

  106. Gelinas J.N., Nguyen P.V. Beta-adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. J. Neurosci. 2005. 25: 3294–3303.

  107. Gilbert P.E., Kesner R.P., Lee I. Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus. 2001. 11: 626–636.

  108. Gloor P. The Temporal Lobe and Limbic System. New York, NY: Oxford University Press (1997).

  109. Goh J.J., Manahan-Vaughan D. Hippocampal long-term depression in freely behaving mice requires the activation of beta-adrenergic receptors. Hippocampus. 2013. 23: 1299–1308.

  110. Gorter J., van Vliet E., Aronica E., Lopes da Silva F. Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatinimmunoreactive neurons. Eur. J. Neurosci. Biobehav. Rev. 2001. 13: 657–669.

  111. Goodman J.H., Sloviter R.S. Evidence for commissurally projecting parvalbumin-immunoreactive basket cells in the dentate gyrus of the rat. Hippocampus. 1992. 2: 13–21.

  112. GoodSmith D., Chen X., Wang C., Kim S.H., Song H., Burgalossi A., Christian K.M., Knierim J.J. Spatial representations of granule cells and mossy cells of the dentate gyrus. Neuron. 2017. 93(3): 677–690.e5.

  113. Grover L.M., Teyler T.J. Two components of long-term potentiation induced by different patterns of afferent activation. Nature. 1990. 347: 477–479.

  114. Guo N., Soden M.E., Herber C., Kim M.T., Besnard A., Lin P., Ma X., Cepko C.L., Zweifel L.S., Sahay A. Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. Nat. Med. 2018. 24: 438–449.

  115. Jinde S., Zsiros V., Jiang Z., Nakao K., Pickel J., Kohno K., Belforte J.E., Nakazawa K. Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron. 2012. 76: 1189–1200.

  116. Jung H.J., Lee J.M., Yang S.H., Young S.G., Fong L.G. Nuclear lamins in the brain - new insights into function and regulation. Mol. Neurobiol. 2013. 47: 290–301.

  117. Jung M.W., McNaughton B.L. Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus. 1993. 3: 165–182.

  118. Kay A.R., Tóth K. Is zinc a neuromodulator? Sci. Signal. 2008. 1: re3.

  119. Kemp A., Manahan-Vaughan D. Beta-adrenoreceptors comprise a critical element in learning-facilitated long-term plasticity. Cereb. Cortex 2008a. 18: 1326–1334.

  120. Kemp A., Manahan-Vaughan D. The hippocampal CA1 region and dentate gyrus differentiate between environmental and spatial feature encoding through long-term depression. Cereb. Cortex 2008b. 18: 968–977.

  121. Kesner R.P. A behavioral analysis of dentate gyrus function. Prog. Brain Res. 2007. 163: 567–576.

  122. Khuu M.A., Pagan C.M., Nallamothu T., Hevner R.F., Hodge R.D., Ramirez J.-M., Garcia III A.J. Intermittent Hypoxia Disrupts Adult Neurogenesis and Synaptic Plasticity in the Dentate Gyrus. J. Neurosci. 2019. 39(7): 1320–1331.

  123. Kheirbek M.A., Drew L.J., Burghardt N.S., Costantini D.O., Tannenholz L., Ahmari S.E., Zeng H., Fenton A.A., Hen R. Differential Control of Learning and Anxiety along the Dorsoventral Axis of the Dentate Gyrus. Neuron. 2013. 77: 955–968.

  124. Kitamura T, Pignatelli M., Suh J., Kohara K., Yoshiki A., Abe K., Tonegawa S. Island cells control temporal association memory. Science. 2014. 343: 896–901.

  125. Kitamura T., Sun C., Martin J., Kitch L.J., Schnitzer M.J., Tonegawa S. Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory. Neuron. 2015. 87: 1317–1331.

  126. Kitchigina V., Vankov A., Harley C., Sara S.J. Novelty-elicited, noradrenaline-dependent enhancement of excitability in the dentate gyrus. Eur. J. Neurosci. 1997. 9: 41–47.

  127. Koyama R., Yamada M.K., Fujisawa S., Katoh-Semba R., Matsuki N., Ikegaya Y. Brain-derived neurotrophic factor induces hyperexcitable reentrant circuits in the dentate gyrus. J. Neurosci. 2004. 24: 7215–7224.

  128. Kleschevnikov A.M., Routtenberg A. Long-term potentiation recruits a trisynaptic excitatory associative network within the mouse dentate gyrus. Eur. J. Neurosci. 2003. 17: 2690–2702.

  129. Larimer P., Strowbridge B.W. Representing information in cell assemblies: persistent activity mediated by semilunar granule cells. Nat. Neurosci. 2010. 13: 213–222.

  130. Lassalle J.M., Bataille T., Halley H. Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiol. Learn. Mem. 2000. 73: 243–257.

  131. Lee I., Kesner R.P. Encoding versus retrieval of spatial memory: double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus. Hippocampus. 2004. 14: 66–76.

  132. Leranth C., Hajszan T. Extrinsic afferent systems to the dentate gyrus. Prog. Brain Res. 2007. 163: 63–84.

  133. Leranth C., Frotscher M. Cholinergic innervation of hippocampal GAD- and somatostatin-immunoreactive commissural neurons. J. Comp. Neurol. 1987. 261: 33–47.

  134. Levy W.B., Steward O. Synapses as associative memory elements in the hippocampal formation. Brain Res. 1979. 175: 233–245.

  135. Leutgeb J.K., Leutgeb S., Moser M.B., Moser E.I. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science. 2007. 315: 961–966.

  136. Li X., Somogyi P., Ylinen A., Buzsáki G. The hippocampal CA3 network: an in vivo intracellular labeling study. J. Comp. Neurol. 1994. 339: 181–208.

  137. Lindvall O., Stenevi U. Dopamine and noradrenaline neurons projecting to the septal area in the rat. Cell Tissue Res. 1978. 190: 383–407.

  138. Lisman J.E., Talamini L.M., Raffone A. Recall of memory sequences by interaction of the dentate and CA3: a revised model of the phase precession. Neural Netw. 2005. 18: 1191–1201.

  139. Lituma P.J., Kwon H.-B., Alviña K., Luján R.l, Castillo P.E. Presynaptic NMDA receptors facilitate short-term plasticity and BDNF release at hippocampal mossy fiber synapses. eLife. 2021. 10: e66612.

  140. Liu X., Ramirez S., Pang P.T., Puryear C.B., Govindarajan A., Deisseroth K., Tonegawa S. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature. 2012. 484: 381–385.

  141. Liu R.S., Lemieux L., Bell G.S., Sisodiya S.M., Bartlett P.A., Shorvon S.D., Sander J.W., Duncan J.S. Cerebral damage in epilepsy: a population-based longitudinal quantitative MRI study. Epilepsia. 2005. 46: 1482–1494.

  142. Longo B., Covolan L., Chadi G., Mello L. Sprouting of mossy fibers and the vacating of postsynaptic targets in the inner molecular layer of the dentate gyrus. Exp. Neurol. 2003. 181: 57–67.

  143. Lopez-Rojas J., Heine M., Kreutz M.R. Plasticity of intrinsic excitability in mature granule cells of the dentate gyrus. Sci. Rep. 2016. 6: 21615.

  144. Lorente de No R. Studies on the structure of the cerebral cortex. II. Continuation of the of the study of of the ammonic system. J. Psychol. Neurol. (Leipz.). 1934. 46.113.

  145. Lynch M.A. Long-Term Potentiation and Memory. Physiol. Rev. 2004. 84: 87–136.

  146. Lysetskiy M., Foldy C., Soltesz I. Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Hippocampus. 2005. 15: 691–696.

  147. Madroñal N., Delgado-García J.M., Fernández-Guizán A., Chatterjee J., Köhn M., Mattucci C., Jain A., Tsetsenis T., Illarionova A., Grinevich V., Gross C.T., Gruart A. Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells. Nat. Comm. 2016. 7: 10923.

  148. Malenka R.C., Bear M.F. LTP and LTD: an embarrassment of riches. Neuron. 2004. 44: 5–21.

  149. Malheiros J., Paiva F., Longo B., Hamani C., Covolan L. Manganese-enhanced MRI: biological applications in neuroscience. Front. Neurol. 2015. 6: 161.

  150. Marr D. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1971. 262: 23–81.

  151. Mathern G., Cifuentes F., Leite J., Pretorius J., Babb T. Hippocampal EEG excitability and chronic spontaneous seizures are associated with aberrant synaptic reorganization in the rat intrahippocampal kainate model. Electroencephalogr Clin Neurophysiol. 1993. 87: 326–339.

  152. Mitsueda-Ono T., Ikeda A., Sawamoto N., Aso T., Hanakawa T., Kinoshita M., Matsumoto R., Mikuni N., Amano S., Fukuyama H., Takahashi R. Internal structural changes in the hippocampus observed on 3-tesla MRI in patients with mesial temporal lobe epilepsy. Intern. Med. 2013. 52: 877–885.

  153. McHugh T.J., Jones M.W., Quinn J.J., Balthasar N., Coppari R., Elmquist J.K., Lowell B.B., Fanselow M.S., Wilson M.A., Tonegawa S. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science. 2007. 317(5834): 94–99.

  154. McNamara J. Cellular and molecular basis of epilepsy. J. Neurosci. 1994. 14: 3413–3425.

  155. McNaughton B.L., Barnes C.A., Meltzer J., Sutherland R.J. Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge. Exp. Brain Res. 1989. 76: 485–496.

  156. McNaughton B.L., Morris R.G. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in neurosciences. 1987. 10: 408–415.

  157. McNaughton B.L., Nadel L. Hebb-Marr networks and the neurobiological representation of action in space. In: Neuroscience and Connectionist Theory, M.A. Gluck and D.E. Rumelhart, eds. (Erlbaum), 1990. 1–63 pp.

  158. Meier K., Merseburg A., Isbrandt D., Marguet S.L., Morellini F. Dentate gyrus sharp waves, a local field potential correlate of learning in the dentate gyrus of mice. J. Neurosci. 2020. 40: 7105–7118.

  159. Mello L., Covolan L. Neuronal injury and progressive cell damage. In: Schwartzkroin PA, editor. Encyclopedia of Basic Epilepsy Research. Cambridge, MA; London: Academic Press. 2009. 125–128 pp.

  160. Messaoudi E., Bardsen K., Srebro B., Bramham C.R. Acute intrahippocampal infusion of BDNF induces lasting potentiation of synaptic transmission in the rat dentate gyrus. J. Neurophysiol. 1998. 79: 496–499.

  161. Messaoudi E., Ying S.W., Kanhema T., Croll S.D., Bramham C.R. Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J. Neurosci. 2002. 22: 7453–7461.

  162. Mori M., Abegg M.H., Gähwiler B.H., Gerber U. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature. 2004. 431: 453–456.

  163. Morimoto K., Fahnestock M., Racine R.J. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog. Neurobiol. 2004. 73: 1–60.

  164. Moser M.B., Moser E.I. Functional differentiation in the hippocampus. Hippocampus. 1998. 8: 608–619.

  165. Mu J.S., Li W.P., Yao Z.B., Zhou X.F. Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res. 1999. 835: 259–265.

  166. Myers C.E., Scharfman H.E. Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus. 2011. 21: 1190–1215.

  167. Nadler J.V., Perry B.W., Cotman C.W. Selective reinnervation of hippocampal area CA1 and the fascia dentata after destruction of CA3-CA4 afferents with kainic acid. Brain Res. 1980. 182: 1–9.

  168. Nakashiba T., Young J.Z., McHugh T.J., Buhl D.L., Tonegawa S. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science. 2008. 319: 1260–1264.

  169. Nakashiba T., Cushman J.D., Pelkey K.A., Renaudineau S., Buhl D.L., McHugh T.J., Rodriguez Barrera V., Chittajallu R., Iwamoto K.S., McBain C.J., et al. Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell. 2012 149: 188–201.

  170. Namgung U., Matsuyama S., Routtenberg A. Long-term potentiation activates the GAP-43 promoter: selective participation of hippocampal mossy cells. Proc. Natl. Acad. Sci. USA. 1997. 94: 11675–11680.

  171. Nissinen J., Lukasiuk K., Pitkänen A. Is mossy fiber sprouting present at the time of the first spontaneous seizures in rat experimental temporal lobe epilepsy? Hippocampus. 2001. 11: 299–310.

  172. Nosten-Bertrand M., Errington M.L., Murphy K.P., Tokugawa Y., Barboni E., Kozlova E., Michalovich D., Morris R.G., Silver J., Stewart C.L., Bliss T.V., Morris R.J. Normal spatial learning despite regional inhibition of LTP in mice lacking thy-1. Nature. 1996. 379: 826–829.

  173. Parent J.M., Elliott R.C., Pleasure S.J., Barbaro N.M., Lowenstein D.H. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann. Neurol. 2006. 59: 81–91.

  174. Park S., Kramer E.E., Mercaldo V., Rashid A.J., Insel N., Frankland P.W., Josselyn S.A. Neuronal Allocation to a Hippocampal Engram. Neuropsychopharmacol. 2016. 41: 2987–2993.

  175. Park E.H., Burghardt N.S., Dvorak D. Hen R., Fenton A.A. Experience-dependent regulation of dentate gyrus excitability by adult-born granule cells. J. Neurosci. 2015. 35: 11656 –11666.

  176. Penttonen M., Kamondi A., Sik A., Acsady L., Buzsaki G. Feed-forward and feed-back activation of the dentate gyrus in vivo during dentate spikes and sharp wave bursts. Hippocampus. 1997. 7: 437–450.

  177. Phillips R.G., LeDoux J.E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992. 106: 274–285.

  178. Pierce J., Melton J., Punsoni M., McCloskey D., Scharfman H. Mossy fibers are the primary source of afferent input to ectopic granule cells that are born after pilocarpine-induced seizures. Exp. Neurol. 2005. 196: 316–331.

  179. Polli R., Malheiros J., Dos Santos R., Hamani C., Longo B., Tannús A., Mello L.E., Covolan L. Changes in hippocampal volume are correlated with cell loss but not with seizure frequency in two chronic models of temporal lobe epilepsy. Front. Neurol. 2014. 5: 111.

  180. Raisman G., Cowan W.M., Powel T.P.S. The extrinsic afferent, commissural and association fibers of hippocampus. Brain. 1965. 88: 963–981.

  181. Ramirez S., Liu X., Lin P.A., Suh J., Pignatelli M., Redondo R.L., Ryan T.J., Tonegawa S. Creating a false memory in the hippocampus. Science. 2013. 341: 387–391.

  182. Ramon y Cajal S. Estructura del asfa de Ammon y fascia dentata. Ann. SOC Esp. Hist. Nat. Madrid. 1893. 22. 1.

  183. Reyes-Garcia S.Z., Scorza C.A., Araújo N.S, Ortiz-Villatoro N.N., Prada J.A., Ricardo C., Yacubian E.M.T., Faber J., Cavalheiro E.A. Different patterns of epileptiform-like activity are generated in the sclerotic hippocampus from patients with drug-resistant temporal lobe epilepsy. Sci. Rep. 2018. 8: 7116.

  184. Ribak C.E., Seress L. Five types of basket cell in the hippocampal dentate gyrus: a combined Golgi and electron microscopic study. J. Neurocytol. 1983. 12: 577–597.

  185. Ribak CE, Seress L, Amaral DG. The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. J Neurocytol. 1985. 14: 835–857.

  186. Rolls E.T. Pattern separation, completion, and categorisation in the hippocampus and neocortex. Neurobiol. Learn. Mem. 2016. 129: 4–28.

  187. Rolls E.T. The storage and recall of memories in the hippocampo-cortical system. Cell Tissue Research. 2018. 373(3): 577–604.

  188. Rolls E.T., Kesner R.P. A computational theory of hippocampal function, and empirical tests of the theory. Prog. Neurobiol. 2006. 79: 1–48.

  189. Roth B.L. DREADDs for neuroscientists. Neuron. 2016. 89(4): 683–694.

  190. Rovira-Esteban L., Hájos N., Nagy G.A., Crespo C., Nacher J., Varea E., Blasco-Ibáñez J.M. Semilunar Granule Cells Are the Primary Source of the Perisomatic Excitatory Innervation onto Parvalbumin-Expressing Interneurons in the Dentate Gyrus. eNeuro. 2020. 7(4): 1–17.

  191. Ruediger S., Vittori C., Bednarek E., Genoud C., Strata P., Sacchetti B., Caroni P. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature. 2011. 473: 514–518.

  192. Sajikumar S., Frey J.U. Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol. Learn. Mem. 2004. 82: 12–25.

  193. Sahay A., Drew M.R., Hen R. Dentate gyrus neurogenesis and depression. Prog. Brain Res. 2007. 163: 697–722.

  194. Sahay A., Scobie K.N., Hill A.S., O’Carroll C.M., Kheirbek M.A., Burghardt N.S., Fenton A.A., Dranovsky A., Hen R. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011. 472(7344): 466–470.

  195. Sakon J.J., Suzuki W.A. A neural signature of pattern separation in the monkey hippocampus. PNAS. 2019. 116: 9634–9643.

  196. Salib M., Joshi A., Katona L., Howarth M., Micklem B.R., Somogyi P., Viney T.J. GABAergic Medial Septal Neurons with Low-Rhythmic Firing Innervating the Dentate Gyrus and Hippocampal Area CA3. J. Neurosci. 2019. 39(23): 4527–4549.

  197. Sara S.J., Vankov A., Hervé A. Locus coeruleus-evoked responses in behaving rats: A clue to the role of noradrenaline in memory. Brain Res. Bull. 1994. 35: 457–465.

  198. Saxe MD, Battaglia F., Wang J.-W., Malleret G., David D.J., Monckton J. E, A. Garcia D. R., Sofroniew M. V., Kandel E.R., Santarelli L., Hen R., Drew M. R. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc. Natl. Acad. Sci. USA. 2006. 103: 17501–17506.

  199. Scharfman H.E. EPSPs of dentate gyrus granule cells during epileptiform bursts of dentate hilar “mossy” cells and area CA3 pyramidal cells in disinhibited rat hippocampal slices. J. Neurosci. 1994. 14: 6041–6057.

  200. Scharfman H.E. Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J. Neurosci. 1991. 11: 1660–1673.

  201. Scharfman H.E. The CA 3 “backprojection” to the dentate gyrus. Prog. Brain Res. 2007. 163: 627–637.

  202. Scharfman H.E. Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J Neurophysiol. 1995. 74: 179–194.

  203. Scharfman H.E. Characteristics of spontaneous and evoked EPSPs recorded from dentate spiny hilar cells in rat hippocampal slices. J. Neurophysiol. 1993. 70: 742–757.

  204. Scharfman H.E. The enigmatic mossy cell of the dentate gyrus. Nat. Rev. Neurosci. 2016. 17(9): 562–575.

  205. Scharfman H.E., Goodman J., McCloskey D. Ectopic granule cells of the rat dentate gyrus. Dev. Neurosci. 2007. 29: 14–27.

  206. Scharfman H.E., Myers C.E. Hilar mossy cells of the dentate gyrus: a historical perspective. Front. Neural. Circuits. 2012. 6: 106.

  207. Scharfman H.E., Pierce J.P. New insights into the role of hilar ectopic granule cells in the dentate gyrus based on quantitative anatomic analysis and three-dimensional reconstruction. Epilepsia. 2012. 53(Suppl 1): 98–108.

  208. Sensi S.L., Ton-That D., Weiss J.H. Mitochondrial sequestration and Ca2+-dependent release of cytosolic Zn2+ loads in cortical neurons. Neurobiol. Dis. 2002. 10: 100–108.

  209. Senzai Y., Buzsáki G. Physiological properties and behavioral correlates of hippocampal granule cells and mossy cells. Neuron. 2017. 93(3): 691–704. e5.

  210. Shibata K., Nakahara S., Shimizu E., Yamashita T., Matsuki N., Koyama R. Repulsive guidance molecule a regulates hippocampal mossy fiber branching in vitro. Neuroreport. 2013. 24: 609–615.

  211. Shi Y., Grieco S.F., Holmes T.C., Xu X. Development of Local Circuit Connections to Hilar Mossy Cells in the Mouse Dentate Gyrus. eNeuro. 2019. 6(2) e0370-18: 1–14.

  212. Sloviter R.S., Zappone C.A., Harvey B.D., Bumanglag A.V., Bender R.A., Frotscher M. Dormant basket cell” hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. J. Comp. Neurol. 2003. 459: 44–76.

  213. Sloviter R.S. Decreased hippocampal inhibition and selective loss of interneurons in experimental epilepsy. Science. 1987. 235: 73–76.

  214. Sloviter R.S. Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA-mediated mechanisms that regulate excitability in vivo. Hippocampus. 1991a. 1: 31–40.

  215. Sloviter R.S. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus. 1991b. 1: 41–66.

  216. Sloviter R.S. Status epilepticus-induced neuronal injury and network reorganization. Epilepsia. 1999. 40 S34–9.

  217. Sloviter R., Bumanglag A., Schwarcz R., Frotscher M. Abnormal dentate gyrus network circuitry in temporal lobe epilepsy. In: Noebels J., Avoli M., Rogawski M., Olsen R., Delgado-Escueta A., editors. Jasper’s Basic Mechanisms of the Epilepsies. Bethesda. MD: National Center for Biotechnology Information. 2012.

  218. Smith R.L., Mensah P., Cotman C. Tracing the dentate gyrus mossy fiber system with horseradish peroxidase histochemistry. Exp. Neurol. 1973. 40(2): 516–524.

  219. Snyder J.S., Kee N., Wojtowicz J.M. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J. Neurophysiol. 2001. 85: 2423–2431.

  220. Song M.Y., Tian F.F, Wang Y.Z., Huang X., Guo J.L., Ding D.X. Potential roles of the RGMa-FAK-Ras pathway in hippocampal mossy fiber sprouting in the pentylenetetrazole kindling model. Mol. Med. Rep. 2015. 11: 1738–1744.

  221. Steward O., Scoville S.A. Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J. Comp. Neurol. 1976. 169: 347–370.

  222. Strowbridge B.W., Schwartzkroin P.A. Transient potentiation of spontaneous EPSPs in rat mossy cells induced by depolarization of a single neuron. J. Physiol. 1996. 494: 493–510.

  223. Strüber M., Sauer J.F., Jonas P., Bartos M. Distance-dependent inhibition facilitates focality of gamma oscillations in the dentate gyrus. Nat. Commun. 2017. 8(1): 758.

  224. Swan A.A., Clutton J.E., Chary P.K., Cook S.G., Liu G.G., Drew M.R. Characterization of the role of adult neurogenesis in touch-screen discrimination learning. Hippocampus. 2014. 24: 1581–1591.

  225. Swanson L.W., Kohler C., Bjorklund A. Handbook of Chemical Neuroanatomy. Hokfelt T., Bjorklund A., Swanson L.W., editors. Vol. 5. Elsevier; 1987. pp. 125–277.

  226. Sun C., Mtchedlishvili Z., Bertram E.H., Erisir A., Kapur J. Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. J. Comp. Neurol. 2007. 500: 876–893.

  227. Takeuchi T., Duszkiewicz, A.J., Sonneborn A., Spooner P.A., Yamasaki M., Watanabe M., Smith C.C., Fernández G., Deisseroth K., Greene R.W., Morris R.G.M. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature. 2016. 537(7620): 357–362.

  228. Tamagnone L., Comoglio P. Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell. Biol. 2000. 10: 377–383.

  229. Tauck D., Nadler J. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J. Neurosci. 1985. 5: 1016–1022.

  230. Toni N., Laplagne D.A., Zhao C., Lombardi G., Ribak C.E., Gage F.H., Schinder A.F. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat. Neurosci. 2008. 11: 901–907.

  231. Treves A., Rolls E.T. Computational analysis of the role of the hippocampus in memory. Hippocampus. 1994. 4: 374–391.

  232. Tronel S., Belnoue L., Grosjean N., Revest J.M., Piazza P.V., Koehl M., Belnoue L., Abrous D.N. Adult-born neurons are necessary for extended contextual discrimination. Hippocampus. 2012. 22: 292–298.

  233. Tulving E. Episodic memory: from mind to brain. Annu. Rev. Psychol. 2002. 53: 1–25.

  234. Van Paesschen W., Revesz T., Duncan J.S., King M.D., Connelly A. Quantitative neuropathology and quantitative magnetic resonance imaging of the hippocampus in temporal lobe epilepsy. Annals of Neurology. 1997. 42: 756–766.

  235. Vinogradova O.S. Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus. 2001. 11: 578–597.

  236. Vogt K., Mellor J., Tong G., Nicoll R. The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron. 2000. 26: 187–196.

  237. Williams P.A., Larimer P., Gao Y., Strowbridge B.W. Semilunar granule cells: glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. J Neurosci. 2007. 27: 13756–13761.

  238. Witter M.P. The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog. Brain Res. 2007. 163: 43–61.

  239. Wittner L. Maglóczky Z., Borhegyi Z., Halász P., Tóth S., Eross L., Szabó Z., Freund T.F. Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus. Neuroscience. 2021. 108: 587–600.

  240. Wright B.J., Jackson M.B. Long-term potentiation in hilar circuitry modulates gating by the dentate gyrus. J. Neurosci. 2014. 34: 9743–9753.

  241. Wuarin J., Dudek F. Excitatory synaptic input to granule cells increases with time after kainate treatment. J. Neurophysiol. 2001. 85: 1067–1077.

  242. Yassa M.A., Stark C.E. Pattern separation in the hippocampus. Trends Neurosci. 2011. 34: 515–525.

  243. Zimmer J. Changes in the Timm sulfide silver staining patter of the rat hippocampus and fascia dentata following early postnatal deaferentiation. Brain Res. 1973. 64: 313–326.

  244. Zimmer J. Long-term synaptic reorganization in rat fascia dentate deafferented at adolescent and adult stages: observations with the Timm method. Brain Res. 1974. 76: 336–242.

  245. Yamawaki R., Thind K., Buckmaster P.S. Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy. J. Comp. Neurol. 2015. 523: 281–297.

  246. Zimmer J. Ipsilateral afferents to the commissural zone of the fascia dentata, demonstrated in decommissurated rats by silver impregnation. J. Comp. Neurol. 1971. 142: 393–416.

  247. Zucca S., Griguoli M., Malézieux M., Grosjean N., Carta M., Mulle C. Control of Spike Transfer at Hippocampal Mossy Fiber Synapses In Vivo by GABA A and GABA B Receptor-Mediated Inhibition. The Journal of Neuroscience. 2017. 37: 587–598.

Дополнительные материалы отсутствуют.