Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 1, стр. 100-116

Вклад наружной части бледного ядра в осцилляторную активность моторных нейросетей в экспериментальной модели болезни Паркинсона

М. В. Морозова 1, Е. С. Бражник 1, И. Е. Мысин 1, Л. Б. Попова 2, Н. И. Новиков 1*

1 ФГБУЦ, Институт теоретической и экспериментальной биофизики
Пущино, Россия

2 НИИ физико-химической биологии им. А.Н. Белозерского, МГУ им. М.В. Ломоносова
Москва, Россия

* E-mail: nikolay_novikov@hotmail.com

Поступила в редакцию 20.04.2021
После доработки 20.06.2021
Принята к публикации 05.10.2021

Аннотация

Аберрантные синхронные β-осцилляции в моторных нейросетях при дефиците дофамина (ДА) ассоциируют с двигательными нарушениями при БП. Источники и механизмы их развития не ясны. Цель работы состояла в определении роли GPe, центрального звена BG, в генерации и передаче β-осцилляций в моторных нейросетях на модели БП у крыс. Анализ ЛПП в записях из MCx и ядер BG выявил наибольшую мощность и когерентность β-осцилляций (30–36 Гц) в MCx и SNr полушарий с ДА-дефицитом, тогда как их выраженность в dStr и GРe и когерентность с MCx и SNr были значительно ниже. Помимо β-осцилляций, усиление когерентных γ-осцилляций в диапазоне частот 50–56 Гц показано исключительно в dStr и GPe при ДА-дефиците, а их кратковременное появление у контрольных крыс совпадало с возникновением трудностей при ходьбе. Стимуляция ДА-рецепторов леводопой снижала синхронизацию в нейросетях полушарий с ДА-дефицитом и восстанавливала нормальную локомоцию. Различия между двумя типами активности (β- и γ-осцилляции) в записях из GРe при ДА-дефиците свидетельствуют о сложности организации моторных нейросетей, контролирующих в норме различные аспекты локомоции.

Ключевые слова: болезнь Паркинсона, базальные ганглии, моторные нейросети, дофамин, бета- и гамма-осцилляции, брадикинезия, акинезия, модель паркинсонизма, когерентность, леводопа

Список литературы

  1. Abdi A., Mallet N., Mohamed F.Y., Sharott A., Dodson P.D., Nakamura K.C., Suri S., Avery S.V., Larvin J.T., Garas F.N., Garas S.N., Vinciati F., Morin S., Bezard E., Baufreton J., Magill P.J. Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus J. Neurosci. 2015. 17: 6667–6688.

  2. Abecassis Z.A., Berceau B.L., Win P.H., García D., Xenias H.S., Cui Q., Pamukcu A., Cherian S., Hernández V.M., Chon U., Lim B.K., Kim Y., Justice N.J., Awatramani R., Hooks B.M., Gerfen C.R., Boca S.M., Chan C.S. Npas1+-Nkx2.1+ Neurons Are an Integral Part of the Cortico-pallido-cortical Loop. J. Neurosci. 2020. 4: 743–768.

  3. Abrahao K.P., Lovinger D.M. Classification of GABAergic neuron subtypes from the globus pallidus using wild-type and transgenic mice. J. Physiol. 2018. 596: 4219–4235.

  4. Albin R.L., Young A.B., Penney J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989. 12: 366–375.

  5. Avila I., Parr-Brownlie L.C., Brazhnik E., Castañeda E., Bergstrom D.A., Walters J.R. Beta frequency synchronization in basal ganglia output during rest and walk in a hemiparkinsonian rat. Exp. Neurol. 2010. 2: 307–319.

  6. Baaske M.K., Kormann E., Holt A.B., Gulberti A., McNamara C.G., Pötter-Nerger M., Westphal M., Engel A.K., Hamel W., Brown P., Sharott A. Parkinson’s disease uncovers an underlying sensitivity of subthalamic nucleus neurons to beta-frequency cortical input in vivo. Neurobiol. Dis. 2020. 146: 105–119.

  7. Belluscio V., Stuart S., Bergamini E., Vannozzi G., Mancini M. The Association between Prefrontal Cortex Activity and Turning Behavior in People with and without Freezing of Gait. Neuroscience. 2019. 416: 168–176.

  8. Berke J.D. Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs. Eur. J. Neurosci. 2009. 30: 848–859.

  9. Bevan M.D., Magill P.J., Terman D., Bolam J.P., Wilson C.J. Review. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 2002. 10: 525–531.

  10. Brazhnik E., Cruz A.V., Avila I., Wahba M.I., Novikov N., Ilieva N.M., McCoy A.J., Gerber C., Walters J.R. State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats. J. Neurosci 2012. 32: 7869–7880.

  11. Brazhnik E., McCoy A.J., Novikov N., Hatch C.E., Walters J.R. Ventral medial thalamic nucleus promotes synchronization of increased high beta oscillatory activity in the basal ganglia-thalamocortical Network of the hemiparkinsonian rat. J. Neurosci. 2016. 36: 4196–4208.

  12. Brittain J.S., Sharott A., Brown P. The highs and lows of beta activity in cortico-basal ganglia loops. Eur. J. Neurosci. 2014. 39: 1951–1959.

  13. Brown P. Bad oscillations in Parkinson’s disease J. Neural Transm. 2006. 70: 27–30.

  14. Cacciola A., Milardi D., Bertino S., Basile G.A., Calamuneri A., Chillemi G., Rizzo G., Anastasi G., Quartarone A. Structural connectivity-based topography of the human globus pallidus: Implications for therapeutic targeting in movement disorders. Mov. Disord. 2019. 7: 987–996.

  15. Cardin J.A., Carlén M., Meletis K., Knoblich U., Zhang F., Deisseroth K., Tsai L.H., Moore C.I. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009. 459: 663–667.

  16. Chen M.C., Ferrari L., Sacchet M.D., Foland-Ross L.C., Qiu M-H., Gotlib I.H., Fuller P.M., Arrigoni E., Lu J. Identification of a direct GABAergic pallidocortical pathway in rodents. Eur. J. Neurosci. Mov Disord. 2015. 30: 293–295.

  17. Choi K., Holly E., Davatolhagh M.F., Beier K.T., Fuccillo M.V. Integrated anatomical and physiological mapping of striatal afferent projections. Eur J Neurosci. 2019; 49 (5): 623–636.

  18. Chuhma N. Functional Connectome Analysis of the Striatum with Optogenetics. Adv Exp Med Biol. 2021. 1293: 417–428.

  19. Corbit V.L., Whalen T.C., Zitelli K.T., Crilly S.Y., Rubin J.E., Gittis A.H. Pallidostriatal projections promote β oscillations in a dopamine-depleted biophysical network model. J. Neurosci. 2016. 2: 5556–5571.

  20. de la Crompe B., Aristieta A., Leblois A., Elsherbiny S., Boraud T., Mallet N.P. The globus pallidus orchestrates abnormal network dynamics in a model of Parkinsonism. Nat. Commun. 2020. 11: 1570–1584.

  21. Dejean C.A., Le Moine C., Bioulac B., Gross C.E., Boraud T. Evolution of the dynamic properties of the cortex-basal ganglia network after dopaminergic depletion in rats. Neurobiol. Dis. 2012. 2: 402–413.

  22. Delaville C., McCoy A.J., Gerber C.M., Cruz A.V., Walters J.R. Subthalamic nucleus activity in the awake hemiparkinsonian rat: relationships with motor and cognitive networks. J. Neurosci. 2015. 17: 6918–6930.

  23. Dodson P.D., Larvin J.T., Duffell J.M., Garas F.N., Doig N.M., Kessaris N., Duguid I.C., Bogacz R., Butt S.J., Magill P.J. Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus. Neuron. 2015. 86: 501–513.

  24. Eid L., Parent M. Morphological evidence for dopamine interactions with pallidal neurons in primates. Front. Neuroanat. 2015. 9: 1–14.

  25. Gauthier J., Parent M., Levesque M., Parent A. The axonal arborization of single nigrostriatal neurons in rats. Brain Res. 1999. 834: 228–232.

  26. Gittis A.H., Berke J.D., Bevan M.D., Chan C.S., Mallet N., Morrow M.M., Schmidt R. New roles for the external globus pallidus in basal ganglia circuits and behavior. J. Neurosci. 2014. 34: 15178–15183.

  27. Glajch K.E., Kelver D.A., Hegeman D.J., Cui Q., Xenias H.S., Augustine E.C., Hernández V.M., Verma N., Huang T.Y., Luo M., Justice N.J., Chan C.S. Npas1+ Pallidal Neurons Target Striatal Projection Neurons. J. Neurosci. 2016. 36: 5472–5488.

  28. Grewal S.S., Holanda V.M., Middlebrook E.Y. Corticopallidal Connectome of the Globus Pallidus Externus in Humans: An Exploratory Study of Structural Connectivity Using Probabilistic Diffusion Tractography. Am. J. Neuroradiol. 2018. 11: 2120–2125.

  29. Hegeman D.J., Hong E.S., Hernández V.M., Chan C. The External Globus Pallidus: Progress and Perspectives. Eur. J. Neurosci. 2016. 10: 1239–1265.

  30. Hernández V.M., Hegeman D.J., Cui Q., Kelver D.A., Fiske M.P., Glajch K.E., Pitt J.E., Huang T.Y., Justice N.J., Chan C.S. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus. J. Neurosci. 2015. 35: 11830–11847.

  31. Karube F., Takahashi S., Kobayashi K., Fujiyama F. Motor cortex can directly drive the globus pallidus neurons in a projection neuron type-dependent manner in the rat. Elife. 2019; 8: e49511.

  32. Ketzef M., Silberberg G. Differential Synaptic Input to External Globus Pallidus Neuronal Subpopulations In Vivo. Neuron. 2021 Feb 3; 109 (3): 516–529.

  33. Kita H. (2007). Globus pallidus external segment. Prog. Brain Res. 2007. 160: 111–133.

  34. Koelman L.A., Lowery M.M. Beta-Band Resonance and Intrinsic Oscillations in a Biophysically Detailed Model of the Subthalamic Nucleus-Globus Pallidus Network. Front. Comput. Neurosci. 2019. 13: 1–24.

  35. Lemaire N., Hernández L.F., Hu D., Kubota Y., Howe M.W., Graybiel A.M. Effects of dopamine depletion on LFP oscillations in striatum are task- and learning-dependent and selectively reversed by L-DOPA. Proc. Natl. Acad. Sci. U S A. 2012. 109: 18126–18131.

  36. Litvak V., Jha A., Eusebio A., Oostenveld R., Foltynie T., Limousin P., Zrinzo L., Hariz M.I., Friston K., Brown P. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain. 2011.134: 359–374.

  37. Maidan I., Bernad-Elazari H., Gazit E., Giladi N., Hausdorff J.M., Mirelman A. Changes in oxygenated hemoglobin link freezing of gait to frontal activation in patients with Parkinson disease: an fNIRS study of transient motor-cognitive failures. J. Neurol. 2015. 4: 899–908.

  38. Mallet N., Delgado L., Chazalon M., Miguelez C., Baufreton J. Cellular and Synaptic Dysfunctions in Parkinson’s Disease: Stepping Out of the Striatum Cells. 2019. 9: 1005.

  39. Mallet N., Micklem B.R., Henny P., Brown M.T., Williams C., Bolam J.P., Nakamura K.C., Magill P.J. Dichotomous organization of the external globus pallidus. Neuron 2012. 74: 1075–1086.

  40. Mallet N., Pogosyan A., Marton L.F., Bolam J.P., Brown P., Magill P.J. Parkinsonian Beta Oscillations in the External Globus Pallidus and Their Relationship with Subthalamic Nucleus Activity. J. Neurosci. 2008. 52: 14245–14258.

  41. Mallet N., Schmidt R., Leventhal D., Chen F., Amer N., Boraud T., Berke J.D. Arkypallidal Cells Send a Stop Signal to Striatum. Neuron. 2016. 89: 308–316.

  42. Mastro K.J., Bouchard R.S., Holt H.A., Gittis A.H. Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J. Neurosci. 2014. 34: 2087–2099.

  43. Mastro K.J., Zitelli K.T., Willard A.M., Leblanc K.H., Kravitz A.V., Gittis A.H. Cell-specific pallidal intervention induces long-lasting motor recovery in dopamine-depleted mice. Nat. Neurosci. 2017. 20: 815–823.

  44. McCarthy M.M., Moore-Kochlacs C., Gu X., Boyden E.S., Han X., Kopell N. Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proc. Natl. Acad. Sci. U S A. 2011. 108: 11620–11625.

  45. McGregor M.M., McKinsey G.L., Girasole A.E., Bair-Marshall C.J., Rubenstein J.L.R., Nelson A.B. Functionally Distinct Connectivity of Developmentally Targeted Striosome Neurons. Cell Rep. 2019. 29(6): 1419–1428.

  46. Nambu A., Tokuno H., Takada M. Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci Res. 2002. 2:111–117.

  47. Neumann W.J., Degen K., Schneider G.H., Brücke C., Huebl J., Brown P., Kühn A.A. Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson’s disease. Mov. Disord. 2016. 31:1748–1751.

  48. Nevado-Holgado A.J., Mallet N., Magill P.J., Bogacz R. Effective connectivity of the subthalamic nucleus–globus pallidus network during Parkinsonian oscillations. J. Physiol. 2014. 592 (Pt 7): 1429–1455.

  49. Pamukcu A., Cui Q., Xenias H.S., Berceau B.L., Augustine E.C., Fan I., Chalasani S., Hantman A.W., Lerner T.N., Boca S.M., Chan C.S. Parvalbumin (+) and Npas1(+) Pallidal Neurons Have Distinct Circuit Topology and Function. J. Neurosci. 2020. 40: 7855–7876.

  50. Parent A., Hazrati L.N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Brain Res. Rev. 1995. 1: 91–127.

  51. Plenz D., Kital S.T. A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature. 1999. 6745: 677–682.

  52. Pogosyan A., Yoshida F., Chen C.C., Martinez-Torres I., Foltynie T., Limousin P., Zrinzo L., Hariz M.I., Brown P. Parkinsonian impairment correlates with spatially extensive subthalamic oscillatory synchronization. Neuroscience. 2010. 171 (1): 245–257.

  53. Polyakova Z., Chiken S., Hatanaka N., Nambu A. Cortical Control of Subthalamic Neuronal Activity through the Hyperdirect and Indirect Pathways in Monkeys. J. Neurosci. 2020. 39: 7451–7463.

  54. Rodriguez-Sabate C., Morales I., Monton F., Rodriguez M. The influence of Parkinson’s disease on the functional connectivity of the motor loop of human basal ganglia. Parkinsonism Relat Disord. 2019. 63: 100–105.

  55. Saunders A., Oldenburg I.A., Berezovskii V.K., Johnson C.A., Kingery N.D., Elliott H.L., Tiao X., Gerfen C.R., Sabatini B.L. A direct GABAergic output from the basal ganglia to frontal cortex. Nature. 2015. 521: 85–89.

  56. Sharott A., Gulberti A., Hamel W., Köppen J.A., Münchau A., Buhmann C., Pötter-Nerger M., Westphal M., Gerloff C., Moll C.K.E., Engel A.K. Spatio-temporal dynamics of cortical drive to human subthalamic nucleus neurons in Parkinson’s disease. Neurobiol. Dis. 2018. 112: 49–62.

  57. Sharott A., Magill P.J., Harnack D., Kupsch A., Meissner W., Brown P. Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. Eur. J. Neurosci. 2005. 5: 1413–1422.

  58. Sharott A., Gulberti A., Zittel S., Tudor J.A.A., Fickel U., Munchau A., Köppen J.A., Gerloff C., Westphal M., Buhmann C., Hamel W., Engel A.K., Moll C.K.E. Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson’s disease. J. Neurosci. 2014. 34: 6273–6285.

  59. Singh A. Oscillatory activity in the cortico-basal ganglia-thalamic neural circuits in Parkinson’s disease. Eur. J. Neurosci. 2018. 8: 2869–2878.

  60. Smith J.B., Klug J.R., Ross D.L., Howard C.D., Hollon N.G., Ko V.I., Hoffman H., Callaway E.M., Gerfen C.R., Jin X. Genetic-based dissection unveils the inputs and outputs of striatal patch and matrix compartments. Neuron. 2016; 91 (5): 1069–1084.

  61. Smith Y., Villalba R. Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov. Disord. 2008. 3: S534–547.

  62. Tachibana Y., Iwamuro H., Kita H., Takada M., Nambu A. Subthalamo-pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia. Eur. J. Neurosci. 2011. 34: 1470–1484.

  63. Weinberger M., Hutchison W.D., Dostrovsky J.O. Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia? Exp. Neurol. 2009. 1: 58–61.

  64. West T.O., Berthouze L., Halliday D.M., Litvak V., Sharott A., Magill P.J., Farmer S.F. Propagation of beta/gamma rhythms in the cortico-basal ganglia circuits of the parkinsonian rat. J. Neurophysiol. 2018. 5: 1608–1628.

  65. Yasukawa T., Kita T., Xue Y., Kita H. Rat intralaminar thalamic nuclei projections to the globus pallidus: a biotinylated dextran amine anterograde tracing study. J. Comp. Neurol. 2004. 2: 153–167.

Дополнительные материалы отсутствуют.