Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 1, стр. 87-99

Предпосылки и особенности использования воображения движения и интерфейса мозг-компьютер в реабилитации при детском церебральном параличе

И. Р. Федотова 1, П. Д. Бобров 12*

1 Институт высшей нервной деятельности и нейрофизиологии Российской академии наук
Москва, Россия

2 Российский Национальный Исследовательский Медицинский Университет им. Н.И. Пирогова
Москва, Россия

* E-mail: bobrov.pavel@ihna.ru

Поступила в редакцию 07.04.2021
После доработки 27.05.2021
Принята к публикации 05.10.2021

Аннотация

В работе приводится анализ литературы, посвященной различным аспектам применения воображения движений и технологии “интерфейс мозг-компьютер” в реабилитации детей с диагнозом ДЦП. Дается описание компенсаторных механизмов восстановления двигательной функции при повреждении областей моторной сети мозга в раннем периоде жизни. Описываются способы объективного контроля способности детей к воображению движений, обоснование возможности тренировки воображения движений у детей с ДЦП, в частности, с применением ИМК, а также возможные факторы, затрудняющие реализацию ИМК у детей с ДЦП. Приводятся результаты клинических исследований эффективности ИМК в реабилитации при ДЦП. Несмотря на то что число работ в рассмотренной области достаточно ограниченно, результаты рассмотренных исследований позволяют сделать вывод о том, что тренировка воображения движений с помощью ИМК потенциально применима в реабилитации детей с ДЦП и может быть достаточно эффективной.

Ключевые слова: интерфейс мозг-компьютер, нейропластичность, воображение движений, нейрореабилитация, детский церебральный паралич

Список литературы

  1. Айкарди Ж., Мартин Б., Кристофер Г. Заболевания нервной системы у детей. М: БИНОМ, 2013, 496 с.

  2. Бобров П.Д., Бирюкова Е.В., Поляев Б.А., Лайшева О.А., Усачева Е.Л., Соколова А.В., Михайлова Д.И., Дементьева К.Н., Федотова И.Р. Реабилитация больных с детским церебральным параличом с помощью экзоскелета кисти, управлвемого интерфейсом “мозг-компьютер”. Вестник Российского государственного медицинского университета. 2020. (2020 (4)), 34–41.

  3. Кондур А.А., Котов С.В., Турбина Л.Г., Бирюкова Е.В., Куликов М.А., Фролов А.А., Зайцева Е.В. Особенности применения неинвазивного интерфейса мозг-компьютер + экзоскелет кисти в клинической практике у пациентов после инсульта. XIV международный междисциплинарный конгресс “Нейронаука для медицины и психологии”, 2018. 264.

  4. Ларина Н., Корсунская Л., Власенко С. Комплекс “Экзокисть-2” в реабилитации верхней конечности при детском церебральном параличе с использованием неинвазивного интерфейса “мозг-компьютер”. Нервно-мышечные болезни. 2019. 9 (4): 44–50.

  5. Мокиенко О., Черникова Л., Фролов А., Бобров П. Воображение движения и его практическое применение. Журнал высшей нервной деятельности им. И.П. Павлова. 2013. 63 (2): 195–204.

  6. Ang K.K., Chua K.S., Phua K.S., Wang C., Chin Z.Y., Kuah C.W., Low W., Guan C. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke. Clin EEG Neurosci. 2015. 46(4): 310–320.

  7. Ang K.K., Guan C., Chua K.S.G., Ang B.T., Kuah C.W.K., Wang C., Phua K.S., Chin Z.Y., Zhang H. A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interface. Clinical EEG and Neuroscience. 2011. 42 (4): 253–258.

  8. Anguelova G.V., Rombouts S., van Dijk J.G., Buur P.F., Malessy M.J.A. Increased brain activation during motor imagery suggests central abnormality in Neonatal Brachial Plexus Palsy. Neurosci Res. 2017. 123: 19–26.

  9. Bai Z., Fong K.N.K., Zhang J.J., Chan J., Ting K.H. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis. J Neuroeng Rehabil. 2020. 17 (1): 57.

  10. Basu A., Graziadio S., Smith M., Clowry G.J., Cioni G., Eyre J.A. Developmental plasticity connects visual cortex to motoneurons after stroke. Ann Neurol. 2010. 67 (1): 132–136.

  11. Butti N., Montirosso R., Giusti L., Piccinini L., Borgatti R., Urgesi C. Early Brain Damage Affects Body Schema and Person Perception Abilities in Children and Adolescents with Spastic Diplegia. Neural Plast. 2019. 1678984.

  12. Cabral-Sequeira A.S., Coelho D.B., Teixeira L.A. Motor imagery training promotes motor learning in adolescents with cerebral palsy: comparison between left and right hemiparesis. Experimental Brain Research. 2016. 234 (6): 1515–1524.

  13. Caeyenberghs K., Tsoupas J., Wilson P.H., Smits-Engelsman B.C. Motor imagery development in primary school children. Dev Neuropsychol. 2009. 34 (1): 103–121.

  14. Caeyenberghs K., Wilson P.H., Van Roon D., Swinnen S.P., Smits-Engelsman B.C. Increasing convergence between imagined and executed movement across development: evidence for the emergence of movement representations. Developmental Science. 2009. 12 (3): 474–483.

  15. Caria A., Weber C., Brotz D., Ramos A., Ticini L.F., Gharabaghi A., Braun C., Birbaumer N. Chronic stroke recovery after combined BCI training and physiotherapy: a case report. Psychophysiology. 2011. 48 (4): 578–582.

  16. Carr L.J., Harrison L.M., Evans A.L., Stephens J.A. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain. 1993. 116 (Pt 5) (5): 1223–1247.

  17. Choudhury S., Charman T., Bird V., Blakemore S.J. Development of action representation during adolescence. Neuropsychologia. 2007. 45 (2): 255–262.

  18. Craje C., Aarts P., Nijhuis-van der Sanden M., Steenbergen B. Action planning in typically and atypically developing children (unilateral cerebral palsy). Res Dev Disabil. 2010. 31 (5): 1039–1046.

  19. Craje C., van Elk M., Beeren M., van Schie H.T., Bekkering H., Steenbergen B. Compromised motor planning and Motor Imagery in right Hemiparetic Cerebral Palsy. Res Dev Disabil. 2010. 31 (6): 1313–1322.

  20. Crognier L., Skoura X., Vinter A., Papaxanthis C. Mental representation of arm motion dynamics in children and adolescents. PloS one. 2013. 8 (8), e73042.

  21. Daly I., Billinger M., Laparra-Hernandez J., Aloise F., Garcia M.L., Faller J., Scherer R., Muller-Putz G. On the control of brain-computer interfaces by users with cerebral palsy. Clin Neurophysiol. 2013. 124 (9): 1787–1797.

  22. Daly I., Faller J., Scherer R., Sweeney-Reed C.M., Nasuto S.J., Billinger M., Muller-Putz G.R. Exploration of the neural correlates of cerebral palsy for sensorimotor BCI control. Front Neuroeng. 2014. 7: 20.

  23. Daprati E., Nico D., Duval S., Lacquaniti F. Different motor imagery modes following brain damage. Cortex. 2010. 46 (8): 1016–1030.

  24. de Almeida Carvalho Duarte N., Collange Grecco L.A., Zanon N., Galli M., Fregni F., Santos Oliveira C. Motor Cortex Plasticity in Children With Spastic Cerebral Palsy: A Systematic Review. J Mot Behav. 2017. 49 (4): 355–364.

  25. Decety J., Jeannerod M. Mentally simulated movements in virtual reality: does Fitt’s law hold in motor imagery? Behavioural brain research. 1995. 72 (1–2): 127–134.

  26. Démas J., Bourguignon M., Périvier M., De Tiège X., Dinomais M., Van Bogaert P. Mu rhythm: State of the art with special focus on cerebral palsy. Annals of physical and rehabilitation medicine. 2019.

  27. Di Rienzo F., Collet C., Hoyek N., Guillot A. Impact of neurologic deficits on motor imagery: a systematic review of clinical evaluations. Neuropsychol Rev. 2014. 24 (2): 116–147.

  28. Errante A., Bozzetti F., Sghedoni S., Bressi B., Costi S., Crisi G., Ferrari A., Fogassi L. Explicit Motor Imagery for Grasping Actions in Children With Spastic Unilateral Cerebral Palsy. Front Neurol. 2019. 10: 837.

  29. Fennell E.B., Dikel T.N. Cognitive and neuropsychological functioning in children with cerebral palsy. J Child Neurol. 2001. 16 (1): 58–63.

  30. Ferrari A. From movement to action: a new framework for cerebral palsy. Eur J Phys Rehabil Med. 2019. 55 (6): 852–861.

  31. Frassinetti F., Fiori S., D’Angelo V., Magnani B., Guzzetta A., Brizzolara D., Cioni G. Body knowledge in brain-damaged children: a double-dissociation in self and other’s body processing. Neuropsychologia. 2012. 50 (1): 181–188.

  32. Frolov A.A., Aziatskaya G.A., Bobrov P.D., Luykmanov R.K., Fedotova I.R., Húsek D., Snašel V. Electrophysiological brain activity during the control of a motor imagery-based brain–computer interface. Human Physiology. 2017. 43 (5): 501–511.

  33. Frolov A.A., Mokienko O., Lyukmanov R., Biryukova E., Kotov S., Turbina L., Nadareyshvily G., Bushkova Y. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial. Front Neurosci. 2017. 11: 400.

  34. Funk M., Brugger P., Wilkening F. Motor processes in children’s imagery: the case of mental rotation of hands. Dev Sci. 2005. 8 (5): 402–408.

  35. Grezes J., Decety J. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp. 2001. 12 (1): 1–19.

  36. Hétu S., Grégoire M., Saimpont A., Coll M.-P., Eugène F., Michon P.-E., Jackson P.L. The neural network of motor imagery: an ALE meta-analysis. Neuroscience & Biobehavioral Reviews. 2013. 37 (5): 930–949.

  37. Iosa M., Zoccolillo L., Montesi M., Morelli D., Paolucci S., Fusco A. The brain’s sense of walking: a study on the intertwine between locomotor imagery and internal locomotor models in healthy adults, typically developing children and children with cerebral palsy. Frontiers in human neuroscience. 2014. 8: 859.

  38. Jang S.H., You S.H., Hallett M., Cho Y.W., Park C.M., Cho S.H., Lee H.Y., Kim T.H. Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch Phys Med Rehabil. 2005. 86 (11): 2218–2223.

  39. Jenks K.M., de Moor J., van Lieshout E.C. Arithmetic difficulties in children with cerebral palsy are related to executive function and working memory. J Child Psychol Psychiatry. 2009. 50 (7): 824–833.

  40. Jongsma M.L., Baas C.M., Sangen A.F., Aarts P.B., Van der Lubbe R.H., Meulenbroek R.G., Steenbergen B. Children with unilateral cerebral palsy show diminished implicit motor imagery with the affected hand. Developmental Medicine & Child Neurology. 2016. 58 (3): 277–284.

  41. Kim T.W., Lee B.H. Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial. J Phys Ther Sci. 2016. 28 (9): 2491–2494.

  42. Kimberley T.J., Khandekar G., Skraba L.L., Spencer J.A., Van Gorp E.A., Walker S.R. Neural substrates for motor imagery in severe hemiparesis. Neurorehabil Neural Repair. 2006. 20 (2): 268–277.

  43. Kübler A., Birbaumer N. Brain–computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clinical Neurophysiology. 2008. 119 (11): 2658–2666.

  44. Kułak W., Sobaniec W. Spectral analysis and coherence EEG in children with cerebral palsy diplegia spastica. Przegl Lek. 2003. 60: 1–5.

  45. Kułak W., Sobaniec W. Cerebral palsy in children in north-eastern Poland. Journal of Pediatric Neurology. 2004. 2 (2): 79–84.

  46. Larina N., Nacharova M., Korsunskaya L., Vlasenko S., Pavlenko V. Changes in EEG patterns in the α-frequency band following BCI-based therapy in children with cerebral palsy. Bulletin of RSMU. 2020. 4: 15–20.

  47. Li Y., Nam C.S., Shadden B.B., Johnson S.L. A P300-based brain–computer interface: Effects of interface type and screen size. Intl. Journal of Human–Computer Interaction. 2010. 27 (1): 52–68.

  48. Lust J.M., Wilson P.H., Steenbergen B. Motor imagery difficulties in children with Cerebral Palsy: A specific or general deficit? Res Dev Disabil. 2016. 57, 102–111.

  49. Maegaki Y., Maeoka Y., Ishii S., Eda I., Ohtagaki A., Kitahara T., Suzuki N., Yoshino K., Ieshima A., Koeda T., Takeshita K. Central motor reorganization in cerebral palsy patients with bilateral cerebral lesions. Pediatr Res. 1999. 45 (4 Pt 1): 559–567.

  50. Molina M., Kudlinski C., Guilbert J., Spruijt S., Steenbergen B., Jouen F. Motor imagery for walking: a comparison between cerebral palsy adolescents with hemiplegia and diplegia. Research in Developmental Disabilities. 2015. 37: 95–101.

  51. Molina M., Tijus C., Jouen F. The emergence of motor imagery in children. J Exp Child Psychol. 2008. 99 (3): 196–209.

  52. Mutch L., Alberman E., Hagberg B., Kodama K., Perat M.V. Cerebral palsy epidemiology: where are we now and where are we going? Developmental Medicine & Child Neurology. 1992. 34 (6): 547–551.

  53. Nam C.S., Woo J., Bahn S. Severe motor disability affects functional cortical integration in the context of brain–computer interface (BCI) use. Ergonomics. 2012. 55 (5): 581–591.

  54. Odding E., Roebroeck M.E., Stam H.J. The epidemiology of cerebral palsy: incidence, impairments and risk factors. Disabil Rehabil. 2006. 28 (4): 183–191.

  55. Ono T., Shindo K., Kawashima K., Ota N., Ito M., Ota T., Mukaino M., Fujiwara T., Kimura A., Liu M. Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Frontiers in neuroengineering. 2014. 7: 19.

  56. Ono T., Tomita Y., Inose M., Ota T., Kimura A., Liu M., Ushiba J. Multimodal sensory feedback associated with motor attempts alters BOLD responses to paralyzed hand movement in chronic stroke patients. Brain Topogr. 2015. 28 (2): 340–351.

  57. Parsons L.M. Temporal and kinematic properties of motor behavior reflected in mentally simulated action. J Exp Psychol Hum Percept Perform. 1994. 20 (4): 709–730.

  58. Ramos-Murguialday A., Broetz D., Rea M., Laer L., Yilmaz O., Brasil F.L., Liberati G., Curado M.R., Garcia-Cossio E., Vyziotis A., Cho W., Agostini M., Soares E., Soekadar S., Caria A., Cohen L.G., Birbaumer N. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013. 74 (1): 100–108.

  59. Rehme A.K., Eickhoff S.B., Rottschy C., Fink G.R., Grefkes C. Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. Neuroimage. 2012. 59 (3): 2771–2782.

  60. Reid L.B., Rose S.E., Boyd R.N. Rehabilitation and neuroplasticity in children with unilateral cerebral palsy. Nat Rev Neurol. 2015. 11 (7): 390–400.

  61. Shenton J.T., Schwoebel J., Coslett H.B. Mental motor imagery and the body schema: evidence for proprioceptive dominance. Neurosci Lett. 2004. 370 (1): 19–24.

  62. Shin Y.K., Lee D.R., Hwang H.J., You S.J., Im C.H. A novel EEG-based brain mapping to determine cortical activation patterns in normal children and children with cerebral palsy during motor imagery tasks. NeuroRehabilitation. 2012. 31 (4): 349–355.

  63. Souto D.O., Cruz T.K.F, Fontes P.L.B, Haase V. G. Motor imagery in children with unilateral cerebral palsy: a case–control study. Developmental Medicine & Child Neurology. 2020. 62 (12): 1396–1405.

  64. Spruijt S., Jouen F., Molina M., Kudlinski C., Guilbert J., Steenbergen B. Assessment of motor imagery in cerebral palsy via mental chronometry: the case of walking. Res Dev Disabil. 2013. 34 (11): 4154–4160.

  65. Spruijt S., van der Kamp J., Steenbergen B. Current insights in the development of children’s motor imagery ability. Frontiers in psychology. 2015. 6: 787.

  66. Staudt M., Grodd W., Gerloff C., Erb M., Stitz J., Krageloh-Mann I. Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain. 2002. 125 (Pt 10): 2222–2237.

  67. Steenbergen B., Gordon A.M. Activity limitation in hemiplegic cerebral palsy: evidence for disorders in motor planning. Dev Med Child Neurol. 2006. 48 (9): 780–783.

  68. Steenbergen B., Jongbloed-Pereboom M., Spruijt S., Gordon A.M. Impaired motor planning and motor imagery in children with unilateral spastic cerebral palsy: challenges for the future of pediatric rehabilitation. Dev Med Child Neurol. 2013. 55 Suppl 4: 43–46.

  69. Straub K., Obrzut J.E. Effects of cerebral palsy on neuropsychological function. Journal of Developmental and Physical Disabilities. 2009. 21 (2): 153.

  70. Taherian S., Selitskiy D., Pau J., Davies T.C., Owens R.G. Training to use a commercial brain-computer interface as access technology: a case study. Disability and Rehabilitation: Assistive Technology. 2016. 11 (4): 345–350.

  71. Thickbroom G.W., Byrnes M.L., Archer S.A., Nagarajan L., Mastaglia F.L. Differences in sensory and motor cortical organization following brain injury early in life. Ann Neurol. 2001. 49 (3): 320–327.

  72. van Elk M., Craje C., Beeren M.E., Steenbergen B., van Schie H.T., Bekkering H. Neural evidence for compromised motor imagery in right hemiparetic cerebral palsy. Front Neurol. 2010. 1: 150.

  73. Vuckovic A., Pineda J.A., LaMarca K., Gupta D., Guger C. Interaction of BCI with the underlying neurological conditions in patients: pros and cons. Front Neuroeng. 2014. 7: 42.

  74. Wilson P.H., Adams I.L., Caeyenberghs K., Thomas P., Smits-Engelsman B., Steenbergen B. Motor imagery training enhances motor skill in children with DCD: A replication study. Res Dev Disabil. 2016. 57: 54–62.

  75. Wilson P.H., Thomas P.R., Maruff P. Motor imagery training ameliorates motor clumsiness in children. J Child Neurol. 2002. 17 (7): 491–498.

  76. Wittenberg G.F. Motor mapping in cerebral palsy. Dev Med Child Neurol. 2009. 51 Suppl 4: 134–139.

Дополнительные материалы отсутствуют.