Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 6, стр. 785-802

Проводящие каналы зрительной системы. Третий канал

Н. С. Меркульева 1*

1 Институт физиологии им. И.П. Павлова РАН
Санкт-Петербург, Россия

* E-mail: mer-natalia@yandex.ru

Поступила в редакцию 20.02.2021
После доработки 26.04.2021
Принята к публикации 26.04.2021

Аннотация

Зрительные проводящие пути высших млекопитающих состоят из трех основных каналов: X, Y и W – у хищных – и магно-, парво- и кониоцеллюлярный – у приматов; нейроны в составе каналов различаются по площади сомы, величине дендритного ветвления, толщине аксона, что определяет характерные свойства их рецептивных полей. Анализу структурно-функциональной организации первых двух: X/парво и Y/магно – посвящено значительное число экспериментальных и теоретических исследований, а также информативных обзоров и монографий; при этом особенностям организации третьего (W/конио) проводящего канала длительное время уделяли гораздо меньше внимания, а его масштабное исследование начато относительно недавно. Цель данной работы – сравнительный анализ имеющихся фактов о структуре и функциях третьего проводящего канала в ряду млекопитающих отрядов Carnivora (Хищные) и Primates (Приматы).

Ключевые слова: зрительные проводящие каналы, кониоцеллюлярная система, X/Y/W-нейроны, эволюция зрения

Список литературы

  1. Меркульева Н.С. Проводящие каналы зрительной системы. Основы классификации. Журнал высшей нервной деятельности им. И.П. Павлова. 2019. 69: 541–549.

  2. Меркульева Н.С., Михалкин А.А., Вещицкий А.А. Особенности распределения ацетилхолинэстеразы в заднелатеральном ядре таламуса кошки. Морфология. 2015. 148: 46–48.

  3. Меркульева Н.С., Михалкин А.А., Никитина Н.И. Постнатальное развитие комплекса заднелатеральных ядер дорзального таламуса. Интеграт. Физиол. 2020. 1: 242–248.

  4. Подвигин Н.Ф., Макаров Ф.Н., Шелепин Ю.Е. Элементы структурно-функциональной организации зрительной и глазодвигательной систем. Л.: Наука, 1986, 387 с.

  5. Abramson B.P., Chalupa L.M. The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat’s lateral posterior nucleus Neuroscience. 1985. 15: 81–95.

  6. Adams M.M., Hof P.R., Gattass R., Webster M.J., Ungerleider L.G. Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J. Comp. Neurol. 2000. 419: 377–393.

  7. Ajina S., Rees G., Kennard C., Bridge H. Abnormal contrast responses in the extrastriate cortex of blindsight patients. J. Neurosci. 2015. 35: 8201–8213.

  8. Anderson J.C., da Costa N.M., Martin K.A. The W cell pathway to cat primary visual cortex. J. Comp. Neurol. 2009. 516: 20–35.

  9. Baldwin M.K.L., Krubitzer L. Architectonic characteristics of the visual thalamus and superior colliculus in titi monkeys. J. Comp. Neurol. 2018. 526: 1760–1776.

  10. Ballas I., Hoffmann K.P., Wagner H.J. Retinal projection to the nucleus of the optic tract in the cat as revealed by retrograde transport of horseradish peroxidase. Neurosci. Lett. 1981. 26: 197–202.

  11. Beck P.D., Kaas J.H. Thalamic connections of the dorsomedial visual area in primates. J. Comp. Neurol. 1998. 396: 381–398.

  12. Behan M., Steinhacker K., Jeffrey-Borger S., Meredith M.A. Chemoarchitecture of GABAergic neurons in the ferret superior colliculus. J. Comp. Neurol. 2002. 452: 334–359.

  13. Benevento L.A., Yoshida K. The afferent and efferent organization of the lateral geniculo-prestriate pathways in the macaque monkey. J. Comp. Neurol. 1981. 203: 455–474.

  14. Berson D.M. Retinal W-cell input to the upper superficial gray layer of the cat’s superior colliculus: a conduction-velocity analysis. J. Neurophysiol. 1987. 58: 1035–1051.

  15. Berson D.M., Isayama T., Pu M. The Eta ganglion cell type of cat retina. J. Comp. Neurol. 1999. 408: 204–219.

  16. Berson D.M., Pu M., Famiglietti E.V. The zeta cell: a new ganglion cell type in cat retina. J. Comp. Neurol. 1998. 399: 269–288.

  17. Boycott B.B., Wässle H. The morphological types of ganglion cells of the domestic cat’s retina. J. Physiol. 1974. 240: 397–419.

  18. Boyd J.D., Matsubara J.A. Projections from V1 to lateral suprasylvian cortex: an efferent pathway in the cat’s visual cortex that originates preferentially from CO blob columns. Vis. Neurosci. 1999. 16: 849–860.

  19. Boyd J.D., Casagrande V.A. Relationships between cytochrome oxidase (CO) blobs in primate primary visual cortex (V1) and the distribution of neurons projecting to the middle temporal area (MT). J. Comp. Neurol. 1999. 409: 573–591.

  20. Buzás P., Kóbor P., Petykó Z., Telkes I., Martin P.R., Lénárd L. Receptive field properties of color opponent neurons in the cat lateral geniculate nucleus. J. Neurosci. 2013. 33: 1451–1461.

  21. Callaway E.M. Structure and function of parallel pathways in the primate early visual system. J. Physiol. 2005. 566: 13–9.

  22. Casagrande V.A. A third parallel visual pathway to primate area V1. TINS. 1994. 17: 305–310.

  23. Casagrande V.A., Khaytin I., Boyd J. The evolution of parallel visual pathwaysin the brains of primates. In: Preuss T.M., Kaas J. (Eds.), Evolution of the NervousSystem, 2007. V. 4. P. 87–108.

  24. Casagrande V.A., Yazar F., Jones K.D., Ding Y. The morphology of the koniocellular axon pathway in the macaque monkey. Cereb. Cortex. 2007. 17: 2334–2345.

  25. Chen B., Hu X.J., Pourcho R.G. Morphological diversity in terminals of W-type retinal ganglion cells at projection sites in cat brain. Vis. Neurosci. 1996. 13: 449–460.

  26. Cheong S.K., Tailby C., Martin P.R., Levitt J.B., Solomon S.G. Slow intrinsic rhythm in the koniocellular visual pathway. Proc. Natl. Acad. Sci. USA. 2011. 108: 14659–14663.

  27. Cleland B.G., Levick W.R. Brisk and sluggish concentrically organized ganglion cells in the cat’s retina. J. Physiol. 1974. 240: 421–456.

  28. Cleland B.G., Levick W.R. Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. J. Physiol. 1974. 240: 457–492.

  29. Condo G.J., Casagrande V.A. Organization of cytochrome oxidase staining in the visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis): I. Adult patterns. J. Compar. Neurol. 1990. 293: 632–645.

  30. Conley M., Fitzpatrick D., Diamond I.T. The laminar organization of the lateral geniculate body and the striate cortex in the tree shrew (Tupaia glis). J. Neurosci. 1984. 4: 171–197.

  31. Costa M.S., Britto L.R. Calbindin immunoreactivity delineates the circadian visual centers of the brain of the common marmoset (Callithrix jacchus). Brain Res. Bull. 1997. 43: 369–373.

  32. Costa M.S.M.O., Moreira L.F., Alones V., Lu J., Santee U.R., Cavalcante J.S., Moraes P.R.A., Britto L.R.G., Menaker M. Characterization of the circadian system in a brazilian species of monkey (Callithrix jacchus): immunohistochemical analysis and retinal projections. Biol. Rhythm Res. 1998. 29: 510–520.

  33. Cottaris N.P., De Valois R.L. Temporal dynamics of chromatic tuning in macaque primary visual cortex Nature. 1998. 395: 896–900.

  34. Cowey A., Johnson H., Stoerig P. The retinal projection to the pregeniculate nucleus in normal and destriate monkeys. Eur. J. Neurosci. 2001. 13: 279–290.

  35. Cowey A., Stoerig P., Bannister M. Retinal ganglion cells labelled from the pulvinar nucleus in macaque monkeys. Neuroscience. 1994. 61: 691–705.

  36. Crook J.D., Peterson B.B., Packer O.S., Robinson F.R., Gamlin P.D., Troy J.B., Dacey D.M. The smooth monostratified ganglion cell: evidence for spatial diversity in the Y-cell pathway to the lateral geniculate nucleus and superior colliculus in the macaque monkey J Neurosci. 2008. 28: 12654–12671.

  37. Cropper S.J., Derrington A.M. Rapid colour-specific detection of motion in human vision. Nature. 1996. 379: 72–74.

  38. Cui He., Malpeli J.G. Activity in the parabigeminal nucleus during eye movements directed at moving and stationary targets. J. Neurophysiol. 2003. 89: 3128–3142.

  39. Cusick C.G., Scripter J.L., Darensbourg J.G., Weber J.T. Chemoarchitectonic subdivisions of the visual pulvinar in monkeys and their connectional relations with the middle temporal and rostral dorsolateral visual areas, MT and DLr. J. Comp. Neurol. 1993. 336: 1–30.

  40. Dacey D.M. Morphology of a small-field bistratified ganglion cell type in the macaque and human retina. Vis. Neurosci. 1993. 10: 1081–1098.

  41. Dacey D.M., Lee B.B. The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature. 1994. 367: 731–735.

  42. Dacey D.M., Packer O.S. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr. Opin. Neurobiol. 2003. 13: 421–427.

  43. Dacey D.M., Peterson B.B., Robinson F.R., Gamlin P.D. Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron. 2003. 37: 15–27.

  44. Danckert J., Rossetti Y. Blindsight in action: what can the different sub-types of blindsight tell us about the control of visually guided actions? Neurosci. Biobehav. Rev. 2005. 29: 1035–1046.

  45. Daw N.W., Pearlman A.L. Cat colour vision: evidence for more than one cone process. J. Physiol. 1970. 211: 125–137.

  46. de Monasterio F.M., Gouras P. Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. 1975. 251: 167–195.

  47. DeBruyn E.J., Casagrande V.A., Beck P.D., Bonds A.B. Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): correlations with cortical layers and cytochrome oxidase patterns. J. Neurophysiol. 1993. 69: 3–18.

  48. Denny-Brown D., Chambers R.A. Physiological aspects of visual perception. I. Functional aspects of visual cortex Arch Neurol. 1976. 33: 219–227.

  49. Diamond I.T., Conley M., Itoh K., Fitzpatrick D. Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus. J. Comp. Neurol. 1985. 242: 584–610.

  50. Diamond I.T., Fitzpatrick D., Conley M. A projection from the parabigeminal nucleus to the pulvinar nucleus in Galago. J. Comp. Neurol. 1992. 316: 375–382.

  51. Diamond I.T., Fitzpatrick D., Schmechel D. Calcium binding proteins distinguish large and small cells of the ventral posterior and lateral geniculate nuclei of the prosimian galago and the tree shrew (Tupaia belangeri). Proc Natl Acad Sci USA. 1993. 90: 1425–1429.

  52. Ding Y., Casagrande V.A. The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1. Vis. Neurosci. 1997. 14: 691–704.

  53. Di Stefano M., Morrone M.C., Burr D.C. Visual acuity of neurones in the cat lateral suprasylvian cortex Brain Res. 1985. 331: 382–385.

  54. Do M.T.H., Yau K.-W. Intrinsically photosensitive retinal ganglion cells. Physiol. Rev. 2010. 90: 1547–1581.

  55. Dreher B., Leventhal A.G., Hale P.T. Geniculate input to cat visual cortex: a comparison of area 19 with areas 17 and 18. J. Neurophysiol. 1980. 44: 804–826.

  56. Eiber C.D., Rahman A.S., Pietersen A.N.J., Zeater N., Dreher B., Solomon S.J., Martin P.R. Receptive field properties of koniocellular On/Off neurons in the lateral geniculate nucleus of marmoset monkeys. J. Neurosci. 2018. 38: 10384–10398.

  57. Famiglietti E.V. Starburst amacrine cells in cat retina are associated with bistratified, presumed directionally selective, ganglion cells. Brain Res. 1987. 413: 404–408.

  58. Famiglietti E.V. Dendritic co-stratification of ON and ON-OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina. J. Comp. Neurol. 1992. 324: 322–335.

  59. Farmer S.G., Rodieck R.W. Ganglion cells of the cat accessory optic system: morphology and retinal topography. J. Comp. Neurol. 1982. 205: 190–198.

  60. Feig S., Harting J.K. Ultrastructural studies of the primate lateral geniculate nucleus: morphology and spatial relationships of axon terminals arising from the retina, visual cortex (area 17), superior colliculus, parabigeminal nucleus, and pretectum of Galago crassicaudatus. J. Comp. Neurol. 1994. 343: 17–34.

  61. Felch D.L., Van Hooser S.D. Molecular compartmentalization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinensis). Front. Neuroanat. 2012. 6: 1–12.

  62. Fitzpatrick D., Itoh K., Diamond I.T. The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). J. Neurosci. 1983. 3: 673–702.

  63. Fukada Y. Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vision Res. 1971. 11: 209–226.

  64. Fukuda Y., Hsiao C.F., Watanabe M., Ito H. Morphological correlates of physiologically identified Y-, X-, and W-cells in cat retina. J. Neurophysiol. 1984. 52: 999–1013.

  65. Fukuda Y., Stone J. Retinal distribution and central projections of Y, X, and W-cells of the cat’s retina. J. Neurophysiol. 1974. 37: 749–772.

  66. Ghodrati M., Khaligh-Razavi S.M., Lehky S.R. Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Prog. Neurobiol. 2017. 156: 214–255.

  67. Ghosh K.K., Grünert U. Synaptic input to small bistratified (blue-ON) ganglion cells in the retina of a new world monkey, the marmoset Callithrix jacchus. J. Comp. Neurol. 1999. 413: 417–428.

  68. Giolli R.A., Blanks R.H., Lui F. The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Prog. Brain Res. 2006. 151: 407–440.

  69. Gollisch T., Meister M. Eye smarter than scientists believed: neural computations in circuits of the retina Neuron. 2010. 65: 150–164.

  70. Goodchild A.K., Martin P.R. The distribution of calcium-binding proteins in the lateral geniculate nucleus and visual cortex of a New World monkey, the marmoset, Callithrix jacchus. Vis. Neurosci. 1998. 15: 625–642.

  71. Gray D., Gutierrez C., Cusick C.G. Neurochemical organization of inferior pulvinar complex in squirrel monkeys and macaques revealed by acetylcholinesterase histochemistry, calbindin and Cat-301 immunostaining, and Wisteria floribunda agglutinin binding. J. Comp. Neurol. 1999. 409: 452–468.

  72. Graybiel A.M. A satellite system of the superior colliculus: the parabigeminal nucleus and its projections to the superficial collicular layers. Brain Res. 1978. 145: 365–374.

  73. Guenther E., Zrenner E. The spectral sensitivity of dark- and light-adapted cat retinal ganglion cells. J. Neurosci. 1993. 13: 1543–1550.

  74. Harting J.K., Casagrande V.A., Weber J.T. The projection of the primate superior colliculus upon the dorsal lateral geniculate nucleus: autoradiographic demonstration of interlaminar distribution of tectogeniculate axons Brain Res. 1978. 150: 593–599.

  75. Harting J.K., Hashikawa T., Van Lieshout D. Laminar distribution of tectal, parabigeminal and pretectal inputs to the primate dorsal lateral geniculate nucleus: connectional studies in Galago crassicaudatus. Brain Res. 1986. 366: 358–363.

  76. Harting J.K., Huerta M.F., Hashikawa T., van Lieshout D.P. Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species. J. Comp. Neurol. 1991. 304: 275–306.

  77. Hashikawa T., Van Lieshout D., Harting J.K. Projections from the parabigeminal nucleus to the dorsal lateral geniculate nucleus in the tree shrew Tupaia glis. J. Comp. Neurol. 1986. 246: 382–394.

  78. Hassler R. Comparative anatomy of the central visual systems in day- and night-active primates. In: Hassler R., Stephan H. (eds) Evolution of the Forebrain. 1966. Springer, Boston, MA.

  79. Hendry S.H., Fuchs J., deBlas A.L., Jones E.G. Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex J. Neurosci. 1990. 10: 2438–2450.

  80. Hendry S.H.C., Reid R.C. The koniocellular pathway in primate vision. Annu. Rev. Neurosci. 2000. 23: 127–153.

  81. Hendry S.H., Yoshioka T. A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science. 1994. 264: 575–577.

  82. Hernández-González A., Cavada C., Reinoso-Suárez F. The lateral geniculate nucleus projects to the inferior temporal cortex in the macaque monkey. Neuroreport. 1994. 5: 2693–2696.

  83. Hess D.T., Edwards M.A. Anatomical demonstration of ocular segregation in the retinogeniculocortical pathway of the New World capuchin monkey (Cebus apella) J. Comp. Neurol. 1987. 264: 409–420.

  84. Hoffmann K-P. Conduction velocity in pathways from retina to superior colliculus in the cat: a correlation with receptive field properties. J. Neurophysiol. 1973. 36: 409–424.

  85. Holländer H., Vanegas H. The projection from the lateral geniculate nucleus onto the visual cortex in the cat. A quantitative study with horseradish-peroxidase J. Comp. Neurol. 1977. 173: 519–536.

  86. Horton J.C. Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. Philos. Trans. R Soc. Lond. B Biol. Sci. 1984. 304: 199–253.

  87. Horton J.C., Hocking D.R. Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity J. Neurosci. 1998. 18: 5433–5455.

  88. Hubel D.H. Blobs and color vision. Cell. Biophys. 1986. 9: 91–102.

  89. Hughes C.P., Ater S.B. Receptive field properties in the ventral lateral geniculate nucleus of the cat. Brain Res. 1977. 132: 163–166.

  90. Huo B.-X., Zeater N., Lin M.K., Takahashi Y.S., Hanada M., Nagashima J., Lee B.C., Hata J., Zaheer A., Grünert U., Miller M.I., Rosa M.G.P., Okano H., Martin P.R., Mitra P.P. Relation of koniocellular layers of dorsal lateral geniculate to inferior pulvinar nuclei in common marmosets Eur. J. Neurosci. 2019. 50: 4004–4017.

  91. Irvin G.E., Norton T.T., Sesma M.A., Casagrande V.A. W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago crassicaudatus). Brain Res. 1986. 362: 254–270.

  92. Isayama T., Berson D.M., Pu M. Theta ganglion cell type of cat retina. J. Comp. Neurol. 2000. 417: 32–48.

  93. Isayama T., O’Brien B.J., Ugalde I., Muller J.F., Frenz A., Aurora V., Tsiaras W., Berson D.M. Morphology of retinal ganglion cells in the ferret (Mustela putorius furo) J. Comp. Neurol. 2009. 517: 459–480.

  94. Itaya S.K., Van Hoesen G.W. Retinal projections to the inferior and medial pulvinar nuclei in the Old-World monkey. Brain Res. 1983. 269: 223–230.

  95. Itoh K., Conley M., Diamond I.T. Retinal ganglion cell projections to individual layers of the lateral geniculate body in Galago crassicaudatus. J. Comp. Neurol. 1982. 205: 282–290.

  96. Itoh K., Conley M., Diamond I.T. Different distribution of large and small retinal ganglion cells in the cat after HRP injections of single layers of the lateral geniculate body and the superior colliculus. Brain Res. 1981. 207: 147–152.

  97. Jacobs G.H., Neitz M., Neitz J. Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proc. Biol. Sci. 1996. 263: 705–710.

  98. Johnson J.K., Casagrande V.A. Distribution of calcium-binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus) J. Comp. Neurol. 1995. 356: 238–260.

  99. Jones E.G. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 2001. 24: 595–601.

  100. Kaas J.H. Blindsight: post-natal potential of a transient pulvinar pathway. Curr. Biol. 2015. 25: R155–157.

  101. Kaas J.H., Harting J.K., Guillery R.W. Representation of the complete retina in the contralateral superior colliculus of some mammals. Brain Res. 1974. 65: 343–346.

  102. Kaplan E. The M, K, and P streams in the primate visual system: what do they do for vision? Chapter: 1.16. Eds. Richard Masland, Tom Albright. Elsevier. UK. 2008.

  103. Kawano J. Cortical projections of the parvocellular laminae C of the dorsal lateral geniculate nucleus in the cat: an anterograde wheat germ agglutinin conjugated to horseradish peroxidase study. J. Comp. Neurol. 1998. 392: 439–457.

  104. Klein C., Evrard H.C., Shapcott K.A., Haverkamp S., Logothetis N.K., Schmid M.C. Cell-targeted optogenetics and electrical microstimulation reveal the primate koniocellular projection to supragranular visual cortex. Neuron. 2016. 90: 143–151.

  105. Kolb H., Nelson R., Mariani A. Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study. Vision Res. 1981. 21: 1081–1114.

  106. Koontz M.A., Rodieck R.W., Farmer S.G. The retinal projection to the cat pretectum. J. Comp. Neurol. 1985. 236: 42–59.

  107. Lachica E.A., Casagrande V.A. The morphology of collicular and retinal axons ending on small relay (W-like) cells of the primate lateral geniculate nucleus. Vis Neurosci. 1993. 10: 403–418.

  108. Lachica E.A., Casagrande V.A. Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology. J. Comp. Neurol. 1992. 319: 141–158.

  109. Lennie P. Parallel visual pathways: a review. Vision Res. 1980. 20: 561–594.

  110. Leopold D.A. Primary visual cortex: awareness and blindsight. Annu. Rev. Neurosci. 2012. 35: 91–109.

  111. LeVay S., Gilbert C.D. Laminar patterns of geniculocortical projection in the cat. Brain Res. 1976. 113: 1–19.

  112. Leventhal A.G. Evidence that the different classes of relay cells of the cat’s lateral geniculate nucleus terminate in different layers of the striate cortex. Exp. Brain Res. 1979. 37: 349–372.

  113. Leventhal A.G., Keens J., Törk I. The afferent ganglion cells and cortical projections of the retinal recipient zone (RRZ) of the cat’s pulvinar complex. J. Comp. Neurol. 1980. 194: 535–554.

  114. Leventhal A.G., Rodieck R.W., Dreher B. Central projections of cat retinal ganglion cells. J. Comp. Neurol. 1985. 237: 216–226.

  115. Lin C.S., Kaas J.H. Projections from the medial nucleus of the inferior pulvinar complex to the middle temporal area of the visual cortex. Neuroscience. 1980. 5: 2219–2228.

  116. Livingston C.A., Fedder S.R. Visual-ocular motor activity in the macaque pregeniculate complex. J. Neurophysiol. 2003. 90: 226–244.

  117. Livingstone M., Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988. 240: 740–749.

  118. Lysakowski A., Standage G.P., Benevento L.A. An investigation of collateral projections of the dorsal lateral geniculate nucleus and other subcortical structures to cortical areas V1 and V4 in the macaque monkey: a double label retrograde tracer study. Exp. Brain Res. 1988. 69: 651–661.

  119. Ma R., Cui H., Lee S.-H., Anastasio T.J., Malpeli J.G. Predictive encoding of moving target trajectory by neurons in the parabigeminal nucleus. J. Neurophysiol. 2013. 109: 2029–2043.

  120. Marshak D.W., Mills S.L. Short-wavelength cone-opponent retinal ganglion cells in mammals. Vis. Neurosci. 2014. 31: 165–175.

  121. Martin P.R., Grünert U. Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: comparison of New World and Old World monkeys. J. Comp. Neurol. 1999. 406: 1–14.

  122. Martin P.R., Lee B.B. Distribution and specificity of S-cone (“blue cone”) signals in subcortical visual pathways. Vis. Neurosci. 2014. 31: 177–187.

  123. Martin P.R., Solomon S.G. The koniocellular whiteboard. J. Comp. Neurol. 2018. 00: 1–3.

  124. Martin P.R., White A.J., Goodchild A.K., Wilder H.D., Sefton A.E. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur. J. Neurosci. 1997. 9: 1536–1541.

  125. Mason R. Differential responsiveness of cells in the visual zones of the cat’s LP-pulvinar complex to visual stimuli. Exp. Brain Res. 1981. 43: 25–33.

  126. Mass A.M., Supin A.Y. Ganglion cells density and retinal resolution in the sea otter, Enhydra lutris. Brain Behav. Evol. 2000. 55: 111–119.

  127. Merigan W.H., Maunsell J.H. How parallel are the primate visual pathways? Annu. Rev. Neurosci. 1993. 16: 369–402.

  128. Mitzdorf U., Singer W. Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source density. J. Neurophysiol. 1977. 40: 1227–1244.

  129. Mize R.R. Calbindin 28kD and parvalbumin immunoreactive neurons receive different patterns of synaptic input in the cat superior colliculus. Brain Res. 1999. 843: 25–35.

  130. Mize R.R. Neurochemical microcircuitry underlying visual and oculomotor function in the cat superior colliculus. Prog. Brain Res. 1996. 112: 35–55.

  131. Mize R.R., Horner L.H. Retinal synapses of the cat medial interlaminar nucleus and ventral lateral geniculate nucleus differ in size and synaptic organization. J. Comp. Neurol. 1984. 224: 579–590.

  132. Mize R.R., Luo Q., Butler G., Jeon C.J., Nabors B. The calcium binding proteins parvalbumin and calbindin-D 28K form complementary patterns in the cat superior colliculus. J. Comp. Neurol. 1992. 320: 243–256.

  133. Morand S., Thut G., de Peralta R.G., Clarke S., Khateb A., Landis T., Michel C.M. Electrophysiological evidence for fast visual processing through the human koniocellular pathway when stimuli move. Cereb. Cortex. 2000. 10: 817–825.

  134. Mundinano I.-C., Kwan W.C., Bourne J.A. Retinotopic specializations of cortical and thalamic inputs to area MT. Proc. Natl. Acad. Sci. USA. 2019. 116: 23326–23331.

  135. Murakami D.M., Miller J.D., Fuller C.A. The retinohypothalamic tract in the cat: retinal ganglion cell morphology and pattern of projection. Brain Res. 1989. 482: 283–296.

  136. Murphy K.M., Jones D.G., Van Sluyters R.C. Cytochrome-oxidase blobs in cat primary visual cortex. J. Neurosci. 1995. 15: 4196–4208.

  137. Nakagawa S., Tanaka S. Retinal projections to the pulvinar nucleus of the macaque monkey: a re-investigation using autoradiography. Exp. Brain Res. 1984. 57: 151–157.

  138. Nakamura H., Itoh K. Cytoarchitectonic and connectional organization of the ventral lateral geniculate nucleus in the cat. J. Comp Neurol. 2004. 473: 439–462.

  139. Nassi J.J., Callaway E.M. Multiple circuits relaying primate parallel visual pathways to the middle temporal area. J. Neurosci. 2006. 26: 12789–12798.

  140. Nassi J.J., Callaway E.M. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 2009. 10: 360–372.

  141. Neitz J., Neitz M. Evolution of the circuitry for conscious color vision in primates Eye (Lond). 2017. 31: 286–300.

  142. Niimi K., Miki M., Kawamura S. Ascending projections of the superior colliculus in the cat Okajimas Folia Anat Jpn. 1970. 47: 269–287.

  143. O’Brien B.J., Abel P.L., Olavarria J.F. The retinal input to calbindin-D28k-defined subdivisions in macaque inferior pulvinar. Neurosci. Lett. 2001. 312: 145–148.

  144. Payne B.R., Lomber S.G., Macneil M.A., Cornwell P. Evidence for greater sight in blindsight following damage of primary visual cortex early in life Neuropsychologia. 1996. 34: 741–774.

  145. Pearlman A.L., Daw N.W. Opponent color cells in the cat lateral geniculate nucleus. Science. 1970. 167: 84–86.

  146. Percival K.A., Koizumi A., Masri R.A., Buzás P., Martin P.R., Grünert U. Identification of a pathway from the retina to koniocellular layer K1 in the lateral geniculate nucleus of marmoset. J. Neurosci. 2014. 34: 3821–3825.

  147. Perry V.H., Cowey A. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neurosci. 1984. 12: 1125–1137.

  148. Perry V.H., Oehler R., Cowey A. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neurosci. 1984. 12: 1101–1123.

  149. Pietersen A.N.J., Cheong S.K., Solomon S.G., Tailby C., Martin P.R. Temporal response properties of koniocellular (blue-on and blue-off) cells in marmoset lateral geniculate nucleus. J. Neurophysiol. 2014. 112: 1421–1438.

  150. Polyak S. Minute structure of the retina in monkeys and in apes. Arch. Ophthalmol. 1936. 15: 477–519.

  151. Preuss T.M., Kaas J.H. Cytochrome oxidase 'blobs' and other characteristics of primary visual cortex in a lemuroid primate, Cheirogaleus medius. Brain Behav. Evol. 1996. 47: 103–112.

  152. Pu M. Dendritic morphology of cat retinal ganglion cells projecting to suprachiasmatic nucleus. J. Comp. Neurol. 1999. 414: 267–274.

  153. Raczkowski D., Hamos J.E., Sherman S.M. Synaptic circuitry of physiologically identified W-cells in the cat’s dorsal lateral geniculate nucleus. J. Neurosci. 1988. 8: 31–48.

  154. Raczkowski D., Rosenquist A.C. Connections of the parvocellular C laminae of the dorsal lateral geniculate nucleus with the visual cortex in the cat Brain Res. 1980. 199: 447–451.

  155. Rapaport D.H., Fletcher J.T., LaVail M.M., Rakic P. Genesis of neurons in the retinal ganglion cell layer of the monkey. J. Comp. Neurol. 1992. 322: 577–588.

  156. Reese B.E., Thompson W.F., Peduzzi J.D. Birthdates of neurons in the retinal ganglion cell layer of the ferret. J. Comp. Neurol. 1994. 341: 464–475.

  157. Rheaume B.A., Jereen A., Bolisetty M., Sajid M.S., Yang Y., Renna K., Sun L., Robson P., Trakhtenberg E.F. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat. Commun. 2018. 9: 2759.

  158. Rima S., Schmid M.C. V1-bypassing thalamo-cortical visual circuits in blindsight and developmental dyslexia. Curr. Opin. Physiol. 2020. 16: 14–20.

  159. Rockland K.S. Anatomical organization of primary visual cortex (area 17) in the ferret. J. Comp. Neurol. 1985. 241: 225–236.

  160. Rockoff E., Balaram P., Kaas J. Patchy distributions of myelin and vesicular glutamate transporter 2 align with cytochrome oxidase blobs and interblobs in the superficial layers of the primary visual cortex. Eye Brain. 2014. 6 (Suppl 1): 19–27.

  161. Rodman H.R., Gross C.G., Albright T.D. Afferent basis of visual response roperties in area MT of the macaque: II. Effects of superior colliculus removal. J. Neurosci. 1990. 10: 1154–1164.

  162. Rodman H.R., Sorenson K.M., Shim A.J., Hexter D.P. Calbindin immunoreactivity in the geniculo-extrastriate system of the macaque: implications for heterogeneity in the koniocellular pathway and recovery from cortical damage J. Comp. Neurol. 2001. 431: 168–181.

  163. Roe A.W., Garraghty P.E., Esguerra M., Sur M. Experimentally induced visual projections to the auditory thalamus in ferrets: evidence for a W cell pathway. J. Comp. Neurol. 1993. 334: 263–280.

  164. Rowe M.H., Cox J.F. Spatial receptive-field structure of cat retinal W cells Vis Neurosci. 1993. 10: 765–779.

  165. Rowe M.H., Dreher B. Retinal W-cell projections to the medial interlaminar nucleus in the cat: implications for ganglion cell classification. J. Comp. Neurol. 1982. 204: 117–133.

  166. Rowe M.H., Palmer L.A. Spatio-temporal receptive-field structure of phasic W cells in the cat retina. Vis. Neurosci. 1995. 12: 117–139.

  167. Saalmann Y.B., Kastner S. Gain control in the visual thalamus during perception and cognition. Curr. Opin. Neurobiol. 2009. 19: 408–14.

  168. Saalmann Y.B., Pinsk M.A., Wang Liang, Xin Li, Kastner S. The pulvinar regulates information transmission between cortical areas based on attention demands Science. 2012. 337: 753–756.

  169. Schiller P.H., Malpeli J.G. Properties and tectal projections of monkey retinal ganglion cells. J. Neurophysiol. 1977. 40: 428–445.

  170. Schmid M.C., Mrowka S.W., Turchi J., Saunders R.C., Wilke M., Peters A.J., Ye F.Q., Leopold D.A. Blindsight depends on the lateral geniculate nucleus. Nature. 2010. 466: 373–377.

  171. Schmid M.C., Panagiotaropoulos T., Augath M.A., Logothetis N.K., Smirnakis S.M. Visually driven activation in macaque areas V2 and V3 without input from the primary visual cortex. PLoS One. 2009. 4: e5527.

  172. Schmidt T.M., Chen S.-K., Hattar S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 2011. 34: 572–580.

  173. Semo M., Llamosas M.M., Foster R.G., Jeffery G. Melanopsin (Opn4) positive cells in the cat retina are randomly distributed across the ganglion cell layer. Vis. Neurosci. 2005. 22: 111–116.

  174. Sharma J., Angelucci A., Sur M. Induction of visual orientation modules in auditory cortex. Nature. 2000. 404: 841–847.

  175. Shostak Y., Ding Y., Mavity-Hudson J., Casagrande V.A. Cortical synaptic arrangements of the third visual pathway in three primate species: Macaca mulatta, Saimiri sciureus, and Aotus trivirgatus. J. Neurosci. 2002. 22: 2885–2893.

  176. Silveira L.C., Lee B.B., Yamada E.S., Kremers J., Hunt D.M., Martin P.R., Gomes F.L. Ganglion cells of a short-wavelength-sensitive cone pathway in New World monkeys: morphology and physiology. Vis. Neurosci. 1999. 16: 333–43.

  177. Sincich L.C., Park K.F., Wohlgemuth M.J., Horton J.C. Bypassing V1: a direct geniculate input to area MT. Nat. Neurosci. 2004. 7: 1123–1128.

  178. Soares J.G., Botelho E.P., Gattass R. Distribution of calbindin, parvalbumin and calretinin in the lateral geniculate nucleus and superior colliculus in Cebus apella monkeys. J. Chem. Neuroanat. 2001. 22: 139–146.

  179. Solomon S.G., Lee B.B., White A.J.R., Rüttiger L., Martin P.R. Chromatic organization of ganglion cell receptive fields in the peripheral retina. J. Neurosci. 2005. 25: 4527–4539.

  180. Spear P.D., McCall M.A., Tumosa N. W-and Y-cells in the C layers of the cat’s lateral geniculate nucleus: normal properties and effects of monocular deprivation J. Neurophysiol. 1989. 61: 58–73.

  181. Spear P.D., Smith D.C., Williams L.L. Visual receptive-field properties of single neurons in cat’s ventral lateral geniculate nucleus. J. Neurophysiol. 1977. 40: 390–409.

  182. Sprague J.M., Levy J., DiBerardino A., Berlucchi G. Visual cortical areas mediating form discrimination in the cat J. Comp. Neurol. 1977. 172: 441–488.

  183. Stanford L.R. W-cells in the cat retina: correlated morphological and physiological evidence for two distinct classes. J. Neurophysiol. 1987. 57: 218–244.

  184. Stanford L.R., Friedlander M.J., Sherman S.M. Morphological and physiological properties of geniculate W-cells of the cat: a comparison with X and Y-cells. J. Neurophysiol. 1983. 50: 582–608.

  185. Stanford L.R., Sherman S.M. Structure/function relationships of retinal ganglion cells in the cat. Brain Res. 1984. 297: 381–386.

  186. Stepniewska I., Qi H.X., Kaas J.H. Do superior colliculus projection zones in the inferior pulvinar project to MT in primates? Eur. J. Neurosci. 1999. 11: 469–480.

  187. Stepniewska I., Qi H.X., Kaas J.H. Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys. Vis. Neurosci. 2000. 17: 529–549.

  188. Stone J., Hoffmann K.P. Very slow-conducting ganglion cells in the cat’s retina: a major, new functional type? Brain Res. 1972. 43: 610–616.

  189. Stone J., Keens J. Distribution of small and medium-sized ganglion cells in the cat’s retina. J. Comp. Neurol. 1980. 192: 235–246.

  190. Stone J., Dreher B., Leventhal A. Hierarchical and parallel mechanisms in the organization of visual cortex. Brain Res. 1979. 180: 345–394.

  191. Sur M., Garraghty P.E., Roe A.W. Experimentally induced visual projections into auditory thalamus and cortex. Science. 1988. 242: 1437–1441.

  192. Sur M., Sherman S.M. Linear and nonlinear W-cells in C-laminae of the cat’s lateral geniculate nucleus. J. Neurophysiol. 1982. 47: 869–884.

  193. Szmajda B.A., Grünert U., Martin P.R. Retinal ganglion cell inputs to the koniocellular pathway. J. Comp. Neurol. 2008. 510: 251–268.

  194. Tailby C., Szmajda B.A., Buzás P., Lee B.B., Martin P.R. Transmission of blue (S) cone signals through the primate lateral geniculate nucleus. J. Physiol. 2008. 586: 5947–5967.

  195. Telkes I., Distler C., Hoffmann K.P. Retinal ganglion cells projecting to the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic system in macaque monkeys. Eur. J. Neurosci. 2000. 12: 2367–2375.

  196. Tootell R.B., Hamilton S.L., Silverman M.S. Topography of cytochrome oxidase activity in owl monkey cortex. J. Neurosci. 1985. 5: 2786–2800.

  197. Tootell R.B., Silverman M.S., Hamilton S.L., De Valois R.L., Switkes E. Functional anatomy of macaque striate cortex. III. Color. J. Neurosci. 1988. 8: 1569–1593.

  198. Torrealba F., Partlow G.D., Guillery R.W. Organization of the projection from the superior colliculus to the dorsal lateral geniculate nucleus of the cat. Neurosci. 1981. 6: 1341–1360.

  199. Troy J.B., Shou T. The receptive fields of cat retinal ganglion cells in physiological and pathological states: where we are after half a century of research. Prog. Retin. Eye Res. 2002. 21: 263–302.

  200. Turner E.C., Gabi M., Liao C.-C., Kaas J.H. The postnatal development of MT, V1, LGN, pulvinar and SC in prosimian galagos (Otolemur garnettii). J. Comp. Neurol. 2020. 528: 3075–3094.

  201. Updyke B.V. The patterns of projection of cortical areas 17, 18, and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat. J. Comp. Neurol. 1975. 163: 377–395.

  202. Usrey W.M., Reid R.C. Visual physiology of the lateral geniculate nucleus in two species of new world monkey: Saimiri sciureus and Aotus trivirgatis. J. Physiol. 2000. 523: 755–769.

  203. Valverde Salzmann M.F., Bartels A., Logothetis N.K., Schüz A. Color blobs in cortical areas V1 and V2 of the new world monkey Callithrix jacchus, revealed by non-differential optical imaging. J. Neurosci. 2012. 32: 7881–7894.

  204. Van Essen D.C., Anderson C.H., Felleman D.J. Information processing in the primate visual system: an integrated systems perspective. Science. 1992. 255: 419–423.

  205. Vaney D.I. Territorial organization of direction-selective ganglion cells in rabbit retina. J. Neurosci. 1994. 14: 6301–6316.

  206. Warner C.E., Goldshmit Y., Bourne J.A. Retinal afferents synapse with relay cells targeting the middle temporal area in the pulvinar and lateral geniculate nuclei. Front. Neuroanat. 2010. 12: 8.

  207. Wässle H. Chapter 4 Morphological types and central projections of ganglion cells in the cat retina. Prog. Retin. Res. 1982. 1: 125–152.

  208. Wässle H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 2004. 5: 747–757.

  209. Walsh C., Polley E.H., Hickey T.L., Guillery R.W. Generation of cat retinal ganglion cells in relation to central pathways. Nature. 1983. 302: 611–614.

  210. Watanabe M., Rodieck R.W. Parasol and midget ganglion cells of the primate retina. J. Comp. Neurol. 1989. 289: 434–454.

  211. Weber J.T., Huerta M.F., Kaas J.H., Harting J.K. The projections of the lateral geniculate nucleus of the squirrel monkey: studies of the interlaminar zones and the S layers. J. Comp. Neurol. 1983. 213: 135–145.

  212. Weiskrantz L., Warrington E.K., Sanders M.D., Marshall J. Visual capacity in the hemianopic field following a restricted occipital ablation Brain. 1974. 97: 709–728.

  213. Weller R.E., Kaas J.H. Parameters affecting the loss of ganglion cells of the retina following ablations of striate cortex in primates. Vis. Neurosci. 1989. 3: 327–349.

  214. White A.J., Solomon S.G., Martin P.R. Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus. J. Physiol. 2001. 533: 519–535.

  215. Wikler K.C., Rakic P. Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J Neurosci. 1990. 10: 3390–3401.

  216. Williams R.W., Cavada C., Reinoso-Suárez F. Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat. J. Neurosci. 1993. 13: 208–228.

  217. Wilson P.D., Rowe M.H., Stone J. Properties of relay cells in cat’s lateral geniculate nucleus: a comparison of W-cells with X and Y-cells. J. Neurophysiol. 1976. 39: 1193–1209.

  218. Wilson P.D., Stone J. Evidence of W-cell input to the cat’s visual cortex via the C laminae of the lateral geniculate nucleus. Brain Res. 1975. 92: 472–478.

  219. Wong-Riley M.T.T., Hevner R.F., Cutlan R., Earnest M., Egan R., Frost J., Nguyen T. Cytochrome oxidase in the human visual cortex: distribution in the developing and the adult brain. Vis. Neurosci. 1993. 10: 41–58.

  220. Xu X., Bonds A.B., Casagrande V.A. Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus). Vis. Neurosci. 2002. 19: 703–711.

  221. Xu Y., Dhingra N.K., Smith R.G., Sterling P. Sluggish and brisk ganglion cells detect contrast with similar sensitivity. J. Neurophysiol. 2005. 93: 2388–2395.

  222. Xu X., Ichida J.M., Allison J.D., Boyd J.D., Bonds A.B., Casagrande V.A. A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotis trivirgatis). J. Physiol. 2001. 531: 203–218.

  223. Xue J.T., Kim C.B., Moore R.J., Spear P.D. Influence of the superior colliculus on responses of lateral geniculate neurons in the cat. Vis. Neurosci. 1994. 11: 1059–1076.

  224. Yabuta N.H., Callaway E.M. Functional streams and local connections of layer 4C neurons in primary visual cortex of the macaque monkey. J Neurosci. 1998. 18: 9489–9499.

  225. Yan Y.H., Winarto A., Mansjoer I., Hendrickson A. Parvalbumin, calbindin, and calretinin mark distinct pathways during development of monkey dorsal lateral geniculate nucleus. J. Neurobiol. 1996. 31: 189–209.

  226. Yang G., Masland R.H. Direct visualization of the dendritic and receptive fields of directionally selective retinal ganglion cells. Science. 1992. 258: 1949–1952.

  227. Yukie M., Iwai E. Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys. J. Comp. Neurol. 1981. 201: 81–97.

Дополнительные материалы отсутствуют.