Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 5, стр. 649-666

Инвазивная регистрация фокальных потенциалов у пациентов с эпилепсией при наблюдении, представлении и выполнении движений

Е. Д. Каримова 12*, С. Е. Буркитбаев 12, И. С. Трифонов 3, М. В. Синкин 4, Ф. К. Ридер 2, А. Б. Гехт 25, Н. Н. Лебедева 1

1 ФГБУН Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия

2 ГБУЗ Научно-практический психоневрологический центр им. З.П. Соловьева, ДЗМ
Москва, Россия

3 Клинический медицинский центр МГМСУ им. А.И. Евдокимова
Москва, Россия

4 НИИ скорой помощи им. Н.В. Склифосовского
Москва, Россия

5 РНИМУ им. Н.И. Пирогова
Москва, Россия

* E-mail: e.d.karimova@gmail.com

Поступила в редакцию 24.11.2020
После доработки 16.02.2021
Принята к публикации 02.03.2021

Аннотация

Существование нейронов с “зеркальными” свойствами у человека было показано в инвазивном исследовании на пациентах с эпилепсией только в 2010 г., спустя почти 15 лет изучения зеркальной системы мозга (ЗСМ). Сложность исследования ЗСМ у человека заключается в ограничениях используемых методов оценки активности структур, таких как ЭЭГ и фМРТ. В данной работе регистрировали активность подкорковых структур мозга с помощью погружных электродов при реализации различных моторных задач у пациентов с фармакорезистентной эпилепсией. Характеристики фокальных потенциалов (local field potential, LFP) были получены для левых и правых лобных и височных областей. Мощность LFP-сигнала достоверно повышалась при выполнении социально окрашенных задач в левом лобном электроде, что может свидетельствовать о наличии нейрональных связей ЗСМ с системой базальных ганглиев, обеспечивающих контроль и затормаживание нежелательных моторных действий при восприятии, а также принимающих участие в процессе моторного ассоциативного обучения.

Ключевые слова: зеркальная система мозга, эпилепсия, социальное взаимодействие, фокальные потенциалы, LFP, базальные ганглии

DOI: 10.31857/S0044467721050063

Список литературы

  1. Косоногов В. Зеркальные нейроны: краткий научный обзор. Ростов-на-Дону: Антей, 2009. 22 с.

  2. Alegre M. Rodríguez-Oroz M.C., Valencia M., Pérez-Alcázar M., Guridi J., Iriarte J., Obeso J.A., Artieda J. Changes in subthalamic activity during movement observation in Parkinson’s disease: Is the mirror system mirrored in the basal ganglia? Clinical Neurophysiology. 2010. 121 (3): 414–425. https://doi.org/10.1016/j.clinph.2009.11.013

  3. Asano E., Juhasz C., Shah A., Muzik O., Chugani D.C., Shah J., Sood S., Chugani H.T. Origin and Propagation of Epileptic Spasms Delineated on Electrocorticography. Epilepsia. 2005. 46 (7): 1086–1097. https://doi.org/10.1111/j.1528-1167.2005.05205.x

  4. Babiloni C., Del Percio C., Lopez S., Di Gennaro G., Quarato P.P., Pavone L., Morace R., Soricelli A., Noce G., Esposito V., Gallese V., Mirabella G. Frontal Functional Connectivity of Electrocorticographic Delta and Theta Rhythms during Action Execution Versus Action Observation in Humans. Frontiers in Behavioral Neuroscience. 2017. 11. https://doi.org/10.3389/fnbeh.2017.00020

  5. Babiloni C., Del Percio C., Vecchio F., Sebastiano F., Di Gennaro G., Quarato P.P., Morace R., Pavone L., Soricelli A., Noce G., Esposito V., Rossini P.M., Gallese V., Mirabella G. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans. Clinical Neurophysiology. 2016. 127 (1): 641–654. https://doi.org/10.1016/j.clinph.2015.04.068

  6. Bédard C., Kröger H., Destexhe A. Modeling Extracellular Field Potentials and the Frequency-Filtering Properties of Extracellular Space. Biophysical Journal. 2004. 86 (3): 1829–1842. https://doi.org/10.1016/S0006-3495(04)74250-2

  7. Bimbi M., Festante F., Coudé G., Vanderwert R.E., Fox N.A., Ferrari P.F. Simultaneous scalp recorded EEG and local field potentials from monkey ventral premotor cortex during action observation and execution reveals the contribution of mirror and motor neurons to the mu-rhythm. NeuroImage. 2018. 175: 22–31. https://doi.org/10.1016/j.neuroimage.2018.03.037

  8. Borra E., Gerbella M., Rozzi S., Luppino G. The macaque lateral grasping network: A neural substrate for generating purposeful hand actions. Neuroscience & Biobehavioral Reviews. 2017. 75: 65–90. https://doi.org/10.1016/j.neubiorev.2017.01.017

  9. Buzsáki G., Anastassiou C.A., Koch C. The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience. 2012. 13 (6): 407–420. https://doi.org/10.1038/nrn3241

  10. Cai X., Padoa-Schioppa C. Neuronal Encoding of Subjective Value in Dorsal and Ventral Anterior Cingulate Cortex. Journal of Neuroscience. 2012. 32 (11): 3791–3808. https://doi.org/10.1523/JNEUROSCI.3864-11.2012

  11. Campbell M.E.J., Cunnington R. More than an imitation game: Top-down modulation of the human mirror system. Neuroscience & Biobehavioral Reviews. 2017. 75: 195–202. https://doi.org/10.1016/j.neubiorev.2017.01.035

  12. Carr L., Iacoboni M., Dubeau M.-C., Mazziotta J.C., Lenzi G.L. Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences. 2003. 100 (9): 5497–5502. https://doi.org/10.1073/pnas.0935845100

  13. Carter C.S., van Veen V. Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective, & Behavioral Neuroscience. 2007. 7 (4): 367–379. https://doi.org/10.3758/CABN.7.4.367

  14. Caruana F., Avanzini P., Gozzo F., Pelliccia V., Casaceli G., Rizzolatti G. A mirror mechanism for smiling in the anterior cingulate cortex. Emotion. 2017. 17 (2): 187–190. https://doi.org/10.1037/emo0000237

  15. Caruana F., Sartori I., Lo Russo G., Avanzini P. Sequencing Biological and Physical Events Affects Specific Frequency Bands within the Human Premotor Cortex: An Intracerebral EEG Study. PLoS ONE. 2014. 9 (1): e86384. https://doi.org/10.1371/journal.pone.0086384

  16. Chang L.J., Yarkoni T., Khaw M.W., Sanfey A.G. Decoding the Role of the Insula in Human Cognition: Functional Parcellation and Large-Scale Reverse Inference. Cerebral Cortex. 2013. 23 (3): 739–749. https://doi.org/10.1093/cercor/bhs065

  17. Collinger J.L., Vinjamuri R., Degenhart A.D., Weber D.J., Sudre G.P., Boninger M.L., Tyler-Kabara E.C., Wang W. Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury. Frontiers in Integrative Neuroscience. 2014. 8. https://doi.org/10.3389/fnint.2014.00017

  18. Cross K.A., Iacoboni M. Neural systems for preparatory control of imitation. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014. 369 (1644): 20130176. https://doi.org/10.1098/rstb.2013.0176

  19. Denker M., Roux S., Lindén H., Diesmann M., Riehle A., Grün S. The Local Field Potential Reflects Surplus Spike Synchrony. Cerebral Cortex. 2011. 21 (12): 2681–2695. https://doi.org/10.1093/cercor/bhr040

  20. Denker M., Roux S., Timme M., Riehle A., Grün S. Phase synchronization between LFP and spiking activity in motor cortex during movement preparation. Neurocomputing. 2007. 70 (10–12): 2096–2101. https://doi.org/10.1016/j.neucom.2006.10.088

  21. DiCarlo J.J., Zoccolan D., Rust N.C. How Does the Brain Solve Visual Object Recognition? Neuron. 2012. 73 (3): 415–434. https://doi.org/10.1016/j.neuron.2012.01.010

  22. DiLorenzo D.J., Mangubat E.Z., Rossi M.A., Byrne R.W. Chronic unlimited recording electrocorticography–guided resective epilepsy surgery: technology-enabled enhanced fidelity in seizure focus localization with improved surgical efficacy. Journal of Neurosurgery. 2014. 120 (6): 1402–1414. https://doi.org/10.3171/2014.1.JNS131592

  23. ten Donkelaar H.J., van de Warrenburg B., Willemsen M., Küsters B., Hashizume Y., Hori A. Basal Ganglia. Clinical Neuroanatomy. P. 591–667. Cham, Springer International Publishing. (also available at http://link.springer.com/10.1007/978-3-030-41878-6_11)

  24. Ferrari P.F., Gerbella M., Coudé G., Rozzi S. Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways. Neuroscience. 2017. 358: 300–315. https://doi.org/10.1016/j.neuroscience.2017.06.052

  25. Gallese V., Fadiga L., Fogassi L., Rizzolatti G. Action recognition in the premotor cortex. Brain. 1996. 119 (2): 593–609. https://doi.org/10.1093/brain/119.2.593

  26. Ge S., Liu H., Lin P., Gao J., Xiao C., Li Z. Neural Basis of Action Observation and Understanding From First- and Third-Person Perspectives: An fMRI Study. Frontiers in Behavioral Neuroscience. 2018. 12. https://doi.org/10.3389/fnbeh.2018.00283

  27. Gerbella M., Borra E., Tonelli S., Rozzi S., Luppino G. Connectional Heterogeneity of the Ventral Part of the Macaque Area 46. Cerebral Cortex. 2013. 23 (4): 967–987. https://doi.org/10.1093/cercor/bhs096

  28. Graff-Radford J., Williams L., Jones D.T., Benarroch E.E. Caudate nucleus as a component of networks controlling behavior. Neurology. 2017. 89 (21): 2192–2197. https://doi.org/10.1212/WNL.0000000000004680

  29. Grafton S., Arbib M., Fadiga L., Rizzolatti G. Localization of grasp representations in humans by positron emission tomography. Experimental Brain Research. 1996. 112 (1). https://doi.org/10.1007/BF00227183

  30. Grahn J.A., Parkinson J.A., Owen A.M. The cognitive functions of the caudate nucleus. Progress in Neurobiology. 2008. 86 (3): 141–155. https://doi.org/10.1016/j.pneurobio.2008.09.004

  31. Halje P., Seeck M., Blanke O., Ionta S. Inferior frontal oscillations reveal visuo-motor matching for actions and speech: evidence from human intracranial recordings. Neuropsychologia. 2015. 79: 206–214. https://doi.org/10.1016/j.neuropsychologia.2015.08.015

  32. Hashiguchi K., Morioka T., Yoshida F., Miyagi Y., Nagata S., Sakata A., Sasaki T. Correlation between scalp-recorded electroencephalographic and electrocorticographic activities during ictal period. Seizure. 2007. 16 (3): 238–247. https://doi.org/10.1016/j.seizure.2006.12.010

  33. Iacoboni M. Understanding others: imitation, language, empathy. Perspectives on Imitation: From Cognitive Neuroscience to Social Science. 2005.

  34. Karakale O., Moore M.R., Kirk I.J. Mental Simulation of Facial Expressions: Mu Suppression to the Viewing of Dynamic Neutral Face Videos. Frontiers in Human Neuroscience. 2019. 13. https://doi.org/10.3389/fnhum.2019.00034

  35. Krautheim J.T., Dannlowski U., Steines M., Neziroğlu G., Acosta H., Sommer J., Straube B., Kircher T. Intergroup empathy: Enhanced neural resonance for ingroup facial emotion in a shared neural production-perception network. NeuroImage. 2019. 194: 182–190. https://doi.org/10.1016/j.neuroimage.2019.03.048

  36. Kuruvilla A., Flink R. Intraoperative electrocorticography in epilepsy surgery: useful or not? Seizure. 2003. 12 (8): 577–584. https://doi.org/10.1016/S1059-1311(03)00095-5

  37. Łęski S., Lindén H., Tetzlaff T., Pettersen K.H., Einevoll G.T. Frequency Dependence of Signal Power and Spatial Reach of the Local Field Potential. PLoS Computational Biology. 2013. 9 (7): e1003137. https://doi.org/10.1371/journal.pcbi.1003137

  38. Li Q., Becker B., Jiang X., Zhao Z., Zhang Q., Yao S., Kendrick K.M. Decreased interhemispheric functional connectivity rather than corpus callosum volume as a potential biomarker for autism spectrum disorder. Cortex. 2019a. 119: 258–266. https://doi.org/10.1016/j.cortex.2019.05.003

  39. Li Y.S., Nassar M.R., Kable J.W., Gold J.I. Individual Neurons in the Cingulate Cortex Encode Action Monitoring, Not Selection, during Adaptive Decision-Making. The Journal of Neuroscience. 2019b. 39 (34): 6668–6683. https://doi.org/10.1523/JNEUROSCI.0159-19.2019

  40. Lockwood P.L. The anatomy of empathy: Vicarious experience and disorders of social cognition. Behavioural Brain Research. 2016. 311: 255–266. https://doi.org/10.1016/j.bbr.2016.05.048

  41. Michmizos K.P., Sakas D., Nikita K.S. Parameter identification for a local field potential driven model of the Parkinsonian subthalamic nucleus spike activity. Neural Networks. 2012. 36: 146–156. https://doi.org/10.1016/j.neunet.2012.10.003

  42. Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews. 1985. 65 (1): 37–100. https://doi.org/10.1152/physrev.1985.65.1.37

  43. Molnar-Szakacs I., Iacoboni M., Koski L., Mazziotta J.C. Functional Segregation within Pars Opercularis of the Inferior Frontal Gyrus: Evidence from fMRI Studies of Imitation and Action Observation. Cerebral Cortex. 2005. 15 (7): 986–994. https://doi.org/10.1093/cercor/bhh199

  44. Mukamel R., Ekstrom A.D., Kaplan J., Iacoboni M., Fried I. Single-Neuron Responses in Humans during Execution and Observation of Actions. Current Biology. 2010a. https://doi.org/10.1016/j.cub.2010.02.045

  45. Mukamel R., Ekstrom A.D., Kaplan J., Iacoboni M., Fried I. Single-Neuron Responses in Humans during Execution and Observation of Actions. Current Biology. 2010b. 20 (8): 750–756. https://doi.org/10.1016/j.cub.2010.02.045

  46. Nauhaus I., Busse L., Carandini M., Ringach D.L. Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience. 2009. 12(1): 70–76. https://doi.org/10.1038/nn.2232

  47. Okun M., Naim A., Lampl I. The Subthreshold Relation between Cortical Local Field Potential and Neuronal Firing Unveiled by Intracellular Recordings in Awake Rats. Journal of Neuroscience. 2010. 30 (12): 4440–4448. https://doi.org/10.1523/JNEUROSCI.5062-09.2010

  48. Perry A., Stiso J., Chang E.F., Lin J.J., Parvizi J., Knight R.T. Mirroring in the Human Brain: Deciphering the Spatial-Temporal Patterns of the Human Mirror Neuron System. Cerebral Cortex. 2018. 28 (3): 1039–1048. https://doi.org/10.1093/cercor/bhx013

  49. Poulet J.F.A., Petersen C.C.H. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature. 2008. 454 (7206): 881–885. https://doi.org/10.1038/nature07150

  50. Raine A. The neuromoral theory of antisocial, violent, and psychopathic behavior. Psychiatry Research. 2019. 277: 64–69. https://doi.org/10.1016/j.psychres.2018.11.025

  51. Rizzolatti G., Cattaneo L., Fabbri-Destro M., Rozzi S. Cortical Mechanisms Underlying the Organization of Goal-Directed Actions and Mirror Neuron-Based Action Understanding. Physiological Reviews. 2014. 94 (2): 655–706. https://doi.org/10.1152/physrev.00009.2013

  52. Rizzolatti G., Craighero L. THE MIRROR-NEURON SYSTEM. Annual Review of Neuroscience. 2004. 27 (1): 169–192. https://doi.org/10.1146/annurev.neuro.27.070203.144230

  53. Rolls E.T. Limbic systems for emotion and for memory, but no single limbic system. Cortex. 2015. 62: 119–157. https://doi.org/10.1016/j.cortex.2013.12.005

  54. Saito Y., Kubicki M., Koerte I., Otsuka T., Rathi Y., Pasternak O., Bouix S., Eckbo R., Kikinis Z., von Hohenberg C.C., Roppongi T., Del Re E., Asami T., Lee S.-H., Karmacharya S., Mesholam-Gately R.I., Seidman L.J., Levitt J., McCarley R.W., Shenton M.E., Niznikiewicz M.A. Impaired white matter connectivity between regions containing mirror neurons, and relationship to negative symptoms and social cognition, in patients with first-episode schizophrenia. Brain Imaging and Behavior. 2018. 12 (1): 229–237. https://doi.org/10.1007/s11682-017-9685-z

  55. Simone L., Bimbi M., Rodà F., Fogassi L., Rozzi S. Action observation activates neurons of the monkey ventrolateral prefrontal cortex. Scientific Reports. 2017. 7 (1): 44378. https://doi.org/10.1038/srep44378

  56. Simone L., Rozzi S., Bimbi M., Fogassi L. Movement-related activity during goal-directed hand actions in the monkey ventrolateral prefrontal cortex. European Journal of Neuroscience. 2015. 42 (11): 2882–2894. https://doi.org/10.1111/ejn.13040

  57. Singer T. Empathy for Pain Involves the Affective but not Sensory Components of Pain. Science. 2004. 303 (5661): 1157–1162. https://doi.org/10.1126/science.1093535

  58. Skelin I., Kilianski S., McNaughton B.L. Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation. Neurobiology of Learning and Memory. 2019. 160: 21–31. https://doi.org/10.1016/j.nlm.2018.04.004

  59. Sliwa J., Freiwald W.A. A dedicated network for social interaction processing in the primate brain. Science. 2017. 356 (6339): 745–749. https://doi.org/10.1126/science.aam6383

  60. Solomon E.A., Stein J.M., Das S., Gorniak R., Sperling M.R., Worrell G., Inman C.S., Tan R.J., Jobst B.C., Rizzuto D.S., Kahana M.J. Dynamic Theta Networks in the Human Medial Temporal Lobe Support Episodic Memory. Current Biology. 2019. 29 (7): 1100–1111.e4. https://doi.org/10.1016/j.cub.2019.02.020

  61. Ushakov V.L., Kartashov S.I., Zavyalova V. V., Bezverhiy D.D., Posichanyuk V.I., Terentev V.N., Anokhin K.V. Network activity of mirror neurons depends on experience. Journal of Integrative Neuroscience. 2013. 12(01): 35–46. https://doi.org/10.1142/S0219635213500040

  62. Viswanathan A., Freeman R.D. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nature Neuroscience. 2007. 10 (10): 1308–1312. https://doi.org/10.1038/nn1977

  63. Waldert S., Vigneswaran G., Philipp R., Lemon R.N., Kraskov A. Modulation of the Intracortical LFP during Action Execution and Observation. The Journal of Neuroscience. 2015. 35 (22): 8451–8461. https://doi.org/10.1523/JNEUROSCI.5137-14.2015

  64. West R.A., Larson C.R. Neurons of the anterior mesial cortex related to faciovocal activity in the awake monkey. Journal of Neurophysiology. 1995. 74 (5): 1856–1869. https://doi.org/10.1152/jn.1995.74.5.1856

  65. Yanike M., Ferrera V.P. Representation of Outcome Risk and Action in the Anterior Caudate Nucleus. Journal of Neuroscience. 2014. 34 (9): 3279–3290. https://doi.org/10.1523/JNEUROSCI.3818-13.2014

Дополнительные материалы отсутствуют.