Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 5, стр. 667-679

Особенности развития и анализа нарушений социального поведения и когнитивных функций у животных с экспериментальной болезнью Альцгеймера

Я. В. Горина 12*, А. Б. Салмина 12, Д. П. Чернюк 1, А. В. Большакова 1, П. М. Балабан 13, И. Б. Безпрозванный 14, О. Л. Власова 1

1 Лаборатория молекулярной нейродегенерации, Санкт-Петербургский политехнический университет Петра Великого
г. Санкт-Петербург, Россия

2 НИИ молекулярной медицины и патобиохимии, Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого
г. Красноярск, Россия

3 Лаборатория клеточной нейробиологии обучения, Институт высшей нервной деятельности
г. Москва, Россия

4 Отделение физиологии юго-западного медицинского центра Техасского университета
г. Даллас, США

* E-mail: yana_20@bk.ru

Поступила в редакцию 20.11.2020
После доработки 22.12.2020
Принята к публикации 22.12.2020

Аннотация

Болезнь Альцгеймера является наиболее распространенным нейродегенеративным заболеванием во всем мире, которое вызывает значимые негативные социально-экономические последствия. Несмотря на многочисленные исследования патогенеза заболевания, нейропатологические механизмы остаются в полной мере неясными, а современные методы лечения недостаточно эффективными. В последние десятилетия генетические модели болезни Альцгеймера на грызунах использовались для детального изучения молекулярных механизмов развития заболевания, что имеет решающее значение для ее ранней диагностики и эффективной терапии. Принимая во внимание значимое влияние бета-амилоида на проявление нарушений в поведении и развитие когнитивной дисфункции, в этом обзоре мы представляем детальную характеристику трансгенной мышиной модели 5xFAD как наиболее ценного и необходимого инструмента для изучения основных механизмов, лежащих в основе когнитивных и психических нарушений при БА, а также их взаимосвязь с церебральной микросредой.

Ключевые слова: болезнь Альцгеймера, генетические модели на грызунах, мышиная модель 5xFAD, поведение

DOI: 10.31857/S0044467721050051

Список литературы

  1. Горина Я.В., Комлева Ю.К., Лопатина О.Л., Черных А.И., Салмина А.Б. Влияние инсулинорезистентности на нарушение метаболизма глюкозы в миндалине головного мозга при экспериментальной болезни Альцгеймера. Бюллетень сибирской медицины. 2017a. 6: 1–5.

  2. Горина Я.В., Комлева Ю.К., Лопатина О.Л., Черных А.И., Салмина А.Б. Поведенческий фенотипический анализ животных с генетической моделью болезни Альцгеймера. Биомедицина. 2017b. 3: 47–59.

  3. Горина Я.В., Комлева Ю.К., Лопатина О.Л., Черных А.И., Салмина А.Б. Инсулинорезистентность в развитии нарушений сложных форм поведения и памяти при хронической нейродегенерации альцгеймеровского типа. Нейронаука для медицины и психологии: XIII Международный Междисциплинарный Конгресс (Судак, Крым, Россия, 30 мая – 10 июня 2017 года). 2017. с. 128–129.

  4. Горина Я.В., Лопатина О.Л., Комлева Ю.К., Черных А.И., Салмина А.Б. Роль нейровоспаления в реализации когнитивных функций и социального взаимодействия у мышей с возрастзависимой нейродегенерацией. Анналы клинической и экспериментальной неврологии. 2018. 12 (2): 27–32.

  5. Abe Y., Ikegawa N., Yoshida K., Muramatsu K., Hattori S., Kawai K., Murakami M., Tanaka T., Goda W., Goto M., Yamamoto T., Hashimoto T., Yamada K., Shibata T., Misawa H., Mimura M., Tanaka K.F., Miyakawa T., Iwatsubo T., Hata J.-I., Niikura T., Yasu M. Behavioral and electrophysiological evidence for a neuroprotective role of aquaporin-4 in the 5xFAD transgenic mice model. Acta Neuropathol Commun. 2020. 8 (1): 67.

  6. Adams S.J., Crook R.J.P., Deture M., Randle S.J., Innes A.E., Yu X.Z., Lin W.-L., Dugger B.N., McBride M., Hutton M., Dickson D.W., McGowan E. Overexpression of wild-type murine tau results in progressive tauopathy and neurodegeneration. Am J Pathol. 2009. 175 (4): 1598–1609.

  7. Ahlemeyer B., Halupczok S., Rodenberg-Frank E., Valerius K.-P., Baumgart-Vogt E. Endogenous Murine Amyloid-β Peptide Assembles into Aggregates in the Aged C57BL/6J Mouse Suggesting These Animals as a Model to Study Pathogenesis of Amyloid-β Plaque Formation. J Alzheimers Dis. 2018. 61 (4): 1425–1450.

  8. Arrozi A.P., Shukri S.N.S., Ngah W.Z.W., Yusof Y.A.M., Damanhuri M.H.A., Makpol S. Evaluation of the Expression of Amyloid Precursor Protein and the Ratio of Secreted Amyloid Beta 42 to Amyloid Beta 40 in SH-SY5Y Cells Stably Transfected with Wild-Type, Single-Mutant and Double-Mutant Forms of the APP Gene for the Study of Alzheimer’s Disease Pathology. Biochem Biotechnol. 2017. 183 (3): 853–866.

  9. Babulal G.M., Chen S., Williams M.M., Trani J.F., Bakhshi P., Chao G.L., Stout S.H., Fagan A.M., Benzinger T.L.S., Holtzman D.M., Morris J.C., Roe C.M. Depression and Alzheimer’s Disease Biomarkers Predict Driving Decline. J Alzheimers Dis. 2018. 66 (3): 1213–1221.

  10. Bagyinszky E., Park S.A., Kim H.J., Choi S.H., An S.S., Kim S.Y. PSEN1 L226F mutation in a patient with early-onset Alzheimer’s disease in Korea. Clin Interv Aging. 2016. 11: 1433–1440.

  11. Bories C., Guitton M.J., Julien C., Tremblay C., Vandal M., Msaid M., De Koninck Y., Calon F. Sexdependent alterations in social behaviour and cortical synaptic activity coincide at different ages in a model of Alzheimer’s disease. PLoS One. 2012. 7 (9): 1–8.

  12. Caldwell A.B., Liu Q., Schroth G.P., Galasko D.R., Yuan S.H., Wagner S.L., Subramaniam S. Dedifferentiation and neuronal repression define familial Alzheimer’s disease. Sci Adv. 2020. 6 (46): eaba5933.

  13. Canevelli M., Piscopo P., Talarico G., Vanacore N., Blasimme A., Crestini A., Tosto G., Troili F., Lenzi G.L., Confaloni A., Bruno G. Familial Alzheimer’s disease sustained by presenilin 2 mutations: systematic review of literature and genotype-phenotype correlation. Neurosci Biobehav Rev. 2014. 42: 170–179.

  14. Cao Q., Wang W., Williams J.B., Yang F., Wang Z.-J., Yan Z. Targeting histone K4 trimethylation for treatment of cognitive and synaptic deficits in mouse models of Alzheimer’s disease. Sci Adv. 2020. 6 (50): eabc8096.

  15. Chishti M.A., Yang D.S., Janus C., Phinney A.L., Horne P., Pearson J., Strome R., Zuker N., Loukides J., French J., Turner S., Lozza G., Grilli M., Kunicki S., Morissette C., Paquette J., Gervais F., Bergeron C., Fraser P.E., Carlson G.A., George-Hyslop P.S., Westaway D. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem. 2001. 276 (24): 21562–21570.

  16. Creighton S.D., Mendell A.L., Palmer D., Kalisch B.E., MacLusky N.J., Prado V.F., Prado M.A.M., Winters B.D. Dissociable cognitive impairments in two strains of transgenic Alzheimer’s disease mice revealed by a battery of object-based tests. Sci Rep. 2019. 9 (1): 57.

  17. Cruchaga C., Del-Aguila J.L., Saef B., Black K., Fernandez M.V., Budde J., Ibanez L., Deming Y., Kapoor M., Tosto G., Mayeux R.P., Holtzman D.M., Fagan A.M., Morris J.C., Bateman R.J., Goate A.M., Dominantly Inherited Alzheimer Network (DIAN), Disease Neuroimaging Initiative (ADNI), NIA-LOAD family study, Harari O. Polygenic risk score of sporadic late-onset Alzheimer’s disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement. 2018. 14 (2): 205–214.

  18. Cryan J.F., Mombereau C., Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005. 29 (4-5): 571–625.

  19. Cummings J., Ritter A., Rothenberg K. Advances in Management of Neuropsychiatric Syndromes in Neurodegenerative Diseases. Curr Psychiatry Rep. 2019. 21 (8): 79.

  20. D’Argenio V., Sarnataro D. New Insights into the Molecular Bases of Familial Alzheimer’s Disease. J Pers Med. 2020. 10 (2): 26.

  21. DeBay D.R., Reid G.A., Macdonald I.R., Mawko G., Burrell S., Martin E., Bowen C.V., Darvesh S. Butyrylcholinesterase-knockout reduces fibrillar β-amyloid and conserves 18FDG retention in 5XFAD mouse model of Alzheimer’s disease. Brain Res. 2017. 1671: 102–110.

  22. Devi L., Ohno M. Phospho-eIF2α level is important for determining abilities of BACE1 reduction to rescue cholinergic neurodegeneration and memory defects in 5XFAD mice. PLoS One. 2010. 5 (9): e12974.

  23. Devi L., Ohno M. Mechanisms that lessen benefits of β-secretase reduction in a mouse model of Alzheimer’s disease. Transl Psychiatry. 2013. 3 (7): e284.

  24. Devi L., Ohno M. A combination Alzheimer’s therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice. Mol Brain. 2015. 8: 19.

  25. Diekelmann S., Born J. The memory function of sleep. Nat Rev Neurosci 2010. 11 (2): 114–126.

  26. Eimer W.A., Vassar R. Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activation. Mol Neurodegener. 2013. 8: 2.

  27. Elder G.A., Sosa M.A.G., Gasperi R.D. Transgenic mouse models of Alzheimer’s disease. Mt Sinai J Med. 2010. 77 (1): 69–81.

  28. Filali M., Lalonde R., Rivest S. Cognitive and non-cognitive behaviors in an APPswe/PS1 bigenic model of Alzheimer’s disease. Genes Brain Behav. 2009. 8 (2): 143–148.

  29. Fjell A.M., Walhovd K.B. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010. 21 (3): 187–221.

  30. Flanigan T.J., Xue Y., Rao S.K., Dhanushkodi A., McDonald M.P. Abnormal vibrissa-related behavior and loss of barrel field inhibitory neurons in 5xFAD transgenics. Genes Brain Behav. 2014. 13 (5): 488–500.

  31. Forrest S.L., Kril J.J., Stevens C.H., Kwok J.B., Hallupp M., Kim W.S., Huang Y., McGinley C.V., Werka H., Kiernan M.C., Götz J., Spillantini M.G., Hodges J.R., Ittner L.M., Halliday G.M. Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain. 2018. 141 (2): 521–534.

  32. Garre-Olmo J. Epidemiology of Alzheimer’s disease and other dementias. Rev Neurol. 2018. 66 (11): 377–386.

  33. Gerakis Y., Hetz C. Brain organoids: a next step for humanized Alzheimer’s disease models? Mol Psychiatry. 2019. 24 (4): 474–478.

  34. Giannoni P., Arango-Lievano M., Neves I.D., Rousset M.-C., Baranger K., Rivera S., Jeanneteau F., Claeysen S., Marchi N. Cerebrovascular pathology during the progression of experimental Alzheimer’s disease. Neurobiology of Disease, Elsevier. 2016. 88: 107–117.

  35. Giau V.V., Bagyinszky E., Youn Y.C., An S.S.A., Kim S. APP, PSEN1, and PSEN2 Mutations in Asian Patients with Early-Onset Alzheimer Disease. Int J Mol Sci. 2019. 20 (19): 4757.

  36. Goate A. Segregation of a missense mutation in the amyloid beta-protein precursor gene with familial Alzheimer’s disease. J Alzheimers Dis. 2006. 9: 341–347.

  37. Gu L., Wu D., Tang X., Qi X., Li X., Bai F., Chen X., Ren Q., Zhang Z. Myelin changes at the early stage of 5XFAD mice. Brain Res. Bull. 2018. 137: 285–293.

  38. Héraud C., Goufak D., Ando K., Leroy K., Suain V., Yilmaz Z., Decker R.D., Authelet M., Laporte V., Octave J.-N., Brion J.-P. Increased misfolding and truncation of tau in APP/PS1/tau transgenic mice compared to mutant tau mice. Neurobiol Dis. 2014. 62: 100–112.

  39. Holcomb L., Gordon M.N., McGowan E., Yu X., Benkovic S., Jantzen P., Wright K., Saad I., Mueller R., Morgan D., Sanders S., Zehr C., O’Campo K., Hardy J., Prada C.M., Eckman C., Younkin S., Hsiao K., Duff K. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med. 1998. 4 (1): 97–100.

  40. Hüttenrauch M., Baches S., Gerth J., Bayer T.A., Weggen S., Wirths O. Neprilysin deficiency alters the neuropathological and behavioral phenotype in the 5XFAD mouse model of Alzheimer’s disease. J Alzheimers Dis. 2015. 44 (4): 1291–1302.

  41. Jafari Z., Okuma M., Karem H., Mehla J., Kolb B.E., Mohajerani M.H. Prenatal noise stress aggravates cognitive decline and the onset and progression of beta amyloid pathology in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2019. 77: 66–86.

  42. Jaffar S., Counts S.E., Ma S.Y., Dadko E., Gordon M.N., Morgan D., Mufson E.J. Neuropathology of mice carrying mutant APP (swe) and/or PS1(M146L) transgenes: alterations in the p75(NTR) cholinergic basal forebrain septohippocampal pathway. Exp Neurol. 2001. 170 (2): 227–243.

  43. Jahn H. Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci. 2013. 15 (4): 445–454.

  44. Janus C. Search strategies used by APP transgenic mice during navigation in the Morris water maze. Learn Mem. 2004. 11: 337–346.

  45. Johnson E.C.B., Ho K., Yu G.Q., Das M., Sanchez P.E., Djukic B., Lopez I., Yu X., Gill M., Zhang W., Paz J.T., Palop J.J., Mucke L. Behavioral and neural network abnormalities in human APP transgenic mice resemble those of App knock-in mice and are modulated by familial Alzheimer’s disease mutations but not by inhibition of BACE1. Mol Neurodegener. 2020. 15 (1): 53.

  46. Juszczak G.R., Sliwa A.T., Wolak P., Tymosiak-Zielinska A., Lisowski P., Swiergiel A.H. The usage of video analysis system for detection of immobility in the tail suspension test in mice. Pharmacol Biochem Behav. 2006. 85 (2): 332–338.

  47. Kim H.Y., Lee D.K., Chung B.-R., Kim H.V., Kim Y. Intracerebroventricular Injection of Amyloid-β Peptides in Normal Mice to Acutely Induce Alzheimer-like Cognitive Deficits. J Vis Exp. 2016. 109: 53308.

  48. Kitazawa M., Medeiros R., Laferla F.M. Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des. 2012. 18 (8): 1131–1147.

  49. Köhler C.A., Magalhaes T.F., Oliveira J.M.M.P., Alves G.S., Knochel C., Oertel-Knöchel V., Pantel J., Carvalho A.F. Neuropsychiatric Disturbances in Mild Cognitive Impairment (MCI): A Systematic Review of Population-Based Studies. Curr Alzheimer Res. 2016. 13 (10): 1066–1082.

  50. Koolhaas J.M., Coppens C.M., de Boer S.F., Buwalda B., Meerlo P., Timmermans P.J.A. The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J Vis Exp. 2013. 77: e4367.

  51. Kosel F., Hamilton J.S., Harrison S.L., Godin V., Franklin T.B. Reduced social investigation and increased injurious behavior in transgenic 5xFAD mice. J. Neurosci. Res. 2020.

  52. Kosel F., Torres Munoz P., Yang J.R., Wong A.A., Franklin T.B. Age-related changes in social behaviours in the 5xFAD mouse model of Alzheimer’s disease. Behav. Brain Res. 2019. 362: 160–172.

  53. Lalonde R., Fukuchi K., Strazielle C. Neurologic and motor dysfunctions in APP transgenic mice. Rev Neurosci. 2012. 23 (4): 363–379.

  54. Landel V., Baranger K., Virard I., Loriod B., Khrestchatisky M., Rivera S., Benech P., Féron F. Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer’s disease. Mol Neurodegener. 2014. 9: 33.

  55. Larner A.J. Presenilin-1 mutations in Alzheimer’s disease: an update on genotype-phenotype relationships. J Alzheimers Dis. 2013. 37 (4): 653–659.

  56. Ledo J.H., Azevedo E.P., Clarke J.R., Ribeiro F.C., Figueiredo C.P., Foguel D., De Felice F.G., Ferreira S.T. Correction: Amyloid-beta oligomers link depressive-like behavior and cognitive deficits in mice. Mol Psychiatry. 2020.

  57. Li X., Bao X., Wang R. Experimental models of Alzheimer’s disease for deciphering the pathogenesis and therapeutic screening. Int J Mol Med. 2016a. 37 (2): 271–283.

  58. Li X.Y., Men W.W., Zhu H., Lei J.F., Zuo F.X., Wang Z.J., Zhu Z.H., Bao X.J., Wang R.Z. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer’s Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET. Int J Mol Sci. 2016b. 17 (10): 1707.

  59. Lin B., Hasegawa Y., Takane K., Koibuchi N., Cao C., Kim-Mitsuyama S. High-Fat-Diet Intake Enhances Cerebral Amyloid Angiopathy and Cognitive Impairment in a Mouse Model of Alzheimer’s Disease, Independently of Metabolic Disorders. J Am Heart Assoc. 2016. 5 (6): e003154.

  60. Lövheim H., Sandman P.O., Karlsson S., Gustafson Y. Behavioral and psychological symptoms of dementia in relation to level of cognitive impairment. Int Psychogeriatr. 2008. 20 (4): 777–789.

  61. Nyarko J.N.K., Quartey M.O., Baker G.B., Mousseau D.D. Can Animal Models Inform on the Relationship between Depression and Alzheimer Disease? Can J Psychiatry. 2019. 64 (1): 18–29.

  62. Oakley H., Cole S.L., Logan S., Maus E., Shao P., Craft J., Guillozet-Bongaarts A., Ohno M., Disterhoft J., Eldik L.V., Berry R., Vassar R. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci. 2006. 26 (40): 10129–10140.

  63. O’Connor A., Weston P.S.J., Pavisic I.M., Ryan N.S., Collins J.D., Lu K., Crutch S.J., Alexander D.C., Fox N.C., Oxtoby N.P. Quantitative detection and staging of presymptomatic cognitive decline in familial Alzheimer’s disease: a retrospective cohort analysis. Alzheimers Res Ther. 2020. 12 (1): 126.

  64. Ohno M., Chang L., Tseng W., Oakley H., Citron M., Klein W.L., Vassar R., Disterhoft J.F. Temporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACE1. Eur J Neurosci. 2006. 23 (1): 251–260.

  65. Otvos L. Jr., Szendrei G.I., Lee V.M., Mantsch H.H. Human and rodent Alzheimer beta-amyloid peptides acquire distinct conformations in membrane-mimicking solvents. Eur J Biochem. 1993. 211 (1–2): 249–257.

  66. Owona B.A., Zug C., Schluesener H.J., Zhang Z.-Y. Amelioration of Behavioral Impairments and Neuropathology by Antiepileptic Drug Topiramate in a Transgenic Alzheimer’s Disease Model Mice, APP/PS1.Int J Mol Sci. 2019. 20 (12): 3003.

  67. Park S.A., Han S.M., Kim C.E. New fluid biomarkers tracking non-amyloid-β and non-tau pathology in Alzheimer’s disease. Exp Mol Med. 2020. 52 (4): 556–568.

  68. Patel S., Grizzell J.A., Holmes R., Zeitlin R., Solomon R., Sutton T.L., Rohani A., Charry L.C., Iarkov A., Mori T., Moran V.E. Cotinine halts the advance of Alzheimer’s disease-like pathology and associated depressive-like behavior in Tg6799 mice. Front. Aging Neurosci. 2014. 6: 162.

  69. Perl D.P. Neuropathology of Alzheimer’s disease. Mt Sinai J Med. 2010. 77 (1): 32–42.

  70. Petrasek T., Vojtechova I., Lobellova V., Popelikova A., Janikova M., Brozka H., Houdek P., Sladek M., Sumova A., Kristofikova Z., Vales K., Stuchlík A. The McGill Transgenic Rat Model of Alzheimer’s Disease Displays Cognitive and Motor Impairments, Changes in Anxiety and Social Behavior, and Altered Circadian Activity. Front Aging Neurosci. 2018. 10: 250.

  71. Poe G.R., Walsh C.M., Bjorness T.E. Cognitive neuroscience of sleep. Prog Brain Res. 2010. 185: 1–19.

  72. Poon C.H., Wang Y., Fung M.-L., Zhang C., Lim L.W. Rodent Models of Amyloid-Beta Feature of Alzheimer’s Disease: Development and Potential Treatment Implications. Aging Dis. 2020. 11 (5): 1235–1259.

  73. Pratap A.A., Holsinge R.M.D. Altered Brain Leptin and Leptin Receptor Expression in the 5XFAD Mouse Model of Alzheimer’s Disease. Pharmaceuticals (Basel). 2020. 13 (11): 401.

  74. Preuss C., Pandey R., Piazza E., Fine A., Uyar A., Perumal T., Garceau D., Kotredes K.P., Williams H., Mangravite L.M., Lamb B.T., Oblak A., Howell G.R., Sasner M., Logsdon B.A., MODEL-AD Consortium, Carter G.W. A novel systems biology approach to evaluate mouse models of late-onset Alzheimer’s disease. Mol Neurodegener. 2020. 15 (1): 67.

  75. Price J.L., Ko A.I., Wade M.J., Tsou S.K., McKeel D.W., Morris J.C. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol. 2001. 58 (9): 1395–1402.

  76. Reinhardt S., Schuck F., Grösgen S., Riemenschneider M., Hartmann T., Postina R., Grimm M., Endres K. Unfolded protein response signaling by transcription factor XBP-1 regulates ADAM10 and is affected in Alzheimer’s disease. FASEB J. 2014. 28 (2): 978–997.

  77. Resnick B., Galik E., Kolanowski A., VanHaitsma K., Boltz M., Zhu S., Ellis J., Behrens L., Eshraghi K. Gender differences in presentation and management of behavioral and psychological symptoms associated with dementia among nursing home residents with moderate to severe dementia. J Women Aging. 2020. 1–18.

  78. Rice J.P., Wallace D.G., Hamilton D.A. Lesions of the hippocampus or dorsolateral striatum disrupt distinct aspects of spatial navigation strategies based on proximal and distal information in a cued variant of the Morris water task. Behav Brain Res. 2015. 289: 105–117.

  79. Roh J.H., Jiang H., Finn M.B., Stewart F.R., Mahan T.E., Cirrito J.R., Heda A., Snider B.J., Li M., Yanagisawa M., de Lecea L., Holtzman D.M. Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer’s disease. J. Exp. Med. 2014. 211 (3): 2487–2496.

  80. Sadleir K.R., Popovic J., Vassar R. ER stress is not elevated in the 5XFAD mouse model of Alzheimer’s disease. J Biol Chem. 2018. 293(48): 18434–18443.

  81. Samaey C., Schreurs A., Stroobants S., Balschun D. Early Cognitive and Behavioral Deficits in Mouse Models for Tauopathy and Alzheimer’s Disease. Front Aging Neurosci. 2019. 11: 335.

  82. Scheltens P., Blennow K., Breteler M.M., de Strooper B., Frisoni G.B., Salloway S., Van der Flier W.M. Alzheimer’s disease. Lancet. 2016. 388 (10043): 505–517.

  83. Schneider F., Baldauf K., Wetzel W., Reymann K.G. Behavioral and EEG changes in male 5xFAD mice. Physiol Behav. 2014. 135: 25–33.

  84. Sethi M., Joshi S.S., Webb R.L., Beckett T.L., Donohue K.D., Murphy M.P., O’Hara B.F., Duncan M.J. Increased fragmentation of sleep-wake cycles in the 5XFAD mouse model of Alzheimer’s disease. Neuroscience. 2015. 290: 80–89.

  85. Sommer B., Sturchler-Pierrat C., Abramowski D., Wiederhold K.H., Calhoun M., Jucker M., Kelly P., Staufenbiel M. Transgenic approaches to model Alzheimer’s disease. Rev Neurosci. 2000. 11 (1): 47–51.

  86. Strassnig M., Ganguli M. About a peculiar disease of the cerebral cortex: Alzheimer’s original case revisited. Psychiatry (Edgmont). 2005. 2 (9): 30–33.

  87. Volloch V., Olsen B., Rits S. Alzheimer’s Disease is Driven by Intraneuronally Retained Beta-Amyloid Produced in the AD-Specific, βAPP-Independent Pathway: Current Perspective and Experimental Models for Tomorrow. Ann Integr Mol Med. 2020. 2 (1): 90–114.

  88. Vorhees C.V., Williams M.T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature protocols. 2006. 1 (2): 848–858.

  89. Walker J.M., Fowler S.W., Miller D.K., Sun A.Y., Weisman G.A., Wood W.G., Sun G.Y., Simonyi A., Schachtman T.R. Spatial learning and memory impairment and increased locomotion in a transgenic amyloid precursor protein mouse model of Alzheimer’s disease. Behav Brain Res. 2011. 222 (1): 169–175.

  90. Wirths O., Zampar S. Neuron Loss in Alzheimer’s Disease: Translation in Transgenic Mouse Models. Int J Mol Sci. 2020. 21 (21): 8144.

  91. Xiao N.A., Zhang J., Zhou M., Wei Z., Wu X.L., Dai X.M., et al., Zhu Y.-G., Chen X.-C. Reduction of glucose metabolism in olfactory bulb is an earlier Alzheimer’s disease-related biomarker in 5XFAD mice. Chin. Med. J. 2015. 128 (16): 2220–2227.

  92. Xu W., Xu F., Anderson M.E., Kotarba A.E., Davis J., Robinson J.K., Nostrand W.E. V. Cerebral microvascular rather than parenchymal amyloid-β protein pathology promotes early cognitive impairment in transgenic mice. J Alzheimers Dis. 2014. 38 (3): 621–632.

  93. Yan H., Pang P., Chen W., Zhu H., Henok K.A., Li H., Wu Z., Ke X., Wu J., Zhang T., Pan K., Pei L., Han Y., Lu Y. The Lesion Analysis of Cholinergic Neurons in 5XFAD Mouse Model in the Three-Dimensional Level of Whole Brain. Mol Neurobiol. 2018. 55 (5): 4115–4125.

  94. Yamazaki H., Jin Y., Tsuchiya A., Kanno T., Nishizaki T. Adipose-derived stem cell-conditioned medium ameliorates antidepression-related behaviors in the mouse model of Alzheimer’s disease. Neurosci. Lett. 2015. 609: 53–57.

  95. Zhang F., Wei J., Li X., Ma C., Gao Y. Early Candidate Urine Biomarkers for Detecting Alzheimer’s Disease Before Amyloid-β Plaque Deposition in an APP (swe)/PSEN1dE9 Transgenic Mouse Model. J Alzheimers Dis. 2018. 66 (2): 613–637.

  96. Zhang W., Jiao B., Xiao T., Liu X., Liao X., Xiao X., Guo L., Yuan Z., Yan X., Tang B., Shen L. Association of rare variants in neurodegenerative genes with familial Alzheimer’s disease. Ann Clin Transl Neurol. 2020. 7 (10): 1985–1995.

  97. Zhao Q.F., Tan L., Wang H.F., Jiang T., Tan M.S., Tan L., Xu W., Li J.Q., Wang J., Lai T.J., Yu J.T. The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: Systematic review and meta-analysis. J Affect Disord. 2016. 190: 264–271.

Дополнительные материалы отсутствуют.