Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 4, стр. 547-562

Alpha-Band Functional Connectivity During Modality-Specific Anticipatory Attention in Children Aged 9–10 Years: Eeg-Source Coherence Analysis

I. V. Talalay a*, A. V. Kurgansky a, R. I. Machinskaya a

a Institute of Developmental Physiology, Russian Academy of Education
Moscow, Russia

* E-mail: etalalay.et@gmail.com

Поступила в редакцию 26.11.2020
После доработки 20.01.2021
Принята к публикации 2.03.2021

Аннотация

Functional connectivity was studied in a group of 17 right-handed children aged 9.789 ± 0.447 years during the deployment of cued anticipatory attention. Participants performed visual and auditory versions of the temporal order judgment task. Prestimulus functional links were assessed via alpha-band coherence computed in the source space for preselected regions of interest. As compared with the baseline condition, an increase of local functional links between the primary visual cortex and the intraparietal cortex was observed in both hemispheres during the anticipation of visual and auditory stimuli. An increase of functional interaction between the intraparietal cortex and the ventral premotor cortex was observed only in the left hemisphere during auditory anticipatory attention. Unlike our previous research on anticipatory attention in adults, the analysis of functional connectivity in children showed no frontoparietal functional links in the right hemisphere and no modality-specific cortical links. The results of the study suggest that the brain’s top-down modulatory systems of the right hemisphere are still immature in children aged 9–10 years.

Keywords: alpha rhythm, children aged 9–10 years, functional connectivity, cued anticipatory attention, EEG

DOI: 10.31857/S0044467721040110

Список литературы

  1. Akhtar N., Enns J.T. Relations between convert orienting and filtering in the development of visual attention. Journal of Experimental Child Psychology. 1989. 48 (2): 315–334. https://doi.org/10.1016/0022-0965(89)90008-8

  2. Altamura M., Carver F.W., Elvevåg B., Weinberger D.R., Coppola R. Dynamic cortical involvement in implicit anticipation during statistical learning. Neuroscience Letters. 2014. 558: 73–77. https://doi.org/10.1016/j.neulet.2013.09.043

  3. Bares M., Rektor I. Basal ganglia involvement in sensory and cognitive processing. A depth electrode CNV study in human subjects. Clinical Neurophysiology. 2001. 112 (11): 2022–2030. https://doi.org/10.1016/S1388-2457(01)00671-X

  4. Bastiaansen M.C.M., Böcker K.B.E., Brunia C.H.M., De Munck J.C., Spekreijse H. Event-related desynchronization during anticipatory attention for an upcoming stimulus: A comparative EEG/MEG study. Clinical Neurophysiology. 2001. 112 (2): 393–403.https://doi.org/10.1016/S1388-2457(00)00537-X

  5. Bastiaansen M.C.M., Brunia C.H.M. Anticipatory attention: An event-related desynchronization approach. International Journal of Psychophysiology. 2001. 43 (1): 91–107. https://doi.org/10.1016/S0167-8760(01)00181-7

  6. Bressler S.L., Tang W., Sylvester C.M., Shulman G.L., Corbetta M. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. Journal of Neuroscience. 2008. 28 (40): 10056–10061. https://doi.org/10.1523/JNEUROSCI.1776-08.2008

  7. Bianco V., Berchicci M., Livio Perri R., Quinzi F., Mussini E., Spinelli D., Di Russo F. Preparatory ERPs in visual, auditory, and somatosensory discriminative motor tasks. Psychophysiology, 2020. 57 (12): e13687. https://doi.org/10.1111/psyp.13687

  8. Brunia C.H.M., Damen E.J.P. Distribution of slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroencephalography and Clinical Neurophysiology. 1988. 69 (3): 234–243. https://doi.org/10.1016/0013-4694(88)90132-0

  9. Brunia C.H.M., Hackley S.A., van Boxtel G.J.M., Kotani Y., Ohgami Y. Waiting to perceive: Reward or punishment? Clinical Neurophysiology. 2011. 122 (5): 858–868. https://doi.org/10.1016/j.clinph.2010.12.039

  10. Brunia C.H.M., van Boxtel G.J.M. Anticipatory attention to verbal and non-verbal stimuli is reflected in a modality-specific SPN. Experimental Brain Research. 2004. 156 (2): 231–239. https://doi.org/10.1007/s00221-003-1780-2

  11. Capotosto P., Babiloni C., Romani G.L., Corbetta M. Differential contribution of right and left parietal cortex to the control of spatial attention: A simultaneous EEG-rTMS study. Cerebral Cortex. 2012. 22 (2): 446–454. https://doi.org/10.1093/cercor/bhr127

  12. Capotosto P., Babiloni C., Romani G.L., Corbetta M. Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. Journal of Neuroscience. 2009. 29 (18): 5863–5872. https://doi.org/10.1523/JNEUROSCI.0539-09.2009

  13. Casey B.J., Davidson M.C., Hara Y., Thomas K.M., Martinez A., Galvan A., Halperin J.M., Rodríguez-Aranda C.E., Tottenham N. Early development of subcortical regions involved in non-cued attention switching. Developmental Science. 2004. 7 (5): 534–542. https://doi.org/10.1111/j.1467-7687.2004.00377.x

  14. Cleeremans A., Destrebecqz A., Boyer M. Implicit learning: News from the front. Trends in Cognitive Sciences. 1998. 2 (10): 406–416. https://doi.org/10.1016/S1364-6613(98)01232-7

  15. Corbetta M., Shulman G.L. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience. 2002. 3 (3): 201–215. https://doi.org/10.1038/nrn755

  16. Cui J., Xu L., Bressler S.L., Ding M., Liang H. BSMART: A Matlab/C toolbox for analysis of multichannel neural time series. Neural Networks. 2008. 21 (8): 1094–1104. https://doi.org/10.1016/j.neunet.2008.05.007

  17. Dale R., Duran N., Morehead R. Prediction during statistical learning, and implications for the implicit/explicit divide. Advances in Cognitive Psychology. 2012. 8 (2): 196–209. https://doi.org/10.5709/acp-0115-z

  18. Damen E.J.P., Brunia C.H.M. Changes in Heart Rate and Slow Brain Potentials Related to Motor Preparation and Stimulus Anticipation in a Time Estimation Task. Psychophysiology. 1987. 24 (6): 700–713. https://doi.org/10.1111/j.1469-8986.1987.tb00353.x

  19. Di Russo F., Berchicci M., Bozzacchi C., Perri R.L., Pitzalis S., Spinelli D. Beyond the “Bereitschaftspotential”: Action preparation behind cognitive functions. Neuroscience and Biobehavioral Reviews. 2017. 78: 57–81. https://doi.org/10.1016/j.neubiorev.2017.04.019

  20. Doesburg S.M., Green J.J., McDonald J.J., Ward L.M. From local inhibition to long-range integration: A functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention. Brain Research. 2009. 1303: 97–110. https://doi.org/10.1016/j.brainres.2009.09.069

  21. Dubrovinskaya N.V., Machinskaya R.I., Kulakovsky Y.V. Brain Organization of Selective Tasks Preceding Attention: Ontogenetic Aspects. Complex Brain Functions. Conceptual Advances in Russian Neuroscience. Ed. Miller R., Ivanitsky A.M., Balaban P.M. Harwood Academic Publishers, 2000. 168–180 pp.

  22. Enns J.T., Brodeur D.A. A developmental study of covert orienting to peripheral visual cues. Journal of Experimental Child Psychology. 1989. 48 (2): 171–189. https://doi.org/10.1016/0022-0965(89)90001-5

  23. Eriksen B.A., Eriksen C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics. 1974. 16 (1): 143–149. https://doi.org/10.3758/BF03203267

  24. Fan J., Kolster R., Ghajar J., Suh M., Knight R.T., Sarkar R., McCandliss B.D. Response anticipation and response conflict: An event-related potential and functional magnetic resonance imaging study. Journal of Neuroscience. 2007. 27 (9): 2272–2282. https://doi.org/10.1523/JNEUROSCI.3470-06.2007

  25. Fan J., McCandliss B.D., Fossella J., Flombaum J.I., Posner M.I. The activation of attentional networks. NeuroImage. 2005. 26 (2): 471–479. https://doi.org/10.1016/j.neuroimage.2005.02.004

  26. Fan J., McCandliss B.D., Sommer T., Raz A., Posner M.I. Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience. 2002. 14 (3): 340–347. https://doi.org/10.1162/089892902317361886

  27. Folk C.L., Hoyer W.J. Aging and shifts of visual spatial attention. Psychology and Aging. 1992. 7 (3): 453–465. https://doi.org/10.1037/0882-7974.7.3.453

  28. Friston K.J. Functional and Effective Connectivity: A Review. Brain Connectivity. 2011. 1 (1): 13–36. https://doi.org/10.1089/brain.2011.0008

  29. Gómez C.M., Marco J., Grau C. Preparatory visuo-motor cortical network of the contingent negative variation estimated by current density. NeuroImage. 2003. 20 (1): 216–224. https://doi.org/10.1016/S1053-8119(03)00295-7

  30. Guo Z., Tan X., Pan Y., Liu X., Zhao G., Wang L., Peng Z. Contingent negative variation during a modified cueing task in simulated driving. PLoS ONE. 2019. 14 (11): e0224966. https://doi.org/10.1371/journal.pone.0224966

  31. Hahn E., Ta T.M.T., Hahn C., Kuehl L.K., Ruehl C., Neuhaus A.H., Dettling M. Test-retest reliability of Attention Network Test measures in schizophrenia. Schizophrenia Research. 2011. 133 (1–3): 218–222. https://doi.org/10.1016/j.schres.2011.09.026

  32. Jennings J.M., Dagenbach D., Engle C.M., Funke L.J. Age-related changes and the attention network task: An examination of alerting, orienting, and executive function. Aging, Neuropsychology, and Cognition. 2007. 14 (4): 353–369. https://doi.org/10.1080/13825580600788837

  33. Jonkman L.M. The development of preparation, conflict monitoring and inhibition from early childhood to young adulthood: a Go/Nogo ERP study. Brain Research. 2006. 1097 (1): 181–193. https://doi.org/10.1016/j.brainres.2006.04.064

  34. Jonkman L.M., Lansbergen M., Stauder J.E.A. Developmental differences in behavioral and event-related brain responses associated with response preparation and inhibition in a go/nogo task. Psychophysiology. 2003. 40 (5): 752–761. https://doi.org/10.1111/1469-8986.00075

  35. Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences. 2012. 16 (12): 606–617. https://doi.org/10.1016/j.tics.2012.10.007

  36. Konrad K., Neufang S., Thiel C.M., Specht K., Hanisch C., Fan J., Herpertz-Dahlmann B., Fink G.R. Development of attentional networks: An fMRI study with children and adults. NeuroImage. 2005. 28 (2): 429–439. https://doi.org/10.1016/j.neuroimage.2005.06.065

  37. Kurgansky A.V. Nekotorye voprosy issledovaniya kortiko-kortikal’nyh funkcional’nyh svyazej s pomoshch’yu vektornoj avtoregressionnoj modeli mnogokanal’noj EEG [Some methodological issues of studying cortico-cortical functional connectivity with vector autoregressive model of multichannel EEG]. Zh. Vyssh. Nerv. Deiat. im. I.P. Pavlova. 2010. 60 (6): 740–759.

  38. Langley L.K., Friesen C.K., Saville A.L., Ciernia A.T. Timing of reflexive visuospatial orienting in young, young-old, and old-old adults. Attention, Perception, and Psychophysics. 2011. 73 (5): 1546–1561. https://doi.org/10.3758/s13414-011-0108-8

  39. Leuthold H., Jentzsch I. Neural correlates of advance movement preparation: A dipole source analysis approach. Cognitive Brain Research. 2001. 12 (2): 207–224. https://doi.org/10.1016/S0926-6410(01)00052-0

  40. Litvak V., Mattout J., Kiebel S., Phillips C., Henson R., Kilner J., Barnes G., Oostenveld R., Daunizeau J., Flandin G., Penny W., Friston K. EEG and MEG data analysis in SPM8. Computational Intelligence and Neuroscience. 2011. 2011: 1–32. https://doi.org/10.1155/2011/852961

  41. Liu Y., Bengson J., Huang H., Mangun G.R., Ding M. Top-down Modulation of Neural Activity in Anticipatory Visual Attention: Control Mechanisms Revealed by Simultaneous EEG-fMRI. Cerebral Cortex. 2016. 26 (2): 517–529. https://doi.org/10.1093/cercor/bhu204

  42. Machinskaya R.I., Machinskii N.O., Deryugina E.I. Funktsional’naia organizatsiia pravogo i levogo polushariǐ mozga cheloveka pri napravlennom vnimanii. Fiziologiia Cheloveka. 1992. 18 (6): 77–85.

  43. Machinskaya R.I. Selective prestimulus attention: Two kinds of processing – two types of brain cortex functional organization. Downward processes in the perception representation mechanisms. Proceedings of the International School of Biocybernetics. Ed. Taddei-Ferretti C., Musio C. Singapore: World Scientific, 1998. 471–475 pp.

  44. Machinskaya R.I., Kurgansky A.V. A comparative electrophysiological study of regulatory components of working memory in adults and seven- to eight-year-old children: An analysis of coherence of EEG rhythms. Human Physiology. 2012. 38 (1): 1–13. https://doi.org/10.1134/S0362119712010136

  45. Mezzacappa E. Alerting, orienting, and executive attention: Developmental properties and sociodemographic correlates in an epidemiological sample of young, urban children. Child Development. 2004. 75 (5): 1373–1386. https://doi.org/10.1111/j.1467-8624.2004.00746.x

  46. Morrison F.J. The development of alertness. Journal of Experimental Child Psychology. 1982. 34 (2): 187–199. https://doi.org/10.1016/0022-0965(82)90041-8

  47. Mozolic J.L., Joyner D., Hugenschmidt C.E., Peiffer A.M., Kraft R.A., Maldjian J.A., Laurienti P.J. Cross-modal deactivations during modality-specific selective attention. BMC Neurology. 2008. 8: 35. https://doi.org/10.1186/1471-2377-8-35

  48. Näätänen R. Attention and brain function. Hillsdale, NJ: Lawrence Erlbaum Associates, 1992.

  49. Neumann O., van der Heijden A.H.C., Allport D.A. Visual selective attention: Introductory remarks. Psychological Research. 1986. 48 (4): 185–188. https://doi.org/10.1007/BF00309082

  50. Perchet C., García-Larrea L. Visuospatial attention and motor reaction in children: An electrophysiological study of the “Posner” paradigm. Psychophysiology. 2000. 37 (2): 231–241. https://doi.org/10.1017/S0048577200981368

  51. Périn B., Godefroy O., Fall S., de Marco G. Alertness in young healthy subjects: An fMRI study of brain region interactivity enhanced by a warning signal. Brain and Cognition. 2010. 72 (2): 271–281. https://doi.org/10.1016/j.bandc.2009.09.010

  52. Petersen S.E., Posner M.I. The attention system of the human brain: 20 years after. Annual Review of Neuroscience. 2012. 35: 73–89. https://doi.org/10.1146/-neuro-062111-150525

  53. Posner M.I. Orienting of attention. The Quarterly Journal of Experimental Psychology. 1980. 32 (1): 3–25. https://doi.org/10.1080/00335558008248231

  54. Posner M.I. Chronometric Explorations of Mind. Hillsdale, NJ: Lawrence Erlbaum Associates, 1978. 286 p.

  55. Posner M.I., Fan J. Attention as an organ system. Topics in Integrative Neuroscience: From Cells to Cognition. Ed. Pomerantz J.R. Cambridge: Cambridge University Press, 2008. 31–61 pp. https://doi.org/10.1017/CBO9780511541681.005

  56. Posner M.I., Petersen S.E. The attention system of the human brain. Annual Review of Neuroscience. 1990. 13: 25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325

  57. Posner M.I., Rothbart M.K., Rueda M.R. Developing attention and self-regulation in infancy and childhood. Neural Circuit Development and Function in the Brain. Ed. Rubenstein J.L.R., Pasko Rakic. Elsevier, 2013. 395–411 pp. https://doi.org/10.1016/B978-0-12-397267-5.00059-5

  58. Rohenkohl G., Gould I.C., Pessoa J., Nobre A.C. Combining spatial and temporal expectations to improve visual perception. Journal of Vision. 2014. 14 (4): 8. https://doi.org/10.1167/14.4.8

  59. Rohenkohl G., Nobre A.C. Alpha oscillations related to anticipatory attention follow temporal expectations. Journal of Neuroscience. 2011. 31 (40): 14076–14084. https://doi.org/10.1523/JNEUROSCI.3387-11.2011

  60. Rosahl S.K., Knight R.T. Role of prefrontal cortex in generation of the contingent negative variation. Cerebral Cortex. 1995. 5 (2): 123–134. https://doi.org/10.1093/cercor/5.2.123

  61. Rueda M.R., Fan J., McCandliss B.D., Halparin J.D., Gruber D.B., Lercari L.P., Posner M.I. Development of attentional networks in childhood. Neuropsychologia. 2004. 42 (8): 1029–1040. https://doi.org/10.1016/j.neuropsychologia.2003.12.012

  62. Santhana Gopalan P.R., Loberg O., Hämäläinen J.A., Leppänen P.H.T. Attentional processes in typically developing children as revealed using brain event-related potentials and their source localization in Attention Network Test. Scientific Reports. 2019. 9 (1): 2940. https://doi.org/10.1038/s41598-018-36947-3

  63. Schul R., Townsend J., Stiles J. The development of attentional orienting during the school-age years. Developmental Science. 2003. 6 (3): 262–272. https://doi.org/10.1111/1467-7687.00282

  64. Segalowitz S.J., Davies P.L. Charting the maturation of the frontal lobe: An electrophysiological strategy. Brain and Cognition. 2004. 55 (1): 116–133. https://doi.org/10.1016/S0278-2626(03)00283-5

  65. Sherman L.E., Rudie J.D., Pfeifer J.H., Masten C.L., McNealy K., Dapretto M. Development of the default mode and central executive networks across early adolescence: a longitudinal study. Developmental cognitive neuroscience. 2014. 10: 148–159. https://doi.org/10.1016/j.dcn.2014.08.002

  66. Shibasaki H., Hallett M. What is the Bereitschaftspotential? Clinical Neurophysiology. 2006. 117 (11): 2341–2356. https://doi.org/10.1016/j.clinph.2006.04.025

  67. Shomstein S. Cognitive functions of the posterior parietal cortex: Top-down and bottom-up attentional control. Frontiers in Integrative Neuroscience. 2012. 6: 38. https://doi.org/10.3389/fnint.2012.00038

  68. Simpson G.V., Weber D.L., Dale C.L., Pantazis D., Bressler S.L., Leahy R.M., Luks T.L. Dynamic activation of frontal, parietal, and sensory regions underlying anticipatory visual spatial attention. Journal of Neuroscience. 2011. 31 (39): 13880–13889. https://doi.org/10.1523/JNEUROSCI.1519-10.2011

  69. Spence C., Driver J. On measuring selective attention to an expected sensory modality. Perception and Psychophysics. 1997. 59 (3): 389–403. https://doi.org/10.3758/BF03211906

  70. Swanson J.M., Posner M., Potkin S., Bonforte S., Youpa D., Fiore C., Cantwell D., Crinella F. Activating tasks for the study of visual-spatial attention in ADHD children: a cognitive anatomic approach. Journal of Child Neurology. 1991. 6 (1): 119–127. https://doi.org/10.1177/0883073891006001s12

  71. Talalay I., Machinskaya R. The Comparative Study of Cued and Implicit Anticipatory Attention During the Performance of Visual and Auditory Versions of the Temporal Order Judgment Task. The Russian Journal of Cognitive Science. 2014. 1 (4): 58–65.

  72. Talalay I.V., Kurgansky, A.V., Machinskaya, R.I. Alpha-band functional connectivity during cued versus implicit modality-specific anticipatory attention: EEG-source coherence analysis. Psychophysiology. 2018. 55 (12): e13269. https://doi.org/10.1111/psyp.13269

  73. Tecce J.J. Contingent negative variation (CNV) and psychological processes in man. Psychological Bulletin. 1972. 77 (2): 73–108. https://doi.org/10.1037/h0032177

  74. Thatcher R. Cyclic Cortical Reorganization: Origins of Human Cognitive Development. Human Behavior and Developing Brain. Ed. Dawson G., Fisher K. New York, London: The Guilford Press, 1994. 232–269 pp.

  75. Turk-Browne N.B., Scholl B.J., Johnson M.K., Chun M.M. Implicit perceptual anticipation triggered by statistical learning. Journal of Neuroscience. 2010. 30 (33): 11177–11187. https://doi.org/10.1523/JNEUROSCI.0858-10.2010

  76. Ulrich R., Leuthold H., Sommer W. Motor programming of response force and movement direction. Psychophysiology. 1998. 35 (6): 721–728. https://doi.org/10.1111/1469-8986.3560721

  77. Wainwright A., Bryson S.E. The development of exogenous orienting: Mechanisms of control. Journal of Experimental Child Psychology. 2002. 82 (2): 141–155. https://doi.org/10.1016/S0022-0965(02)00002-4

  78. Walter W.G., Cooper R., Aldridge V.J., McCallum W.C., Winter A.L. Contingent negative variation: An electric sign of sensori-motor association and expectancy in the human brain. Nature. 1964. 203 (4943): 380–384.https://doi.org/10.1038/203380a0

  79. Weiss S.M., Meltzoff A.N., Marshall P.J. Neural measures of anticipatory bodily attention in children: Relations with executive function. Developmental Cognitive Neuroscience. 2018. 34: 148–158. https://doi.org/10.1016/j.dcn.2018.08.002

  80. Williams R.S., Biel A.L., Wegier P., Lapp L.K., Dyson B.J., Spaniol J. Age differences in the Attention Network Test: Evidence from behavior and event-related potentials. Brain and Cognition. 2016. 102: 65–79. https://doi.org/10.1016/j.bandc.2015.12.007

  81. Zanto T.P., Rubens M.T., Thangavel A., Gazzaley A. Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neuroscience. 2011. 14 (5): 656–663. https://doi.org/10.1038/nn.2773

  82. Zhao J., Al-Aidroos N., Turk-Browne N.B. Attention Is Spontaneously Biased Toward Regularities. Psychological Science. 2013. 24 (5): 667–677. https://doi.org/10.1177/0956797612460407

  83. Zhou S.-S., Fan J., Lee T.M.C., Wang C.-Q., Wang K. Age-related differences in attentional networks of alerting and executive control in young, middle-aged, and older Chinese adults. Brain and Cognition. 2011. 75 (2): 205–210. https://doi.org/10.1016/j.bandc.2010.12.003

Дополнительные материалы отсутствуют.