Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 4, стр. 485-499

Functional Near-Infrared Spectroscopy Applications in Developmental Cognitive Neuroscience

M. A. Sitnikova ab*, S. B. Malykh c**

a Research and Project Centre for Cognitive Neuroscience and Neurotechnologies, Belgorod National Research University
Belgorod, Russia

b Russian Academy of Education
Moscow, Russia

c Psychological Institute of Russian Academy of Education, Russian Academy of Education
Moscow, Russia

* E-mail: furmanchuk@bsu.edu.ru
** E-mail: malykhsb@mail.ru

Поступила в редакцию 22.11.2020
После доработки 22.12.2020
Принята к публикации 22.12.2020

Аннотация

Functional near-infrared spectroscopy (fNIRS) is known as a versatile and much promising non-invasive neuroimaging method extensively used nowadays in developmental cognitive neuroscience for measuring neural substrates underlying mental activity and processes involved in cognition, social interaction, and learning over the life span. This paper focuses on a summary of the basic principles of fNIRS technique concerning its design, implementation, and measurements. A detailed review of fNIRS strengths and benefits over other neuroimaging modalities is provided. One of the aims is to illustrate the fNIRS advantages by findings of recent studies from the wide variety of fNIRS applications: language, numerical cognition, executive functions, emotions, memory, motor functions, with a particular focus on neuroimaging in naturalistic environments. Moreover, the overview of recent implementations as well as future perspectives of fNIRS application in accordance with current trends in developmental sciences domain is considered: hyperscanning (simultaneous multi-subject measurements); multimodal measurements (combining several neuroimaging modalities in one research); neurofeedback trainings for enhancing cognitive functions in children and adults; use of interactive immersive stimuli and virtual reality (VR) in developmental cognitive neuroscience. Important limitations and challenges of fNIRS within healthy individuals in daily life settings are highlighted, as well as possible technical solutions and methodological procedures of their overcoming are discussed.

Keywords: development, developmental cognitive neuroscience, functional near-infrared spectroscopy, neuroimaging

DOI: 10.31857/S0044467721040092

Список литературы

  1. Almajidy R.K., Mankodiya K., Abtahi M., Hofmann U.G. A Newcomer’s Guide to Functional Near-Infrared Spectroscopy Experiments. IEEE Reviews in Biomedical Engineering. 2020. 13: 292–308.

  2. Ansari D., De Smedt B., Grabner R.H. Neuroeducation. A critical overview of an emerging field. Neuroethics. 2012. 5: 105–117.

  3. Arimitsu T., Uchida-Ota M., Yagihashi T., Kojima S., Watanabe S., Hokuto I., Ikeda K., Takahashi T., Minagawa-Kawai Y. Functional hemispheric specialization in processing phonemic and prosodic auditory changes in neonates. Front. Psychol. 2011. 2: 202.

  4. Aslin R.N., Shukla M., Emberson L.L. Hemodynamic correlates of cognition in human infants. Annu Rev Psychol. 2015. 66: 349–379.

  5. Azhari A., Truzzi A., Neoh M.J-Y., Balagtas J.P.M., Tan H.H., Goh P.P., Ang X.A., Setoh P., Rigo P., Bornstein M.H., Esposito G. A decade of infant neuroimaging research: What have we learned and where are we going? Infant Behav Dev. 2020. 58: 101389.

  6. Babiloni F., Astolfi L. Social neuroscience and hyperscanning techniques: Past, present and future. NeurosciBiobehav Rev. 2014, 44: 76–93.

  7. Bahnmueller J., Dresler T., Ehlis A.-C., Cress U., Nuerk H.-C. NIRS in motion—unraveling the neurocognitive underpinnings of embodied numerical cognition. Front. Psychol. 2014. 5: 743.

  8. Balardin J.B., Zimeo Morais G.A., Furucho R.A., Trambaiolli L.R., Sato J.R. Impact of communicative head movements on the quality of functional near-infrared spectroscopy signals: negligible effects for affirmative and negative gestures and consistent artifacts related to raising eyebrows. J. Biomed. Opt. 2017. 22: 046010.

  9. Blasi A., Lloyd-Fox S., Katus L., Elwell C.E. fNIRS for tracking brain development in the context of global health projects. Photonics. 2019. 6 (3): 89.

  10. Bleichner M.G., Lundbeck M., Selisky M., Minow F., Jager M., Emkes R., Debener S., De Vos M. Exploring miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see? Physiological Reports. 2015. 3 (4): e12362.

  11. Blume F., Hudak J., Dresler T., Ehlis A.-C., Kühnhausen J., Renner T. J., Gawrilow C. NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: study protocol for a randomized controlled trial. Trials. 2017. 18 (1): 41.

  12. Boas D.A., Elwell C.E., Ferrari M., Taga G. Twenty years of functional near-infrared spectroscopy: Introduction for the special issue. Neuroimage. 2014. 85: 1–5.

  13. Brigadoi S., Coope, R.J. How short is short? Optimum source – detector distance for short-separation channels in functional near-infrared spectroscopy. Neurophotonics. 2015. 2: 25005.

  14. Brockington G., Balardin J.B., Zimeo Morais G.A., Malheiros A., Lent R., Moura L.M., Sato J.R. From the Laboratory to the Classroom: The Potential of Functional Near-Infrared Spectroscopy in Educational Neuroscience. Front. Psychol. 2018. 9: 1840.

  15. Chance B., Zhuang Z., Un Ah C., Alter C., Lipton L. Cognition-activated low-frequency modulation of light absorption in human brain. Proc. Natl. Acad. Sci. USA. 1993. 90 (8): 3770–3774.

  16. Chitnis D., Cooper R.J., Dempsey, L., Powell S., Quaggia S., Highton D., Elwell C., Hebden J.C., Everdell N.L. Functional imaging of the human brain using a modular, fibreless, high-density diffuse optical tomography system. Biomed Opt Express. 2016. 7: 4275.

  17. Cui X., Bryant D.M., Reiss A.L. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. Neuroimage. 2012. 9 (3): 2430–2437.

  18. Curtin A., Ayaz H. The age of neuroergonomics: Towards ubiquitous and continuous measurement of brain function with fNIRS. Japanese Psychological Research. 2018. 60: 374–386.

  19. Curtin A., Tong S., Sun J., Wang J., Onaral B., Ayaz H. A Systematic Review of Integrated Functional Near-Infrared Spectroscopy (fNIRS) and Transcranial Magnetic Stimulation (TMS) Studies. Front. Neurosci. 2019. 13: 84.

  20. Cutini S., Basso Moro S., Bisconti S. Functional near infrared optical imaging in cognitive neuroscience: an introductory review. Journal of Near Infrared Spectroscopy. 2012. 20 (1): 75–92.

  21. Delpy D.T., Cope M., van der Zee P., Arridge S., Wray S., Wyatt J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol. 1988. 33 (12): 1433–1442.

  22. Eggebrecht A., Ferradal S., Robichaux-Viehoever A., Hassanpour M.S., Dehghani H., Snyder A.Z., Hershey T., Culver J.P. Mapping distributed brain function and networks with diffuse optical tomography. Nature Photonics. 2014. 8 (6): 448–454.

  23. Ehlis A., Barth B., Hudak J., Storchak H., Weber L., Kimmig A.S., Kreifelts B., Dresler T., Fallgatter A.J. Near-infrared spectroscopy as a new tool for neurofeedback training: Applications in psychiatry and methodological considerations. Jpn. Psychol. Res. 2018. 60: 225–241.

  24. Fantini S., Frederick B., Sassaroli A. Perspective: Prospects of non-invasive sensing of the human brain with diffuse optical imaging. APL Photonics. 2018. 3: 110901.

  25. Fiske A., Holmboe K. Neural substrates of early executive function development. Developmental Review. 2019. 52: 42–62.

  26. Fujimoto H., Mihara M., Hattori N., Hatakenaka M., Yagura H., Kawano T., Miyai I., Mochizuki H. Neurofeedback-induced facilitation of the supplementary motor area affects postural stability. Neurophotonics. 2017. 4 (4): 045003.

  27. Funane T., Sato H., Yahata N., Takizawa R., Nishimura Y., Kinoshita A., Katura T., Atsumori H., Fukuda M., Kasai K., Koizumi H., Kiguchi M. Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistanceoptodes. Neurophotonics. 2015. 2 (1): 015003.

  28. Galderisi A., Brigadoi S., Cutini S., Moro S.B., Lolli E., Meconi F., Benavides-Varela S., Baraldi E., Amodio P., Cobelli C., Trevisanuto D., Dell’Acqua R. Long-term continuous monitoring of the preterm brain with diffuse optical tomography and electroencephalography: a technical note on cap manufacturing. Neurophotonics. 2016. 3: 045009.

  29. Jöbsis F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977. 198: 1264–1267.

  30. Herold F., Wiegel P., Scholkmann F., Thiers A., Hamacher D., Schega L. Functional near-infrared spectroscopy in movement science: A systematic review on cortical activity in postural and walking tasks. Neurophoton. 2017. 4: 41403.

  31. Hoshi Y., Tamura M. Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci. Lett. 1993. 150 (1): 5–8.

  32. Hudak J., Blume F., Dresler T., Haeussinger F.B., Renner T.J., Fallgatter A.J., Gawrilow C., Ehlis A.C. Near-infrared spectroscopy-based frontal lobe neurofeedback integrated in virtual reality modulates brain and behavior in highly impulsive adults. Frontiers in Human Neuroscience. 2017. 11: 425.

  33. Hyde D.C., Simon C.E., Ting F., Nikolaeva J.I. Functional organization of the temporal–parietal junction for theory of mind in preverbal infants: A near-infrared spectroscopy study. Journal of Neuroscience. 2018. 38: 4264–4274.

  34. Kimmig A.-C.S., Dresler T., Hudak J., Haeussinger F.B., Wildgruber D., Fallgatter A.J., Ehlis A.C., Kreifelts B. Feasibility of NIRS-based neurofeedback training in social anxiety disorder: behavioral and neural correlates. Journal of Neural Transmission. 2019. 126 (9): 1175–1185.

  35. Kober S.E., Wood G., Kurzmann J., Friedrich E.V.C., Stangl M., Wippel T., Väljamäe A., Neuper C. Near-infrared spectroscopy based neurofeedback training increases specific motor imagery related cortical activation compared to sham feedback. Biol. Psychol. 2014. 95: 21–30.

  36. Kohl S.H., Mehler D.M.A., Lührs M., Thibault R.T., Konrad K., Sorger B. The potential of functional near-infrared spectroscopy-based neurofeedback – a systematic review and recommendations for best practice. Front Neurosci. 2020. 14: 594.

  37. Koike T., Tanabe H.C., Sadato N. Hyperscanning neuroimaging technique to reveal the two-in-one system in social interactions. Neuroscience Research. 2015. 90: 25–32.

  38. Lauritzen M., Gold L. Brain function and neurophysiological correlates of signals used in functional neuroimaging. J Neurosci. 2003. 23.

  39. Leff D.R., Orihuela-Espina F., Elwell C.E., Athanasiou T., Delpy D.T., Darzi A.W., Yang G.Z. Assessment of the cerebral cortex during motor task behaviors in adults: A systematic review of functional near-infrared spectroscopy (fNIRS) studies. NeuroImage. 2011. 54 (4): 2922–2936.

  40. León-Carrión J., León-Domínguez U. Functional near-infrared spectroscopy (fNIRS): Principles and neuroscientific applications. Neuroimaging Methods. Prof. Peter Bright (Ed.), 2012. ISBN: 978-953-51-0097-3, InTech, Available from: http://www.intechopen.com/books/neuroimaging-methods/functional-nearinfrared-spectroscopy-fnirs-brain-studies-and-others-clinical-uses

  41. Liao S.M., Culver J.P. Near-infrared optical technologies to illuminate the status of the neonatal brain. Current Pediatric Reviews. 2014. 10 (1): 73–86.

  42. Liu Y., Piazza E.A., Simony E., Shewokis P.A., Onaral B., Hasson U., Ayaz H. Measuring speaker – listener neural coupling with functional near-infrared spectroscopy. Sci. Rep. 2017. 7:43293.

  43. Lloyd-Fox S., Begus K., Halliday D., Pirazzoli L., Blasi A., Papademetriou M., Darboe M.K., Prentice A.M., Johnson M.H., Moore S.E., Elwell C.E. Cortical specialization to social stimuli from the first days to the second year of life: A rural Gambian cohort. Dev Cogn Neurosci. 2016. 25: 92–104.

  44. Lloyd-Fox S., Blasi A., Elwell C.E. Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev. 2010. 34: 269–84.

  45. Lloyd-Fox S., Blasi A., Elwell C.E., Charman T., Murphy D., Johnson M.H. Reduced neural sensitivity to social stimuli in infants at risk for autism. Proc. R. Soc. B Biol. Sci. 2013. 280.

  46. Lloyd-Fox S., Papademetriou M., Darboe M.K., Everdell N.L., Wegmuller R., Prentice A.M., Moore S.E., Elwell C.E. Functional near-infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa. Sci. Rep. 2014. 4: 4740.

  47. McDonald N.M., Perdue K.L. The infant brain in the social world: Moving toward interactive social neuroscience with functional near-infrared spectroscopy. Neuroscience and Biobehavioral Reviews. 2018. 87: 38–49.

  48. Marx A.M., Ehlis A.C., Furdea A., Holtmann M., Banaschewski T., Brandeis D., Rothenberger A., Gevensleben H., Freitag C.M., Fuchsenberger Y., Fallgatter A.J., Strehl U. Near-infrared spectroscopy (NIRS) neurofeedback as a treatment for children with attention deficit hyperactivity disorder (ADHD): A pilot study. Frontiers in Human Neuroscience. 2015. 8 (1038).

  49. Matusz P.J., Dikker S., Huth A.G., Perrodin C. Are We Ready for Real-world Neuroscience? Journal of Cognitive Neuroscience. 2019. (3): 327–338.

  50. Mehnert J., Akhrif A., Telkemeyer S., Rossi S., Schmitz C.H., Steinbrink J., Wartenburger I., Obrig H., Neufang S. Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain. Brain Dev. 2012. 35 (10): 894–904.

  51. Minagawa Y., Xu M., Morimoto S. Toward interactive social neuroscience: Neuroimaging real-world interactions in various populations. The Japanese Psychological Research. 2018. 60 (4): 196–224.

  52. Moriguchi Y., Sakata C. Development of Cognitive Shifting from Others’ Behavior in Young Children: A Near-infrared Spectroscopy Study. Developmental Neuropsychology. 2019. 1–9.

  53. Morita T., Asada M., Naito E. Contribution of Neuroimaging Studies to Understanding Development of Human Cognitive Brain Functions. Front. Hum. Neurosci. 2016. 10: 464.

  54. Munakata Y., Casey B. J., Diamond A. Developmental cognitive neuroscience: progress and potential. Trends Cogn. Sci. 2004. 8; 122–128.

  55. Nagamitsu S., Yamashita Y., Tanaka H., Matsuishi T. Functional near-infrared spectroscopy studies in children. Biopsychosocial Medicine 2012. 6(1): 7.

  56. Orihuela-Espina F., Leff D.R., James D.R.C., Darzi A.W., Yang G.Z. Quality control and assurance in functional near-infrared spectroscopy (fNIRS) experimentation Phys. Med. Biol. 2010. 55 (13): 3701–3724.

  57. Paret C., Goldway N., Zich C., Keynan J.N., Hendler T., Linden D., Kadosh K.C. Current progress in real-time functional magnetic resonance-based neurofeedback: Methodological challenges and achievements. Neuroimage. 2019. 116107.

  58. Patil A.V., Safaie J., Moghaddam H.A., Wallois F., Grebel R. Experimental investigation of NIRS spatial sensitivity. Biomed. Opt. Express. 2011. 2: 1478–1493.

  59. Pfeifer M.D., Scholkmann F., Labruyère R. Signal processing in functional near-infrared spectroscopy (fNIRS): Methodological differences lead to different statistical results. Front. Hum. Neurosci. 2018. 11: 20801.

  60. Pinti P., Aichelburg C., Gilbert S., Hamilton A., Hirsch J., Burgess P., Tachtsidis I. A review on the use of wearable functional near-infrared spectroscopy in naturalistic environments. Japanese Psychological Research. 2018a. 60: 347–373.

  61. Pinti P., Aichelburg C., Gilbert S., Hamilton A., Hirsch J., Burgess P., Tachtsidis I. A review on the use of wearable functional near-infrared spectroscopy in naturalistic environments. Jpn. Psychol. Res. 2018, 2, 20801.

  62. Pinti P., Aichelburg C., Lind F., Power S., Swingler E., Merla A., Hamilton A., Gilbert S., Burgess P., Tachtsidis I. Using fiberless, wearable fNIRS to monitor brain activity in real-world cognitive tasks. Journal of Visualized Experiments. 2015. 106: 53336.

  63. Pinti P., Tachtsidis I., Hamilton A., Hirsch J., Aichelburg C., Gilbert S., Burgess P.W. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann NY Acad Sci. 2020 Mar; 1464 (1): 5–29. Epub 2018 Aug 7.https://doi.org/10.1111/nyas.13948

  64. Quaresima V., Ferrari M. Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: A concise review. Organ. Res. Methods 2019a. 22: 46–68.

  65. Quaresima V., Ferrari M. A Mini-Review on Functional Near-Infrared Spectroscopy (fNIRS): Where Do We Stand, and Where Should We Go? Photonics. 2019b. 6: 87.

  66. Reindl V., Gerloff C., Scharke W., Konrad K. Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. Neuroimage. 2018. 178: 493–502.

  67. Rupawala M., Dehghani H., Lucas S.J.E., Tino P., Cruse D. Shining a light on awareness: a review of functional near-infrared spectroscopy for prolonged disorders of consciousness. Front. Neurol. 2018 9: 350.

  68. Scarapicchia V., Brown C., Mayo C., Gawryluk J.R. Functional magnetic resonance imaging and functional near-infrared spectroscopy: insights from combined recording studies. Front. Hum. Neurosci. 2017. 11: 419.

  69. Schneider S., Christensen A., Haußinger F.B., Fallgatter A.J., Giese M. A., Ehlis A.C. Show me how you walk and I tell you how you feel – A functional near-infrared spectroscopy study on emotion perception based on human gait. Neuroimage. 2014. 85 (1): 380–390.

  70. Scholkmann F., Holper L., Wolf U., Wolf M. A new methodical approach in neuroscience: Assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI) hyperscanning. Frontiers in Human Neuroscience. 2013. 7: 813.

  71. Scholkmann F., Kleiser S., Metz A.J., Zimmermann R., Pavia J.M., Wolf U., Wolf M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014. 85: 6–27.

  72. Shamay-Tsoory S.G., Mendelsohn A. Real-Life Neuroscience: An Ecological Approach to Brain and Behavior Research. Perspectives on Psychological Science. 2019. 174569161985635.

  73. Soltanlou M., Artemenko C., Ehlis A.-C., Huber S., Fallgatter A.J., Dresler T., Nuerk H-C. Reduction but no shift in brain activation after arithmetic learning in children: a simultaneous fNIRS-EEG study. Sci. Rep. 2018a. 8: 1707.

  74. Soltanlou M., Sitnikova M.A., Nuerk H-C., Dresler T. Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Studying Cognitive Development: The Case of Mathematics and Language. Front. Psychol. 2018b. 9: 277.

  75. Steinmayr R., Ziegler M., Trauble B. Do intelligence and sustained attention interact in predicting academic achievement? Learn. Indiv. Differ. 2010. 20, 14–18.

  76. Strangman G.E., Li Z., Zhang Q. Depth sensitivity and source-detector separations for near-infrared spectroscopy based on the Colin27 brain template. PLoS ONE 2013. 8: e 66319.

  77. Suda M., Takei Y., Aoyama Y., Narita K., Sato T., Fukuda M., Mikuni M. Frontopolar activation during face-to-face conversation: An in situ study using near-infrared spectroscopy. Neuropsychologia. 2010. 48 (2): 441–447.

  78. Tellis G., Tellis C. Using functional near-infrared spectroscopy with fluent speakers to determine hemoglobin changes in the brain during speech and non-speech tasks. NIR News. 2016. 27: 4–7.

  79. Urakawa S., Takamoto K., Ishikawa A., Ono T., Nishijo H. Selective medial prefrontal cortex responses during live mutual gaze interactions in human infants: an fNIRS study. Brain Topogr. 2015. 28: 691–701.

  80. Vannasing P., Florea O., González-Frankenberger B., Tremblay J., Paquette N., Safi D., Wallois F., Lepore F., Béland R., Lassonde M., Gallagher A. Distinct hemispheric specializations for native and non-native languages in one-day-old newborns identified by fNIRS. Neuropsychologia. 2016. 84: 63–69.

  81. Vanderwert R.E., Nelson C.A. The use of near-infrared spectroscopy in the study of typical and atypical development. NeuroImage. 2014. 85(1): 264–271.

  82. Villringer A., Planck J., Hock C., Schleinkofer L., Dirnagl U. Near-infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci. Lett. 1993. 154 (1–2): 101–104.

  83. Wilcox T., Biondi M. fNIRS in the developmental sciences. Wiley Interdisciplinary Review, Cognitive Science. 2015. 6 (3): 263–283.

  84. Yücel M.A., Selb J.J., Huppert T.J., Franceschini M.A., Boas D.A. Functional near-infrared spectroscopy: Enabling routine functional brain imaging. Curr. Opin. Biomed. Eng. 2017. 4: 78–86.

Дополнительные материалы отсутствуют.