Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 4, стр. 468-484

Оценка управляющих функций у детей 3–6 лет: состояние, проблемы и перспективы

А. В. Курганский 12*

1 ФБГНУ “Институт возрастной физиологии РАО”
Москва, Россия

2 Факультет психологии ИОН РАНХиГС
Москва, Россия

* E-mail: akurg@yandex.ru

Поступила в редакцию 18.11.2020
После доработки 19.12.2020
Принята к публикации 22.12.2020

Аннотация

На основе современных теоретических представлений об управляющих функциях (УФ) и их нейробиологических основах рассматривается развитие этих функций в восходящем онтогенезе. Анализируются поведенческие методы оценки УФ у дошкольников 3–6 лет и связь этих методов с различными теоретическими подходами. Отмечается, что среди существующих методов оценки УФ недостаточно представлены или вовсе отсутствуют методы оценки формирования и удержания целей деятельности и планов, реализующих эти цели. Обсуждаются поведенческие задачи, которые могут быть использованы для оценки целеполагания и планирования с помощью сочетания поведенческих, нейровизуализационных и электрофизиологических методов.

Ключевые слова: управляющие функции, дошкольники, цели деятельности, планы деятельности

DOI: 10.31857/S0044467721040055

Список литературы

  1. Ахутина Т.В., Корнеев А.А., Матвеева Е.Ю. Развитие функций программирования и контроля у детей 7–9 лет. Вестник Московского университета. Серия 14: Психология. 2016. (1): 42–63.

  2. Ахутина Т.В., Корнеев А.А., Матвеева Е.Ю., Кремлев А.Е., Гусев А.Н. Компьютерная батарея нейропсихологического обследования детей 6–9 лет “Ахутина-2017”. 2017. http://www.psy.msu.ru/about/lab/neuropsy/akhutina-2017.html

  3. Бернштейн Н.А. О построении движений. М.: Медгиз. 1947, 256 с.

  4. Горина Е.Ю., Ахутина Т.В. Оценка функций программирования и контроля у первоклассников: нейропсихологическое обследование, анализ ошибок на письме, опросник brief. Культурно-историческая психология. 2011. 7 (3): 105–113.

  5. Лурия А.Р. Высшие корковые функции человека. М.: Изд-во МГУ, 1969. 504 с.

  6. Лурия А.Р. Основы нейропсихологии. М.: Изд-во МГУ, 1973. 374 с.

  7. Мачинская Р.И. Управляющие системы мозга. Журнал высшей нервной деятельности им. И.П. Павлова. 2015. 65 (1): 33–60.

  8. Цехмистренко Т.А., Васильева В.А., Обухов Д.К., Шумейко Н.С. Строение и развитие коры большого мозга. М.: Издательство “Спутник+”, 2019. 538 с.

  9. Ackerman D.J., Friedman-Krauss A.H. Preschoolers’ executive function: Importance, contributors, research needs and assessment options. ETS Research Report Series. 2017. 2017 (1): 1–24.

  10. Adornetti I. On the phylogenesis of executive functions and their connection with language evolution. Front Psychol. 2016. 7: 1426.

  11. Anderson P. Assessment and development of executive function (EF) during childhood. Child Neuropsychol. 2002. 8 (2): 71–82.

  12. Anderson P.J., Reidy N. Assessing executive function in preschoolers. Neuropsychol Rev. 2012. 22 (4): 345–360.

  13. Ardila A. On the evolutionary origins of executive functions. Brain Cogn. 2008. 68 (1): 92–99.

  14. Aron A.R. From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry. 2011. 69 (12): e55–68.

  15. Arsalidou M., Pascual-Leone J., Johnson J.M., Kotova T. The constructive operators of the working mind: A developmental account of mental-attentional capacity. The Russian Journal of Cognitive Science. 2019. 6 (2): 44–70.

  16. Baddeley A. The central executive: a concept and some misconceptions. J Int Neuropsychol Soc. 1998. 4 (5): 523–526.

  17. Baddeley A. Working memory: theories, models, and controversies. Annu Rev Psychol. 2012. 63: 1–29.

  18. Baddeley A.D., Hitch G. Working memory. In: Bower G.A., editor. The psychology of learning and motivation (vol. 8, pp. 47–89) New York, NY, USA: Academic Press; 1974. pp. 47–89.

  19. Badre D., D’Esposito M. Is the rostro-caudal axis of the frontal lobe hierarchical?. Nat Rev Neurosci. 2009. 10 (9): 659–669.

  20. Banich M.T. The Stroop Effect Occurs at multiple points along a cascade of control: Evidence From Cognitive Neuroscience Approaches. Front Psychol. 2019. 10: 2164.

  21. Barkley R.A. Executive Functions: What they are, how they work, and why they evolved. Guilford Publications, 2012. 244 p.

  22. Berg V., Rogers S.L., McMahon M., Garrett M., Manley D. A novel approach to measure executive functions in students: An evaluation of two child-friendly apps. Front Psychol. 2020. 11: 1702.

  23. Best J.R., Miller P.H. A developmental perspective on executive function. Child Dev. 2010. 81 (6): 1641–1660.

  24. Botvinick M.M. Hierarchical models of behavior and prefrontal function. Trends Cogn Sci. 2008. 12 (5): 201–208.

  25. Boureau Y.L., Sokol-Hessner P., Daw N.D. Deciding how to decide: Self-control and meta-decision making. Trends Cogn Sci. 2015. 19 (11): 700–710.

  26. Bull R., Espy K.A., Wiebe S.A. Short-term memory, working memory, and executive functioning in preschoolers: longitudinal predictors of mathematical achievement at age 7 years. Dev Neuropsychol. 2008. 33 (3): 205–228.

  27. Chan R.C., Shum D., Toulopoulou T., Chen E.Y. Assessment of executive functions: review of instruments and identification of critical issues. Arch Clin Neuropsychol. 2008. 23 (2): 201–216.

  28. Cole M.W., Ito T., Braver T.S. Lateral prefrontal cortex contributes to fluid intelligence through multinetwork connectivity. Brain Connect. 2015. 5 (8): 497–504.

  29. Collette F., Hogge M., Salmon E., Van der Linden M. Exploration of the neural substrates of executive functioning by functional neuroimaging. Neuroscience. 2006. 139 (1): 209–221.

  30. Cortés Pascual A., Moyano Muñoz N., Quílez Robres A. The relationship between executive functions and academic performance in primary education: Review and meta-analysis. Front Psychol. 2019. 10: 1582.

  31. Craik F.I., Bialystok E. Planning and task management in older adults: cooking breakfast. Mem Cognit. 2006. 34 (6): 1236–1249.

  32. Cuevas K., Bell M.A. Infant attention and early childhood executive function. Child Dev. 2014. 85 (2): 397–404.

  33. Davidson M.C., Amso D., Anderson L.C., Diamond A. Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia. 2006. 44 (11): 2037–2078.

  34. Dayan P. Bilinearity, rules, and prefrontal cortex. Front Comput Neurosci. 2007. 1: 1.

  35. Dayan P. Rationalizable irrationalities of choice. Top Cogn Sci. 2014. 6 (2): 204–228.

  36. Diamond A. Executive functions. Annu Rev Psychol. 2013. 64: 135–168.

  37. Dixon M.L. Cognitive control, emotional value, and the lateral prefrontal cortex. Front Psychol. 2015. 6: 758.

  38. Duncan J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci. 2010. 14 (4): 172–179.

  39. Engelhardt L.E., Mann F.D., Briley D.A., Church J.A., Harden K.P., Tucker-Drob E.M. Strong genetic overlap between executive functions and intelligence. J Exp Psychol Gen. 2016. 145 (9): 1141–1159.

  40. Espy K.A., Kaufmann P.M., Glisky M.L. New procedures to assess executive functions in preschool children. Clin Neuropsychol. 2001. 15 (1): 46–58.

  41. Fiske A., Holmboe K. Neural substrates of early executive function development. Dev Rev. 2019. 52: 42–62.

  42. Frank M.J., Loughry B., O’Reilly R.C. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn Affect Behav Neurosci. 2001. 1 (2): 137–160.

  43. Friedman N.P., Miyake A., Corley R.P., Young S.E., Defries J.C., Hewitt J.K. Not all executive functions are related to intelligence. Psychol Sci. 2006. 17 (2): 172–179.

  44. Friedman N.P., Miyake A. Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex. 2017. 86: 186–204.

  45. Garon N., Bryson S.E., Smith I.M. Executive function in preschoolers: a review using an integrative framework. Psychol Bull. 2008. 134 (1): 31–60.

  46. Gilbert S.J., Burgess P.W. Executive function. Curr Biol. 2008. 18 (3): R110–R114.

  47. Goodwin S.J., Blackman R.K., Sakellaridi S., Chafee M.V. Executive control over cognition: stronger and earlier rule-based modulation of spatial category signals in prefrontal cortex relative to parietal cortex. J Neurosci. 2012. 32 (10): 3499–3515.

  48. Herd S.A., Krueger K.A., Kriete T.E., Huang T.R., Hazy T.E., O’Reilly R.C. Strategic cognitive sequencing: a computational cognitive neuroscience approach. Comput Intell Neurosci. 2013. 2013: 149329.

  49. Huttenlocher P.R. Perspectives in cognitive neuroscience.Neural plasticity: The effects of environment on the development of the cerebral cortex. Harvard University Press, 2002. 286 p.

  50. Howard S.J., Melhuish E. An early years toolbox for assessing early executive function, language, self-regulation, and social development: Validity, Reliability, and Preliminary Norms. J Psychoeduc Assess. 2017. 35 (3): 255–275.

  51. Hudson J.A., Shapiro L.R., Sosa B.B. Planning in the real world: preschool children’s scripts and plans for familiar events. Child Dev. 1995. 66 (4): 984–998.

  52. Jurado M.B., Rosselli M. The elusive nature of executive functions: a review of our current understanding. Neuropsychol Rev. 2007. 17 (3): 213–233.

  53. Kaplan S., Berman M.G. Directed attention as a common resource for executive functioning and self-regulation. Perspect Psychol Sci. 2010. 5 (1): 43–57.

  54. Koechlin E. An evolutionary computational theory of prefrontal executive function in decision-making. Philos Trans R Soc Lond B Biol Sci. 2014. 369 (1655): 20130474.

  55. Kopp B. A simple hypothesis of executive function. Front Hum Neurosci. 2012. 6: 159.

  56. Lara A.H., Wallis J.D. The Role of Prefrontal Cortex in Working Memory: A Mini Review. Front Syst Neurosci. 2015. 9: 173.

  57. Lashley K.S. “The problem of serial order in behavior,” in Cerebral Mechanisms in Behavior: The Hixon Symposium, ed L. A. Jeffress (Oxford: Wiley), 1951. pp 112–146.

  58. Lebel C., Walker L., Leemans A., Phillips L., Beaulieu C. Microstructural maturation of the human brain from childhood to adulthood. Neuroimage. 2008. 40 (3): 1044–1055.

  59. Lenroot R.K., Giedd J.N. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006. 30 (6): 718–729.

  60. Lezak M.D. Neuropsychological assessment(3rd ed.). New York: Oxford University Press, 1995. 1026 p.

  61. Marcovitch S., Clearfield M.W., Swingler M., Calkins S.D., Bell M.A. Attentional predictors of 5-month-olds' performance on a looking A-not-B Task. Infant Child Dev. 2016. 25 (4): 233–246.

  62. McCabe D.P., Roediger H.L., McDaniel M.A., Balota D.A., Hambrick D.Z. The relationship between working memory capacity and executive functioning: evidence for a common executive attention construct. Neuropsychology. 2010. 24 (2): 222–243.

  63. McClelland M.M., Cameron C.E., Duncan R., Bowles R.P., Acock A.C., Miao A., Pratt M.E. Predictors of early growth in academic achievement: the head-toes-knees-shoulders task. Front Psychol. 2014. 5: 599.

  64. Miller E.K., Cohen J.D. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001. 24: 167–202.

  65. Miller G.A., Galanter E., and Pribram K.A. Plans and the Structure of Behavior. New York, NY: Holt, Rinehart and Winston, 1960. 226 p.

  66. Miller E.K., Wallis J.D. Executive Function and Higher-Order Cognition: Definition and Neural Substrates. In: Squire LR (ed.) Encyclopedia of Neuroscience, 2009. volume 4, pp. 99–104. Oxford: Academic Press, 2009.

  67. Miyata H., Watanabe S., Minagawa Y. Performance of young children on “traveling salesperson” navigation tasks presented on a touch screen. PLoS One. 2014. 9 (12): e115292.

  68. Miyake A., Friedman N.P., Emerson M.J., Witzki A.H., Howerter A., Wager T.D. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn Psychol. 2000. 41 (1): 49–100.

  69. Miyake A., Friedman N.P. The nature and organization of individual differences in executive functions: Four general conclusions. Curr Dir Psychol Sci. 2012. 21 (1): 8–14.

  70. Niendam T.A., Laird A.R., Ray K.L., Dean Y.M., Glahn D.C., Carter C.S. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci. 2012. 12 (2): 241–268.

  71. Norman D.A., Shallice T. Attention to action: Willed and automatic control of behavior. In R.J. Davidson & G.E. Schwartz & D. Shapiro (Eds.), Consciousness and self regulation: Advances in research, Vol. IV (Vol. IV). New York: Plenum Press, 1986.

  72. Oberauer K. The focus of attention in working memory-from metaphors to mechanisms. Front Hum Neurosci. 2013. 7: 673.

  73. Oberauer K. Working memory and attention - A conceptual analysis and review. J Cogn. 2019. 2 (1): 36.

  74. O’Reilly R.C., Herd S.A., Pauli W.M. Computational models of cognitive control. Curr Opin Neurobiol. 2010. 20 (2): 257–261.

  75. Pezzulo G. An Active Inference view of cognitive control. Front Psychol. 2012. 3: 478.

  76. Pezzulo G., Rigoli F., Friston K.J. Hierarchical active inference: A theory of motivated control. Trends Cogn Sci. 2018. 22 (4): 294–306.

  77. Riccomagno M.M., Kolodkin A.L. Sculpting neural circuits by axon and dendrite pruning. Annu Rev Cell Dev Biol. 2015. 31: 779–805.

  78. Rosati A.G. The evolution of primate executive function: from response control to strategic decision-making. In: Evolution of Nervous Systems, Second Edition, Volume 3 (J. Kaas & L. Krubitzer, eds.). Amsterdam: Elsevier, 2017. pp. 423–437.

  79. Roy J.E., Buschman T.J., Miller E.K. PFC neurons reflect categorical decisions about ambiguous stimuli. J Cogn Neurosci. 2014. 26 (6): 1283–1291.

  80. Royall D.R., Palmer R.F. “Executive functions” cannot be distinguished from general intelligence: two variations on a single theme within a symphony of latent variance. Front Behav Neurosci. 2014. 8: 369.

  81. Rubia K. Functional brain imaging across development. Eur Child Adolesc Psychiatry. 2013. 22 (12): 719–731.

  82. Smaers J.B., Gómez-Robles A., Parks A.N., Sherwood C.C. Exceptional evolutionary expansion of prefrontal cortex in great apes and humans. Curr Biol. 2017. 27 (5): 714–720.

  83. Szczepanski S.M., Knight R.T. Insights into human behavior from lesions to the prefrontal cortex. Neuron. 2014. 83 (5): 1002–1018.

  84. Stuss D.T. Functions of the frontal lobes: relation to executive functions. J Int Neuropsychol Soc. 2011. 17 (5): 759–765.

  85. Stuss D.T., Alexander M.P. Executive functions and the frontal lobes: a conceptual view. Psychol Res. 2000. 63 (3–4): 289–298.

  86. Tanji J., Hoshi E. Role of the lateral prefrontal cortex in executive behavioral control. Physiol Rev. 2008. 88 (1): 37–57.

  87. Tiego J., Testa R., Bellgrove M.A., Pantelis C., Whittle S. A Hierarchical Model of Inhibitory Control. Front Psychol. 2018. 9: 1339.

  88. Tsuchida A., Fellows L.K. Are core component processes of executive function dissociable within the frontal lobes? Evidence from humans with focal prefrontal damage. Cortex. 2013. 49 (7): 1790–1800.

  89. Werchan D.M., Collins A.G., Frank M.J., Amso D. Role of prefrontal cortex in learning and generalizing hierarchical rules in 8-month-old infants. J Neurosci. 2016. 36 (40): 10314–10322.

  90. Wood J.N., Grafman J. Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci. 2003. 4 (2): 139–147.

  91. Xu F., Han Y., Sabbagh M.A., Wang T., Ren X., Li C. Developmental differences in the structure of executive function in middle childhood and adolescence. PLoS One. 2013. 8 (10): e77770.

  92. Zelazo P.D. The Dimensional Change Card Sort (DCCS): a method of assessing executive function in children. Nat Protoc. 2006. 1 (1): 297–301.

  93. Zelazo P.D., Blair C.B., Willoughby M.T. Executive function: Implications for education (NCER 2017–2000) Washington, DC: National Center for Education Research, Institute of Education Sciences, U.S. Department of Education. 2016. This report is available on the Institute website at http://ies.ed.gov/.

Дополнительные материалы отсутствуют.