Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 4, стр. 515-528

A Longitudinal Study of Electroencephalogram Spatial Connectivity Maturation in Children and Adolescents-Northerners (From 8 to 16/17 Years Old)

N. V. Shemyakina a***, Zh. V. Nagornova a, S. I. Soroko a

a Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
St. Petersburg, Russia

* E-mail: shemyakina_n@mail.ru
** E-mail: natalia.shemyakina@iephb.ru

Поступила в редакцию 30.11.2020
После доработки 1.03.2021
Принята к публикации 2.03.2021


This study aimed to reveal and describe the typical and specific longitudinal dynamics of functional and effective connectivity by means of electroencephalogram (EEG) in normal children living in the European North of Russia, boys and girls. The eyes-closed resting state EEGs were recorded in 15 children at a yearly basis during the developmental period from 8 to 16–17 years. Age-related changes in EEG connectivity were explored by coherence (functional connectivity) and Granger causality (GC, considered as effective connectivity) analyses in frequency and time domains, which were carried out in delta (1.6–4 Hz), theta (4–7.5 Hz), alpha1 (7.5–9.5 Hz), alpha2 (9.5–12.5 Hz), beta1 (12.5–18 Hz), beta2 (18–30 Hz), and common (1.6–30 Hz) frequency bands. The coherence analysis revealed maturation effects reflected in an increased connectivity in all frequency bands. Most pronounced changes of EEG coherence were revealed in alpha2, beta1, and common frequency bands. The interhemispheric frontal-parietal functional connectivity increased both in boys and girls. Additionally, in boys, interhemispheric functional connectivity increased between the central and temporal areas in alpha2 and common bands. In girls, there was observed an increase in intrahemispheric anterior-posterior functional connectivity in the alpha2 frequency band. The changes in effective connectivity in boys indicate an increased bidirectional information flow (revealed by the GC analysis) from the default mode network (DMN) to the frontoparietal network (FPN) and vice versa. By contrast, in girls, the information flow increases from the frontal to parietal areas (FPN), and decreasing between the central and frontal areas (sensorimotor network). The data suggest different age-related trends in the maturation of connectivity between the brain networks and different role of top-down and bottom-up regulation processes in boys compared to girls.

Keywords: EEG, spatial synchronization, functional connectivity, effective connectivity, coherence, Granger causality, longitudinal study, children, adolescents, North

Список литературы

  1. Anderson K.L., Rajagovindan R., Ghacibeh G.A., Meador K.J., Ding M. Theta oscillations mediate interaction between prefrontal cortex and medial temporal lobe in human memory. Cereb Cortex. 2010. 20 (7): 1604–12. https://doi.org/10.1093/cercor/bhp223

  2. Asato M.R., Terwilliger R., Woo J., Luna B. White matter development in adolescence: a DTI study. Cereb Cortex. 2010. 20 (9): 2122–2131. https://doi.org/10.1093/cercor/bhp282

  3. Astolfi L., Cincotti F., Mattia D., Babiloni C., Carducci F., Basilisco A., Rossini P.M., Salinari S., Ding L., Ni Y., He B., Babiloni F. Assessing cortical functional connectivity by linear inverse estimation and directed transfer function: simulations and application to real data. Clin Neurophysiol. 2005. 116 (4): 920–932. https://doi.org/10.1016/j.clinph.2004.10.012

  4. Babiloni C., Lizio R., Marzano N., Capotosto P., Soricelli A., Triggiani A.I., Cordone S., Gesualdo L., Del Percio C. Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int J Psychophysiol. 2016. 103: 88–102. https://doi.org/10.1016/j.ijpsycho.2015.02.008

  5. Baccalá L.A., Sameshima K. Partial directed coherence: A new concept in neural structure determination. Biol Cybern 2001. 84: 463–474.

  6. Baccala L.A., Takahashi D.Y., Sameshima K. Directed Transfer Function: Unified Asymptotic Theory and Some of Its Implications. IEEE Trans Biomed Eng. 2016. 63(12):2450-2460. https://doi.org/10.1109/TBME.2016.2550199

  7. Barnett L., Barrett A.B., Seth A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys Rev Lett. 2009. 103: 238701.

  8. Barnett L., Seth A.K. The MVGC Multivariate Granger Causality Toolbox: A New Approach to Granger-causal Inference. J. Neurosci. Methods. 2014. 223: 50–68. https://doi.org/10.1016/j.jneumeth.2013.10.018

  9. Barry R.J., Clarke A.R., McCarthy R., Selikowitz M. Adjusting EEG coherence for inter-electrode distance effects: an exploration in normal children. Int J Psychophysiol. 2005. 55 (3): 313–321. https://doi.org/10.1016/j.ijpsycho.2004.09.001

  10. Barry R.J., Clarke A.R., McCarthy R., Selikowitz M. EEG coherence in children with attention-deficit/hyperactivity disorder and comorbid reading disabilities. Int J Psychophysiol. 2009. 71(3): 205–210. https://doi.org/10.1016/j.ijpsycho.2008.09.003

  11. Barry R.J., Clarke A.R., McCarthy R., Selikowitz M., Johnstone S.J., Rushby J.A. Age and gender effects in EEG coherence: I. Developmental trends in normal children. Clin Neurophysiol. 2004. 115 (10): 2252–2258. https://doi.org/10.1016/j.clinph.2004.05.004

  12. Bendat J.S., Piersol A.G. Random Data Analysis and Measurement Procedures. New York: Wiley. 1986.

  13. Benes F.M., Turtle M., Khan Y., Farol P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry. 1994. 51 (6): 477–484. https://doi.org/10.1001/archpsyc.1994.03950060041004

  14. Bressler S.L., Seth A.K. Wiener Granger causality: a well established methodology. Neuroimage. 2011. 58 (2): 323–329.

  15. Briley P.M., Liddle E.B., Groom M.J., Smith H.J.F., Morris P.G., Colclough G.L., Brookes M.J., Liddle P.F. Development of human electrophysiological brain networks. J Neurophysiol. 2018. 120 (6): 3122–3130. https://doi.org/10.1152/jn.00293.2018

  16. Buzsáki G. Rhythms of the brain. Oxford University Press. 2006. 465 p.

  17. Buzsáki G., Draguhn A. Neuronal oscillations in cortical networks. Science. 2004. 304(5679): 1926–1929. https://doi.org/10.1126/science.1099745

  18. Campbell I.G., Grimm K.J., de Bie E., Feinberg I. Sex, puberty, and the timing of sleep EEG measured adolescent brain maturation. Proc Natl Acad Sci U S A. 2012. 109 (15): 5740–5743. https://doi.org/10.1073/pnas.1120860109

  19. Casey B.J., Giedd J.N., Thomas K.M. Structural and functional brain development and its relation to cognitive development. Biol Psychol. 2000. 54 (1–3): 241–57. https://doi.org/10.1016/s0301-0511(00)00058-2

  20. Casey B.J., Jones R.M., Hare T.A. The adolescent brain. Ann N Y Acad Sci. 2008. 1124: 111–126. https://doi.org/10.1196/annals.1440.010

  21. Chorlian D.B., Tang Y., Rangaswamy M., O’Connor S., Rohrbaugh J., Taylor R., Porjesz B. Heritability of EEG coherence in a large sib-pair population. Biol Psychol. 2007. 75 (3): 260–266. https://doi.org/10.1016/j.biopsycho.2007.03.006

  22. Coben R., Clarke A.R., Hudspeth W., Barry R.J. EEG power and coherence in autistic spectrum disorder. Clin Neurophysiol. 2008. 119 (5): 1002–1009. https://doi.org/10.1016/j.clinph.2008.01.013

  23. Cohen D., Tsuchiya N. The Effect of Common Signals on Power, Coherence and Granger Causality: Theoretical Review, Simulations, and Empirical Analysis of Fruit Fly LFPs Data. Front Syst Neurosci. 2018. 12: 30. https://doi.org/10.3389/fnsys.2018.00030

  24. Cui Z., Stiso J., Baum G.L., Kim J.Z., Roalf D.R., Betzel R.F., Gu S., Lu Z., Xia C.H., He X., Ciric R., Oathes D.J., Moore T.M., Shinohara R.T., Ruparel K., Davatzikos C., Pasqualetti F., Gur R.E., Gur R.C., Bassett D.S., Satterthwaite T.D. Optimization of energy state transition trajectory supports the development of executive function during youth. Elife. 2020. 9: e53060. https://doi.org/10.7554/eLife.53060

  25. Dhamala M., Rangarajan G., Ding M. Analyzing information flow in brain networks with nonparametric Granger causality. Neuroimage. 2008. 41 (2): 354–362.

  26. Fair D.A., Cohen A.L., Power J.D., Dosenbach N.U., Church J.A., Miezin F.M., Schlaggar B.L., Petersen S.E. Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol. 2009. 5 (5): e1000381. https://doi.org/10.1371/journal.pcbi.1000381

  27. Farber D.A., Semenova L.K., Alferova V.V. Strukturno-funktsional’naya organizatsiya razvivayushchegosya mozga (Structural-Functional Organization of the Developing Brain). Leningrad: Nauka. 1990.

  28. Feinberg I., Higgins L.M., Khaw W.Y., Campbell I.G. The adolescent decline of NREM delta, an indicator of brain maturation, is linked to age and sex but not to pubertal stage. Am J Physiol Regul Integr Comp Physiol. 2006 Dec;291 (6): R1724–9. https://doi.org/10.1152/ajpregu.00293.2006

  29. Friston K.J. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 1994. 2 (1–2): 56–78.

  30. Genc S., Smith R.E., Malpas C.B., Anderson V., Nicholson J.M., Efron D., Sciberras E., Seal M.L., Silk T.J. Development of white matter fibre density and morphology over childhood: A longitudinal fixel-based analysis. Neuroimage. 2018. 183: 666–676. https://doi.org/10.1016/j.neuroimage.2018.08.043

  31. Gevins A.S., Remond A. (Eds.). Handbook of Electroencephalography and Clinical Neurophysiology. Vol. 2: Methods and Analysis of Brain Electrical and Magnetic Signals. Amsterdam: Elsevier. 1987.

  32. Geweke J. Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc. 1982. 77: 304–313.

  33. Gmehlin D., Thomas C., Weisbrod M., Walther S., Resch F., Oelkers-Ax R. Development of brain synchronisation within school-age–individual analysis of resting (α) coherence in a longitudinal data set. Clin Neurophysiol. 2011. 122 (10): 1973–1983. https://doi.org/10.1016/j.clinph.2011.03.016

  34. Gogtay N., Giedd J.N., Lusk L., Hayashi K.M., Greenstein D., Vaituzis A.C., Nugent T.F. 3rd, Herman D.H., Clasen L.S., Toga A.W., Rapoport J.L., Thompson P.M. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A. 2004. 101 (21): 8174–8179. https://doi.org/10.1073/pnas.0402680101

  35. Gourevitch B., Le Bouquin-Jeannes R., Faucon G. Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern. 2006. 95 (4): 349–369.

  36. Granger C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969. 37 (3): 424–438.

  37. Greicius M.D., Menon V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. Journal of Cognitive Neuroscience. 2004. 16: 1484–1492. PMID: https://doi.org/10.1162/ 089892904256853215601513

  38. Gudmundsson S., Runarsson T.P., Sigurdsson S., Eiriksdottir G., Johnsen K. Reliability of quantitative EEG features. Clin. Neurophysiol. 2007. 118 (10): 2162–2171.

  39. Herting M.M., Kim R., Uban K.A., Kan E., Binley A., Sowell E.R. Longitudinal changes in pubertal maturation and white matter microstructure. Psychoneuroendocrinology. 2017. 81: 70–79. https://doi.org/10.1016/j.psyneuen.2017.03.017

  40. Howsley P., Levita L. Developmental changes in the cortical sources of spontaneous alpha throughout adolescence. Int J Psychophysiol. 2018 Nov; 133: 91–101. https://doi.org/10.1016/j.ijpsycho.2018.08.003

  41. Hu S., Yao D., Bringas-Vega M.L., Qin Y., Valdes-Sosa P.A. The Statistics of EEG Unipolar References: Derivations and Properties. Brain Topogr. 2019. 32: 696–703. https://doi.org/10.1007/s10548-019-00706-y

  42. Ivanitsky A.M. Informational synthesis in crucial cortical area as the brain base of the subjective experience. Zh. Vyssh. Nerv. Deiat. 1997. 47 (2): 223–225.

  43. Kamiński M., Ding M., Truccolo W.A., Bressler S.L. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 2001. 85: 145–157.

  44. Kim E.Y., Kim D.H., Yoo E., Park H.J., Golay X., Lee S.K., Kim D.J., Kim J., Kim D.I. Visualization of maturation of the corpus callosum during childhood and adolescence using T2 relaxometry. Int J Dev Neurosci. 2007. 25(6): 409–414. 2007.05.005.https://doi.org/10.1016/j.ijdevneu

  45. Kozhushko N.J., Nagornova Z.V., Evdokimov S.A., Shemyakina N.V., Ponomarev V.A., Tereshchenko E.P., Kropotov J.D. Specificity of spontaneous EEG associated with different levels of cognitive and communicative dysfunctions in children. Int J Psychophysiol. 2018. 128: 22–30. https://doi.org/10.1016/j.ijpsycho.2018.03.013

  46. Kubasov R.V., Demin D.B., Tipisova E.V., Tkachev A.V. Gormonal`noe obespechenie sistemoj gipofiz –shhitovidnaya zheleza – gonady` u mal`chikov v processe polovogo sozrevaniya, prozhivayushhix v Konoshskom rajone Arxangel`skoj oblasti [Hormonal supply of the system hypophysis – thyroid gland – gonads during puberty in boys living in the Konosha district of the Arkhangelsk region] (in Russ). Ekologiya cheloveka (Human ecology). 2004. 1 (S4): 265–268.

  47. Kurth S., Achermann P., Rusterholz T., Lebourgeois M.K. Development of Brain EEG Connectivity across Early Childhood: Does Sleep Play a Role? Brain Sci. 2013. 3 (4): 1445–1460. https://doi.org/10.3390/brainsci3041445

  48. Li C.L., Deng Y.J., He Y.H., Zhai H.C., Jia F.C. The development of brain functional connectivity networks revealed by resting-state functional magnetic resonance imaging. Neural Regen Res. 2019. 14 (8): 1419–1429. https://doi.org/10.4103/1673-5374.253526

  49. Liao W., Mantini D., Zhang Z., Pan Z., Ding J., Gong Q., Yang Y., Chen H. Evaluating the effective connectivity of resting state networks using conditional Granger causality. Biol Cybern. 2010. 102 (1): 57–69.

  50. Machinskaya R.I. The brain executive systems. Zhurnal vyssheĭ nervnoĭ deiatelnosti imeni I.P. Pavlova. 2015. 65 (1): 33–60.

  51. Machinskaya R.I., Kurgansky A.V., Lomakin D.I. Age-related Trends in Functional Organization of Cortical Parts of Regulatory Brain Systems in Adolescents: an Analysis of Resting-State Networks in the EEG Source Space. Human Physiology. 2019. 45 (5): 461–473.

  52. Machinskaya R.I., Sokolova L.S., Krupskaya E.V. Formation of the functional organization of the cerebral cortex at rest in young schoolchildren varying in the maturity of cerebral regulatory systems: II. Analysis of EEG α-rhythm coherence. Human physiology. 2007. 33 (2): 129–138.

  53. Malekpour S., Li Z., Cheung B.L.P., Castillo E.M., Papanicolaou A.C., Kramer L.A., Fletcher J.M., Van Veen B.D. Interhemispheric effective and functional cortical connectivity signatures of spina bifida are consistent with callosal anomaly. Brain Connect. 2012. 2 (3): 142–154.

  54. Nunez P.L., Silberstein R.B., Shi Z., Carpenter M.R., Srinivasan R., Tucker D.M., Doran S.M., Cadusch P.J., Wijesinghe R.S. EEG coherency II: experimental comparisons of multiple measures. Clin Neurophysiol. 1999. 110 (3): 469–486. https://doi.org/10.1016/s1388-2457(98)00043-1

  55. Nunez P.L., Srinivasan R. Electric Fields of the Brain: The Neurophysics of EEG. Second Edition. New York: Oxford University press. 2006. 626 p.

  56. Oldfield R.C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971. 9 (1): 97–113. https://doi.org/10.1016/0028-3932(71)90067-4

  57. Paus T. Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn. 2010. 72 (1): 26–35. https://doi.org/10.1016/j.bandc.2009.06.002

  58. Paus T., Collins D.L., Evans A.C., Leonard G., Pike B., Zijdenbos A. Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull. 2001. 54 (3): 255–266. https://doi.org/10.1016/s0361-9230(00)00434-2

  59. Paus T., Zijdenbos A., Worsley K., Collins D.L., Blumenthal J., Giedd J.N., Rapoport J.L., Evans A.C. Structural maturation of neural pathways in children and adolescents: in vivo study. Science. 1999. 283 (5409): 1908–1911. https://doi.org/10.1126/science.283.5409.1908

  60. Pereda E., Quian Quiroga R., Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol. 2005. 77: 1–37.

  61. Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America. 2001. 98: 676–682. https://doi.org/10.1073/pnas.98.2.676

  62. Ríos-Herrera W.A., Olguín-Rodríguez P.V., Arzate-Mena J.D., Corsi-Cabrera M., Escalona J., Marín-García A., Ramos-Loyo J., Rivera A.L., Rivera-López D., Zapata-Berruecos J.F., Müller M.F. The Influence of EEG References on the Analysis of Spatio-Temporal Interrelation Patterns. Front Neurosci. 2019. 13: 941. https://doi.org/10.3389/fnins.2019.00941

  63. Ryali S., Supekar K., Chen T., Kochalka J., Cai W., Nicholas J., Padmanabhan A., Menon V. Temporal dynamics and developmental maturation of salience, default and central-executive network interactions revealed by variational bayes hidden markov modeling. PLoS Comput Biol. 2016. 12 (12): e1005138. https://doi.org/10.1371/journal.pcbi.1005138

  64. Schäfer C.B., Morgan B.R., Ye A.X., Taylor M.J., Doesburg S.M. Oscillations, networks, and their development: MEG connectivity changes with age. Hum Brain Mapp. 2014. 35 (10): 5249–5261. https://doi.org/10.1002/hbm.22547

  65. Schuz A., Braitenberg V. The human cortical white matter: Quantitative aspects of cortico-cortical long-range connectivity. In: Schultz A., Miller R., editors. Cortical Areas: Unity and Diversity, Conceptual Advances in Brain Research, London. Taylor and Francis, Inc., New York. 2002. 377–386.

  66. Segalowitz S.J., Santesso D.L., Jetha M.K. Electrophysiological changes during adolescence: a review. Brain Cogn. 2010. 72: 86–100.

  67. Seth A.K. A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods. 2010. 186 (2): 262–273. https://doi.org/10.1016/j.jneumeth.2009.11.020

  68. Seth A.K., Barrett A.B., Barnett L. Granger causality analysis in neuroscience and neuroimaging. J Neurosci. 2015. 35 (8): 3293–3297. https://doi.org/10.1523/JNEUROSCI.4399-14.2015

  69. Seth A.K., Edelman G.M. Distinguishing causal interactions in neural populations. Neural Comput. 2007. 19 (4): 910–933. https://doi.org/10.1162/neco.2007.19.4.910

  70. Shemyakina N.V., Danko S.G. Changes in the power and coherence of the β2 EEG band in subjects performing creative tasks using emotionally significant and emotionally neutral words. Human Physiology. 2007. 33 (1): 20–26.

  71. Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron. 1999. 24 (1): 49–65, 111–125. https://doi.org/10.1016/s0896-6273(00)80821-1

  72. Soroko S.I., Bekshaev S.S., Rozhkov V.P. [EEG correlates of geno-phenotypical features of the brain development in children of the native and newcomers' population of the Russian North-East] (in Russ). Ross. Fiziol. Zh. Im I. M. Sechenova. 2012. 98 (1): 3–26.

  73. Soroko S.I., Bekshaev S.S., Rozhkov V.P., Nagornova Z.V., Shemyakina N.V. General features of the formation of EEG wave structure in children and adolescents living in Northern European Russia. Human Physiology. 2015b. 41 (4): 394–403. https://doi.org/10.1134/S0362119715040167

  74. Soroko S.I., Burykh E.A., Bekshaev S.S., Rozhkov V.P., Sergeeva E.G. Khovanskikh A.E., Kormilitsyn B.N., Moralev S.N., Yagodina O.V., Dobrodeeva L.K., Maksimova I.A., Protasova O.V. Sravnitelnaya ocenka processa adaptacii u cheloveka v kontrastnyh ekologicheskih usloviyah (shirotnye effekty i posledstviya antropogennoj deyatelnosti). [Comparative assessment of the adaptation process in humans in contrasting environmental conditions (latitudinal effects and consequences of anthropogenic activity)]. pp. 182–204 in Izmenenie okruzhayushhej sredy i klimata: prirodnye i svyazannye s nimi texnogennye katastrofy. T. 4: Processy v biosfere: izmeneniya pochvenno-rastitel`nogo pokrova i territorial`ny`x vod RF, krugovorot veshhestv pod vliyaniem globalnyh izmenenij klimata i katastroficheskih processov. (Environmental and Climate Change: Natural and Related Technogenic Disasters. T. 4: Processes in the biosphere: changes in the soil and vegetation cover and territorial waters of the Russian Federation, the cycle of substances under the influence of global climate changes and catastrophic processes). (in Russ). G.A. Zavarzin, V.N. Kudeyarov (eds). – Pushchino; Moscow: IFX i BPP RAN, IFZ RAN. 2008. 206 p.

  75. Soroko S.I., Nagornova Z.V., Rozhkov V.P., Shemyakina N.V. Age-specific characteristics of EEG coherence in children and adolescents living in the European North of Russia. Human Physiology. 2015. 41 (5): 517–531. https://doi.org/10.1134/S0362119715050151

  76. Soroko S.I., Shemyakina N.V., Nagornova Zh.V., Bekshaev S.S. Longitudinal study of EEG frequency maturation and power changes in children on the Russian North. Int J Dev Neurosci. 2014. 38: 127–137. https://doi.org/10.1016/j.ijdevneu.2014.08.012

  77. Tarokh L., Carskadon M.A., Achermann P. Developmental changes in brain connectivity assessed using the sleep EEG. Neuroscience. 2010. 171 (2): 622–634. https://doi.org/10.1016/j.neuroscience.2010.08.071

  78. Thatcher R.W., North D.M., Biver C.J. Development of cortical connections as measured by EEG coherence and phase delays. Hum Brain Mapp. 2008. 29 (12): 1400–1415. https://doi.org/10.1002/hbm.20474

  79. Tsitseroshin M.N., Ivonin A.A., Pogosyan A.A., Mikheev V.F., Galimov R.A. The role of the genotype in the development of the neurophysiological mechanisms involved in the spatial integration of neocortex bioelectric activity. Human Physiology. 2003. 29 (4): 393–407.

  80. Uddin L.Q., Yeo B.T.T., Spreng R.N. Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks. Brain Topogr. 2019. 32 (6): 926–942. https://doi.org/10.1007/s10548-019-00744-6

  81. van Baal G.C., Boomsma D.I., de Geus E.J. Longitudinal genetic analysis of EEG coherence in young twins. Behav Genet. 2001. 31 (6): 637–651. https://doi.org/10.1023/a:1013357714500

  82. van Beijsterveldt C.E., Molenaar P.C., de Geus E.J., Boomsma D.I. Genetic and environmental influences on EEG coherence. Behav Genet. 1998. 28 (6): 443–453. https://doi.org/10.1023/a:1021637328512

  83. Vannucci R.C., Barron T.F., Vannucci S.J. Development of the Corpus Callosum: An MRI Study. Dev Neurosci. 2017. 39 (1–4): 97–106. https://doi.org/10.1159/000453031

  84. Whedon M., Perry N.B., Calkins S.D., Bell M.A. Changes in frontal EEG coherence across infancy predict cognitive abilities at age 3: The mediating role of attentional control. Dev Psychol. 2016. 52 (9): 1341–1352. https://doi.org/10.1037/dev0000149

  85. Wiener N. The theory of prediction. Modern mathematics for the engineer. Ed. E. F. Beckenbach. McGraw-Hill. New York. 1956.

  86. Xu W., Ying F., Luo Y., Zhang X.Y., Li Z. Cross-sectional exploration of brain functional connectivity in the triadic development model of adolescents. Brain Imaging Behav. 2020. https://doi.org/10.1007/s11682-020-00379-3

  87. Zhao Z., Wang C. Using Partial Directed Coherence to Study Alpha-Band Effective Brain Networks during a Visuospatial Attention Task. Behav Neurol. 2019. 2019: 1410425. https://doi.org/10.1155/2019/1410425

  88. Zhou Z., Chen Y., Ding M., Wright P., Lu Z., Liu Y. Analyzing brain networks with PCA and conditional granger causality. Hum Brain Mapp. 2009. 30: 2197–2206. https://doi.org/10.1002/hbm.20661

Дополнительные материалы отсутствуют.