Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 4, стр. 453-467

BDNF и старческое угнетение когнитивных функций

Д. Г. Семенов 1*, А. В. Беляков 1

1 Институт физиологии им. И.П. Павлова РАН
Санкт-Петербург, Россия

* E-mail: dsem50@rambler.ru

Поступила в редакцию 30.11.2020
После доработки 21.02.2021
Принята к публикации 02.03.2021

Аннотация

Возрастные нарушения способности воспринимать, хранить и пользоваться новой информацией интенсивно изучаются у различных видов животных и у человека. Когнитивный дефицит как при нормальном, так и при патологическом старении может быть результатом нарушенной регуляции транскрипции, трансляции, секреции, рецепции и сигналинга мозгового нейротрофического фактора (BDNF), являющегося ключевой молекулой, участвующей в процессах обучения и памяти, т.е. важных когнитивных компонентов, наиболее уязвимых при старении. В настоящем кратком обзоре рассматриваются современные представления об участии системы BDNF в формировании когнитивного статуса взрослого и стареющего мозга. Также описываются некоторые современные фармакологические и немедикаментозные подходы, стимулирующие экспрессию BDNF и/или воздействующие на соответствующие сигнальные каскады, которые апробированы на экспериментальных моделях и могут быть использованы или уже используются в когнитивной гериатрии.

Ключевые слова: когнитивные функции, BDNF, TrkB, старение

DOI: 10.31857/S0044467721040079

Список литературы

  1. Гомазков О.А. Старение мозга и нейротрофическая терапия. М. ИКАР. 2011. 41–68.

  2. Рудницкая Е.А., Колосова Н.Г., Стефанова Н.А. Анализ вклада изменения нейротрофического обеспечения в развитие признаков болезни Альцгеймера у крыс OXYS. Биохимия. 2017. 82 (3): 460–469.

  3. Рыбникова Е.А., Самойлов М.О. Современные представления о церебральных механизмах гипоксического пре- и посткондиционирования. Успехи физиологических наук. 2016. 4: 3–17.

  4. Юпатов Г.И., Доценко Э.А., Юпатов Ю.Г. Применение технологий гипобароадаптации в клинике внутренних болезней (обзор литературы). Вестник ВГМУ. 2013. 12 (4): 7–18.

  5. Agapova T.Y., Agniulin Y.V., Silachev D.N., Shadrina M.I., Slominskii P.A., Shram S.I., Limborskaya S.A., Myasoedov N.F. Time course of the expression of genes of brain-derived neurotrophic factor and nerve growth factor in the hippocampus and frontal cortex induced by semax in rats. Mol. Gen., Microbiol. and Virol. 2008. 23 (3): 142–146.

  6. Alcalá-Barraza S.R., Lee M.S., Hanson L.R., McDonald A.A., Frey 2nd W.H., McLoon L.K. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J. Drug Target. 2010. 18 (3): 179–190.

  7. Autio H., Matlik K., Rantamaki T., Lindemann L., Hoener M.C., Chao M., Arumäe U., Castrén E. Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus. Neuropharmacology. 2011. 61: 1291–1296.

  8. Avcuoglu S., Wygrecka M., Marsh L.M., Günther A., Seeger W., Weissmann N., Fink L., Morty R.E., Kwapiszewska G. Neurotrophic tyrosine kinase receptor B/neurotrophin 4 signaling axis is perturbed in clinical and experimental pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 2011. 45: 768–780.

  9. Balasubramanian P., Mattison J.A., Anderson R.M. Nutrition, metabolism, and targeting aging in nonhuman primates. Ageing Res. Rev. 2017. 39: 29–35.

  10. Baranova K.A., Rybnikova E.A., Samoilov M.O. The neurotrophin BDNF is involved in the development and prevention of stress-induced psychopathologies. Neurochem. J. 2015. 9: 108–115.

  11. Barrientos R.M., Kitt M.M., Watkins L.R., Maier S.F. Neuroinflammation in the normal aging hippocampus. Neurosci. 2015. 309: 84–99.

  12. Belyakov A.V., Semenov D.G. The PI3K/Akt system is involved in the neuroprotective preconditioning of rats with moderate hypobaric hypoxia. Neurochem. J. 2017. 11: 213–220.

  13. Belyakov A.V., Semenov D.G. Stimulation of cognitive abilities in aged macaques via moderate hypobaric hypoxia. Advances in Gerontology. 2019. 9(2): 190–196.

  14. Benko J., Vranková S. Natural psychoplastogens as antidepressant agents. Molecules. 2020. 25 (5): 1172.

  15. Bherer L., Erickson K.I., Liu-Ambrose T. A Review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J. of Aging Research. 2013. 2013: ID 657508.

  16. Brown D.T., Vickers J.C., Stuart K.E., Cechova K., Wardet D.D. The BDNF Val66Met polymorphism modulates resilience of neurological functioning to brain ageing and dementia: a narrative review. Brain Sci. 2020. 10 (4): 195–211.

  17. Budni J. The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging and diseases. 2016. 6 (5): 331–341.

  18. Bucci C., Alifano P., Cogli L. The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. Membranes. 2014. 4: 642–677.

  19. Castonguay D., Dufort-Gervais J., Ménard C., Chatterjee M., Quirion R., Bontempi B., Schneider J.S., Arnsten A.F.T., Nairn A.C., Norris Ch.M., Ferland G., Bézard E., Gaudreau P., Lombroso P.J., Brouillette J. The tyrosine phosphatase STEP is involved in age-related memory decline. Curr. Biol. 2018. 28 (7): 1079–1089.

  20. Cattaneo A., Cattane N., Begni V., Pariante C.M., Riva M.A. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Translational Psychiatry. 2016. 6 (11): e958.

  21. Cazorla M., Jouvenceau A., Rose C., Guilloux J.P., Pilon C., Dranovsky A., Premont J. Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS One. 2010. 5: e9777.

  22. Chen E.S., Ernst C., Turecki G. The epigenetic effects of antidepressant treatment on human prefrontal cortex BDNF expression. Int. J. Neuropsychopharmacol. 2011. 14: 427–429.

  23. Chen H., Xin G.Z.Y., Getachew H., Acosta Sierra C.S., Konofagou E.E., Ji R., Smith M., Niimi Y. Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor. Scientific Reports. 2016. 6: 28599.

  24. Chieffi S., Messina G., Villano I., Messina A., Valenzano A., Moscatelli F., Salerno M., Sullo A., Avola R., Monda V., Cibelli G., Monda M. Neuroprotective effects of physical activity: evidence from human and animal studies. Front. Neurol. 2017. 8:188.

  25. Churilova A., Samoilov M. The effect of different modes of hypobaric hypoxia on the expression of transcription factor pCREB and pro-survival proteins BDNF and BCL-2 in rat neocortex and hippocampus. Springerplus. 2015. 4 (Suppl. 1): L27.

  26. Cocco S., Podda M.V., Grassi C. Role of BDNF signaling in memory enhancement induced by transcranial direct current stimulation. Front. Neurosci. 2018. 12: 427.

  27. Cook D.J., Nguyen C., Chun H.N., Llorente I.L., Chiu A.S., Machnicki M., Zarembinski T.I., Carmichael S.T. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J. Cereb. Blood Flow Metab. 2017. 37 (3):1030–1045.

  28. Diniz B.S., Reynolds C.F. 3rd, Begley A., Dew M.A., Anderson S.J., Lotrich F., Erickson K.I., Lopez O., Aizenstein H., Sibille E.L., Butters M.A. Brain-derived neurotrophic factor levels in late-life depression and comorbid mild cognitive impairment: a longitudinal study. J. Psychiatr. Res. 2014. 49: 96–101.

  29. Esvald E.E., Tuvikene J., Sirp A., XPatil S., Bramham C.R., Timmusk T. CREB family transcription factors are major mediators of BDNF transcriptional autoregulation in cortical neurons. J. Neurosci. 2020. 40 (7): 1405–1426.

  30. Fletcher J.M., Hughes R.A. Novel monocyclic and bicyclic loop mimetics of brain-derived neurotrophic factor. J. Pept. Sci. 2006. 12: 515–524.

  31. Friedman W.J. Proneurotrophins, seizures, and neuronal apoptosis. Neurosci. 2010. 16: 244–252.

  32. Fuchikami M., Morinobu S., Kurata A., Yamamoto S., Yamawaki S. Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocampus. Int. J. Neuropsychopharmacol. 2009. 12 (1): 73–82.

  33. Gudasheva T.A., Tarasiuk A.V., Sazonova N.M., Povarnina P.Yu., Antipova T.A., Seredenin S.B. A novel dimeric dipeptide mimetic of the BDNF selectively activates the MAPK-Erk signaling pathway. Dokl. Biochem. Biophys. 2017. 476: 291–295.

  34. Gudasheva T.A., Konstantinopolsky M.A., Tarasiuk A.V., Kolik L.G., Seredenin S.B. Dipeptide mimetic of the BDNF loop 4 possesses analgetic activity. Dokl. Biochem. Biophys. 2019. 485: 123–125.

  35. Gupta V.K., You Y., Gupta V.B., Klistorner A., Graham S.L. TrkB receptor signaling: implications in neurodegenerative, psychiatric and proliferative disorders. Int. J. Mol. Sci. 2013. 14 (5): 10122–10142.

  36. He X.P., Pan E., Sciarretta C., Minichiello L., McNamara J.O. Disruption of TrkB-Mediated Phospholipase Cγ Signaling Inhibits Limbic Epileptogenesis. J. Neurosci. 2010. 30 (18): 6188–6196.

  37. He J., Xiang Z., Zhu X., Ai Z., Shen J., Huang T., Liu L., Ji W., Li T. Neuroprotective effects of 7, 8-dihydroxyflavone on midbrain dopaminergic neurons in MPP+-treated monkeys. Sci. Rep. 2016. 12 (6): 34339.

  38. Hempstead B.L. Brain-derived neurotrophic factor: three ligands, many actions. Trans. Am. Clin. Assoc. 2015. 126: 9–19.

  39. Ho R., Minturn J.E., Simpson A.M., Iyer R., Light J.E., Evans A.E., Brodeur G.M. The effect of P75 on Trk receptors in neuroblastomas. Cancer Lett. 305: 76–85. 2011.

  40. Hofer M., Pagliusi S.R., Hohn A., Leibrock J., Barde Y.A. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 1990. 9: 2459–2464.

  41. Hong E.J., McCord A.E., Greenberg M.E. A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition. Neuron. 2008. 60: 610–624.

  42. Jang S.W., Liu X., Chan C.B., France S.A., Sayeed I., Tang W., Lin X., Xiao G., Andero R., Chang O., Ressler K.J., Ye K. Deoxygedunin, a natural product with potent neurotrophic activity in mice. PLoS One. 2010. 5 (7): e11528.

  43. Jethwa N., Chung G.H., Lete M.G., Alonso A., Byrne R.D., Calleja V., Larijani B. Endomembrane PtdIns(3,4,5)P3 activates the PI3K-Akt pathway. J. Cell Sci. 2015. 128 (18): 3456–3465.

  44. Ji R., Smith M., Niimi Y., Karakatsani M.E., Murillo M.F., Jackson-Lewis V., Przedborski S., Konofagou E.E. Focused ultrasound enhanced intranasal delivery of brain derived neurotrophic factor produces neurorestorative effects in a Parkinson’s disease mouse model. Sci. Rep. 2019. 9 (1): 19402.

  45. Keleshian V.L., Modi H.R., Rapoport S.I., Rao J.S. Aging is associated with altered inflammatory, arachidonic acid cascade, and synaptic markers, influenced by epigenetic modifications, in the human frontal cortex. J. Neurochem. 2013. 125: 63–73.

  46. Knierim J.J., Lee I., Hargreaves E.L. Hippocampal place cells: parallel input streams, subregional processing, and implications for episodic memory. Hippocampus. 2006. 16 (9): 755–764.

  47. Kollen M., Stéphan A., Faivre-Bauman A., Loudes C., Sinet P.M., Alliot J., Billard J.M., Epelbaum J., Dutar P., Jouvenceau A. Preserved memory capacities in aged Lou/C/Jall rats. Neurobiol. Aging. 2010. 31(1): 129–142.

  48. Kowianski P., Lietzau G., Czuba E., Wa’skow M., Steliga A., Mory’s J. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol. Neurobiol. 2018. 38: 579–593.

  49. Leal S.L., Yassa M.A. Neurocognitive Aging and the Hippocampus Across Species. Trends Neurosci. 2015. 38(12): 800–812.

  50. Lee R., Kermani P., Teng K.K., Hempstead B.L. Regulation of cell survival by secreted proneurotrophins. Science. 2001. 294: 1945–1948.

  51. Levada O.A., Troyan A.S. Major depressive disorder and accelerated aging from a peripheral IGF-1 overexpression perspective. Med. Hypotheses. 2020. 138:109610.

  52. Lipton J.O., Sahin M. The Neurology of mTOR. Neuron. 2014. 84 (2): 275–291.

  53. Luine V., Frankfurt M. Interactions between estradiol, BDNF and dendritic spines in promoting memory. Neurosci. 2013. 239: 34–45.

  54. Maynarda K.R., Hobbsa J.W., Sukumara M., Kardiana A.S., Jimeneza D.V., Schloesserb R.J., Martinowich K. Bdnf mRNA splice variants differentially impact CA1 and CA3 dendrite complexity and spine morphology in the hippocampus. Brain Struc.t Funct. 2017. 222 (7): 3295–3307.

  55. Meinzer M., Lindenberg R., Antonenko D., Flaisch T., Flöel A. Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. J. Neurosci. 2013. 33 (30): 12470–12478.

  56. Meng L., Liu B., Ji R., Jiang X., Yan X., Xin Y. Targeting the BDNF/TrkB pathway for the treatment of tumors (Review). Oncol. Lett. 2019. 17: 2031–2039.

  57. Miranda M., Morici J.F., Zanoni M.B., Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain front cell. Neurosci. 2019. 13: 363.

  58. Moon H.Y., Becke A., Berron D., Becker B., Sah N., Benoni G., Janke E., Lubejko S.T., Greig N.H., Mattison J.A., Duzel E., van Praag H. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 2016. 24 (2): 332–340.

  59. Moya-Alvarado G., Gonzalez A., Stuardo N., Bronfman F.C. Brain-Derived Neurotrophic Factor (BDNF) Regulates Rab5-Positive Early Endosomes in Hippocampal Neurons to Induce Dendritic Branching. Front. Cell Neurosci. 2018. 12: 493.

  60. Nakajima S., Numakawa T., Adachi N., OoshimaY., Odaka H., Yoshimura A., Kunugi H. Self-amplified BDNF transcription is a regulatory system for synaptic maturation in cultured cortical neurons. Neurochem. Int. 2015. 91: 55–61.

  61. Nagahara A.H., Wilson B.R., Ivasyk I., Kovacs I. MR-guided delivery of AAV2-BDNF into the entorhinal cortex of nonhuman primates. Gene Ther. 2018. 25 (2): 104–114.

  62. Ngwenya L.B., Heyworth N.C., Shwe Y., Moore T.L., Rosene D.L. Age-related changes in dentate gyrus cell numbers, neurogenesis, and associations with cognitive impairments in the rhesus monkey. Front. Syst. Neurosci. 2015. 9: 102.

  63. Numakawa T. Possible protective action of neurotrophic factors and natural compounds against common neurodegenerative diseases. Neural. Regen. Res. 2014. 9 (16): 1506–1508.

  64. Nyberg L. Functional brain imaging of episodic memory decline in ageing. J. Intern. Med. 2017. 281 (1): 65–74.

  65. Nykjaer A., Willnow T.E. Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci. 2012. 35 (4): 261–270.

  66. Oh H., Lewis D.A., Sibille E. The Role of BDNF in Age-Dependent Changes of Excitatory and Inhibitory Synaptic Markers in the Human Prefrontal Cortex. Neuropsychopharmacology. 2016. 41 (13): 3080–3091.

  67. O’Shea A., Cohen R.A., Porges E.C., Nissim N.R., Woods A.J. Cognitive Aging and the Hippocampus in Older Adults. Front. Aging Neurosci. 2016. 8: 298.

  68. Pang P.T., Teng H.K., Zaitsev E., Woo N.T., Sakata K., Zhen Sh., Teng K.K., Yung W.-H., Hempstead B.L., Lu B. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 2004. 306: 487–491.

  69. Parkhitko A.A., Favorova O.O., Khabibullin D.I., Anisimov V.N., Henske E.P. Kinase mTOR: regulation and role in maintenance of cellular homeostasis, tumor development, and aging. Biochemistry (Moscow). 2014. 79: 88–101.

  70. Pattwell S.S., Bath K.G., Perez-Castro R., Lee F.S., Chao M.V., Ninan I. The BDNF Val66Met polymorphism impairs synaptic transmission and plasticity in the infralimbic medial prefrontal cortex. J. Neurosci. 2012. 32 (7): 2410–2421.

  71. Pearse R.N., Swendeman S.L., Li Y., Rafii D., Hempstead B.L. A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood. 2005. 105: 4429–4436.

  72. Robinson A.A., Abraham C.R., Rosene D.L. Candidate molecular pathways of white matter vulnerability in the brain of normal aging rhesus monkeys. Geroscience. 2018. 40 (1): 31–47.

  73. Romanczyk T.B., Weickert C.S., Webster M.J., Herman M.M., Akil M., Kleinman J.E. Alterations in trkB mRNA in the human prefrontal cortex throughout the lifespan. Eur. J. Neurosci. 2002. 15 (2): 269–80.

  74. Romero-Granados R., Fontán-Lozano A., Delgado-García J.M., Carrión A.M. From learning to forgetting: behavioral, circuitry, and molecular properties define the different functional states of the recognition memory trace. Hippocampus. 2010. 20 (5): 584–595.

  75. Ruiz C.R., Shi J., Meffert M.K. Transcript specificity in BDNF-regulated protein synthesis. Neuropharmacology. 2014. 76: Pt C (0 0). 657–663.

  76. Sambataro F., Murty V.P., Lemaitre H.S., Reed J.D., Das S., Goldberg T.E., Callicott J.H., Weinberger D.R., Mattay V.S. BDNF modulates normal human hippocampal ageing. Mol. Psychiatry. 2010. 15 (2): 116–118.

  77. Samoilov M., Churilova A., Gluschenko T., Rybnikova E. Neocortical pCREB and BDNF expression under different modes of hypobaric hypoxia: role in brain hypoxic tolerance in rats. Acta Histochem. 2014. 116 (5): 949–957.

  78. Sasi M., Vignoli B., Canossa M., Blum R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch. 2017. 469 (5–6): 593–610.

  79. Shang Y., Wang X., Li F., Yin T., Zhang J., Zhang T. rTMS ameliorates prenatal stress-induced cognitive deficits in male-offspring rats associated with BDNF/TrkB signaling pathway. Neurorehabil. Neural Repair. 2019. 33 (4): 271–283.

  80. Silhol M., Bonnichon V., Rage F., Tapia-Arancibia L. Age-related changes in brain-derived neurotrophic factor and tyrosine kinase receptor isoforms in the hippocampus and hypothalamus in male rats. Neurosci. 2005. 132 (3): 613–624.

  81. Silhol M., Arancibia S., Perrin D., Maurice T., Alliot J., Tapia-Arancibia L. Effect of aging on brain-derived neurotrophic factor, proBDNF, and their receptors in the hippocampus of Lou/C rats. Rejuvenation Res. 2008. 11 (6): 1031–1040.

  82. Sorrells S.F., Paredes M.F., Cebrian-Silla A., Sandoval K., Qi D., Kelley K.W., James D., Mayer S., Chang J., Auguste K.I., Chang E.F., Gutierrez A.J., Kriegstein A.R., Mathern G.W., Oldham M.C., Huang E.J., Garcia-Verdugo J.M., Yang Z., Alvarez-Buylla A. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018. 555 (7696): 377–381.

  83. Spalding K.L., Bergmann O., Alkass K., Bernard S., Salehpour M., Huttner H.B., Boström E., Westerlund I., Vial C., Buchholz B.A., Possnert G., Mash D.C., Druid H., Frisén J. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013. 153 (6): 1219–1227.

  84. Timmusk T., Palm K., Metsis M., Reintam T., Paalme V., Saarma M., Persson H. Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron. 1993. 10: 475–489.

  85. Tongiorgi E. Activity-dependent expression of brain-derived neurotrophic factor in dendrites: facts and open questions. Neurosciю Res. 2008. 61: 335–346.

  86. Tyler W.J., Alonso M., Bramham C.R., Pozzo-Miller L.D. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn. Mem. 2002. 9 (5): 224–237.

  87. Vecchio L.M., Meng Y., Xhima K., Lipsman N., Hamani C. The neuroprotective effects of exercise: maintaining a healthy brain throughout aging. Brain. Plast. 2018. 4 (1): 17–52.

  88. Voss M.W., Vivar C., Kramer A.F., van Praag H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn. Sci. 2013. 17 (10): H.525–244.

  89. Wang J., Zhang S., Ma H. Yang S., Liu Z., Wu X., Wang S., Zhang Y., Liu Y. Chronic intermittent hypobaric hypoxia pretreatment ameliorates ischemia-induced cognitive dysfunction through activation of ERK1/2-CREB-BDNF pathway in anesthetized mice. Neurochem. Res. 2017. 42 (2): 501–512.

  90. Wang J.Q., Mao L. The ERK pathway: molecular mechanisms and treatment of depression. Mol. Neurobiol. 2019. 56 (9): 6197–6205.

  91. Webster M.J., Herman M.M., Kleinman J.E., Shannon Weickert C. BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expr. Patterns. 2006. 6 (8): 941–951.

  92. Woo N.H., Teng H.K., Siao C.J., Chiaruttini C., Pang P.T., Milner T.A., Hempstead B.L., Lu B. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat. Neurosci. 2005. 8: 1069–1077.

  93. Zanin J.P., Montroull L.E., Volosin M., Friedman W.J. The p75 Neurotrophin Receptor Facilitates TrkB Signaling and Function in Rat Hippocampal Neurons. Front. Cell. Neurosci. 2019. 13: 485–495.

  94. Zeng Y., Tan M., Kohyama J., Sneddon M., Watson J.B., Sun Yi.E., Xie C.-W. Epigenetic enhancement of BDNF signaling rescues synaptic plasticity in aging J. Neurosci. 2011. 31 (49): 17800–17810.

  95. Zhu X.H., Yan H.C., Zhang J., Qu H.D., Qiu X.S., Chen L., Li S.J., Cao X., Bean J.C., Chen L.H., Qin X.H., Liu J.H., Bai X.C., Mei L., Gao T.M. Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J. Neurosci. 2010. 30 (38): 12653–12663.

Дополнительные материалы отсутствуют.