Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 4, стр. 439-452

Онтогенез кортико-лимбической системы и риск тревожных расстройств в адолесцентный период

Н. Н. Дыгало 12*

1 Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Новосибирск, Россия

2 Кафедра физиологии, Новосибирский государственный университет
Новосибирск, Россия

* E-mail: dygalo@bionet.nsc.ru

Поступила в редакцию 11.11.2020
После доработки 04.12.2020
Принята к публикации 22.12.2020

Аннотация

Взаимодействия миндалины, префронтальной коры и гиппокампа, ключевых структур кортико-лимбической системы играют важную роль в формировании поведенческих ответов на угрожающие стимулы. Особенности онтогенеза этих взаимодействий как на уровне формирования между структурами афферентных и эфферентных связей, так и протекающих в них нейротрансмиттерных и нейротрофических процессов могут быть причинами повышенного в адолесцентный (подростковый) период риска психоэмоциональных расстройств по сравнению с более ранними и последующими периодами жизни. Критический анализ данных литературы по этой проблеме является важным для прояснения механизмов формирования психопатологии подросткового возраста и, возможно, последующего поиска путей ее коррекции.

Ключевые слова: онтогенез, миндалина, префронтальная кора, гиппокамп, тревожность, мозговой нейротрофический фактор, нейротрансмиттеры, оптогенетика, хемогенетика, BDNF

DOI: 10.31857/S0044467721030047

Список литературы

  1. Altman J., Bayer S.A. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J. Comp. Neurol. 1990. 301: 365–381.

  2. Arruda-Carvalho M., Wu W.C., Cummings K.A., Clem R.L. Optogenetic examination of prefrontal-amygdala synaptic development. J. Neurosci. 2017. 15: 2976–2985.

  3. Ben-Ari Y. Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci. 2002. 3: 728–739.

  4. Berezova I.V., Shishkina G.T., Kalinina T.S., Dygalo N.N. Behavior in the forced-swimming test and expression of BDNF and Bcl-xl genes in the rat brain. Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 2011. 61 (3): 332–339.

  5. Bessières B., Jia M., Travaglia A., Alberini C.M. Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat basolateral amygdala. Learn Mem. 2019. 15: 436–448.

  6. Bouwmeester H., Smits K., Van Ree J.M. Neonatal development of projections to the basolateral amygdala from prefrontal and thalamic structures in rat. J. Comp. Neurol. 2002a. 450: 41–55.

  7. Bouwmeester H., Wolterink G., van Ree J.M. Neonatal development of projections from the basolateral amygdala to prefrontal, striatal, and thalamic structures in the rat. J. Comp. Neurol. 2002б. 442: 239–249.

  8. Bosch D., Ehrlich I. Postnatal maturation of GABAergic modulation of sensory inputs onto lateral amygdala principal neurons. J. Physiol. 2015. 593: 4387–4409.

  9. Brummelte S., Witte V., Teuchert-Noodt G. Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils [Meriones unguiculatus]. Int. J. Dev. Neurosci. 2007. 25: 191–200.

  10. Burgos-Robles A., Kimchi E.Y., Izadmehr E.M., Porzenheim M.J., Ramos-Guasp W.A., Nieh E.H., Felix-Ortiz A.C., Namburi P., Leppla C.A., Presbrey K.N., Anandalingam K.K., Pagan-Rivera P.A., Anahtar M., Beyeler A., Tye K.M. Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nat. Neurosci. 2017. 20: 824–835.

  11. Carney R.S., Alfonso T.B., Cohen D., Dai H., Nery S., Stoica B., Slotkin J., Bregman B.S., Fishell G., Corbin J.G. Cell migration along the lateral cortical stream to the developing basal telencephalic limbic system. J. Neurosci. 2006. 26: 11562–11574.

  12. Casey B.J., Jones R.M., Hare T.A. The adolescent brain. Ann. N. Y. Acad Sci. 2008. 1124: 111–126.

  13. Casey B.J., Glatt C.E., Lee F.S. Treating the developing versus developed brain: translating preclinical mouse and human studies. Neuron. 2015. 86: 1358–1368.

  14. Casey B.J., Heller A.S., Gee D.G., Cohen A.O. Development of the emotional brain. Neurosci. Lett. 2019. 693: 29–34.

  15. Castrén E., Kojima M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol. Dis. 2017. 97 [Pt B]: 119–126.

  16. Chen M., Bi L.L. Optogenetic long-term depression induction in the PVT-CeL circuitry mediates decreased fear m,emory. Mol. Neurobiol. 2019. 56: 4855–4865.

  17. Chen Z.Y., Jing D., Bath K.G., Ieraci A., Khan T., Siao C.J., Herrera D.G., Toth M., Yang C., McEwen B.S., Hempstead B.L., Lee F.S. Genetic variant BDNF [Val66Met] polymorphism alters anxiety-related behavior. Science. 2006. 314: 140–143.

  18. Craske M.G., Stein M.B. Anxiety. Lancet. 2016. 388: 3048–3059.

  19. Crews F., He J., Hodge C. Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol. Biochem. Behav. 2007. 86: 189–199.

  20. Cullen K.R., Westlund M.K., Klimes-Dougan B., Mueller B.A., Houri A., Eberly L.E., Lim K.O. Abnormal amygdala resting-state functional connectivity in adolescent depression. JAMA Psychiatry. 2014. 71: 1138–1147.

  21. Cunningham M.G., Bhattacharyya S., Benes F.M. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence. J. Comp. Neurol. 2002. 453: 116–130.

  22. Cunningham M.G., Bhattacharyya S., Benes F.M. Increasing interaction of amygdalar afferents with GABAergic interneurons between birth and adulthood. Cereb. Cortex. 2008. 18: 1529–1535.

  23. Delevich K., Thomas A.W., Wilbrecht L. Adolescence and “late blooming” synapses of the prefrontal cortex. Cold Spring Harb. Symp. Quant. Biol. 2018. 83: 37–43.

  24. Dulka B.N., Bagatelas E.D., Bress K.S., Grizzell J.A., Cannon M.K., Whitten C.J., Cooper M.A. Chemogenetic activation of an infralimbic cortex to basolateral amygdala projection promotes resistance to acute social defeat stress. Sci. Rep. 2020. 10: 6884.

  25. Duman R.S., Monteggia L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry. 2006; 59: 1116–1127.

  26. Dygalo N.N., Drozd U.S., Sukhareva E.V., Kalinina T.S., Bulygina V.V., Shishkina G.T., Lanshakov D.A. Subanesthetic dose of ketamine relieves depression-like behavior induced by optogenetic stimulation of the hippocampal pyramidal neurons. Eur. Neuropsychopharmacol. 2019; 29 (Suppl. 6): S94.

  27. Dygalo N.N., Kalinina T.S., Shishkina G.T. Stress-induced expression pattern of glutamate signaling genes associated with anhedonia. Stress. 2020a Sep. 2: 1–8. Epub ahead of print.https://doi.org/10.1080/10253890.2020.1812574

  28. Dygalo N.N., Lanshakov D.A., Drozd U.S., Sukhareva E.V., Bulygina V.V., Kalinina T.S. Optogenetic activation of the CA1 hippocampal pyramidal neurons induces a depressive-like behavioural phenotype. Eur. Neuropsychopharmacol. 2016. 26 (Suppl. 2): S277–S278.

  29. Dygalo N.N., Lanshakov D.A., Komysheva N.P., Drozd U.S., Shaburova E.V., Sukhareva E.V., Shishkina G.T. Chemogenetic activation of glutamatergic neurons in the juvenile rat cortex reduces anxiety. Dokl. Biochem. Biophys. 2020b. 490 (1): 16–18.

  30. Edelmann E., Lessmann V., Brigadski T. Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology. 2014. 76 Pt C: 610–627.

  31. Ehrlich D.E., Ryan S.J., Rainnie D.G. Postnatal development of electrophysiological properties of principal neurons in the rat basolateral amygdala. J. Physiol. 2012. 590: 4819–4838.

  32. Etkin A., Wager T.D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry. 2007. 164: 1476–1488.

  33. Fenno L., Yizhar O., Deisseroth K. The development and application of optogenetics. Annu. Rev. Neurosci. 2011. 34: 389–412.

  34. Flores-Barrera E., Thomases D.R., Heng L.J., Cass D.K., Caballero A., Tseng K.Y. Late adolescent expression of GluN2B transmission in the prefrontal cortex is input-specific and requires postsynaptic protein kinase A and D1 dopamine receptor signaling. Biol. Psychiatry. 2014. 75: 508–516.

  35. Floresco S.B., Tse M.T. Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J. Neurosci. 2007. 27: 2045–2057.

  36. Gee D.G., Bath K.G., Johnson C.M., Meyer H.C., Murty V.P., van den Bos W., Hartley C.A. Neurocognitive development of motivated behavior: dynamic changes across childhood and adolescence. J. Neurosci. 2018. 38: 9433–9445.

  37. Gee D.G., Gabard-Durnam L.J., Flannery J., Goff B., Humphreys K.L., Telzer E.H., Hare T.A., Bookheimer S.Y., Tottenham N. Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc. Natl. Acad. Sci. U. S. A. 2013. 110: 15638–15643.

  38. Glendining K.A., Fisher L.C., Jasoni C.L. Maternal high fat diet alters offspring epigenetic regulators, amygdala glutamatergic profile and anxiety. Psychoneuroendocrinology. 2018. 96: 132–141.

  39. Gorba T., Klostermann O., Wahle P. Development of neuronal activity and activity-dependent expression of brain-derived neurotrophic factor mRNA in organotypic cultures of rat visual cortex. Cereb. Cortex. 1999. 9: 864–977.

  40. Govindarajan A., Rao B.S., Nair D., Trinh M., Mawjee N., Tonegawa S., Chattarji S. Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects. Proc. Natl. Acad. Sci. U. S. A. 2006. 103: 13208–13213.

  41. Gray J.D., Milner T.A., McEwen B.S. Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors. Neuroscience. 2013. 239: 214–227.

  42. Greenberg M.E., Xu B., Lu B., Hempstead B.L. New insights in the biology of BDNF synthesis and release: implications in CNS function. J. Neurosci. 2009. 29:12764–12767.

  43. Henson M.A., Tucker C.J., Zhao M., Dudek S.M. Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning. Neurobiol. Learn. Mem. 2017. 138: 39–53.

  44. Hernandez C.M., Orsini C.A., Labiste C.C., Wheeler A.R., Ten Eyck T.W., Bruner M.M., Sahagian T.J., Harden S.W., Frazier C.J., Setlow B., Bizon J.L. Optogenetic dissection of basolateral amygdala contributions to intertemporal choice in young and aged rats. Elife. 2019. 8: e46174.

  45. Inagaki R., Moriguchi S., Fukunaga K. Aberrant amygdala-dependent fear memory in corticosterone-treated mice. Neuroscience. 2018. 388: 448–459.

  46. Insel T.R., Miller L.P., Gelhard R.E. The ontogeny of excitatory amino acid receptors in rat forebrain–I. N-methyl-D-aspartate and quisqualate receptors. Neuroscience. 1990. 35: 31–43.

  47. Jasnow A.M., Ehrlich D.E., Choi D.C., Dabrowska J., Bowers M.E., McCullough K.M., Rainnie D.G., Ressler K.J. Thy1-expressing neurons in the basolateral amygdala may mediate fear inhibition. J. Neurosci. 2013. 33: 10396–10404.

  48. Jin X. The role of neurogenesis during development and in the adult brain. Eur. J. Neurosci. 2016. 44: 2291–2299.

  49. Kalsbeek A., Voorn P., Buijs R.M., Pool C.W., Uylings H.B. Development of the dopaminergic innervation in the prefrontal cortex of the rat. J. Comp. Neurol. 1988. 269: 58–72.

  50. Kim J.H., Perry C.J., Ganella D.E., Madsen H.B. Postnatal development of neurotransmitter systems and their relevance to extinction of conditioned fear. Neurobiol. Learn. Mem. 2017. 138: 252–270.

  51. Klavir O., Prigge M., Sarel A., Paz R., Yizhar O. Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nat. Neurosci. 2017. 20: 836–844.

  52. Kowiański P., Lietzau G., Czuba E., Waśkow M., Steliga A., Moryś J. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol. 2018. 38: 579–593.

  53. Lanshakov D.A., Drozd U.S., Dygalo N.N. Optogenetic stimulation increases level of antiapoptotic protein Bcl-xL in neurons. Biochemistry (Mosc). 2017. 82: 340–344.

  54. Laviola G., Macrì S., Morley-Fletcher S., Adriani W. Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neurosci. Biobehav. Rev. 2003. 27: 19–31.

  55. Laurie D.J., Bartke I., Schoepfer R., Naujoks K., Seeburg P.H. Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies. Brain Res. Mol. Brain Res. 1997. 51: 23–32.

  56. Li H., Penzo M.A., Taniguchi H., Kopec C.D., Huang Z.J., Li B. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci. 2013. 16: 332–339.

  57. Lieb A., Weston M., Kullmann D.M. Designer receptor technology for the treatment of epilepsy. EBioMedicine. 2019. 43: 641–649.

  58. Lin S., Li X., Chen Y.H., Gao F., Chen H., Hu N.Y., Huang L., Luo Z.Y., Liu J.H., You Q.L., Yin Y.N., Li Z.L., Li X.W., Du Z.J., Yang J.M., Gao T.M. Social isolation during adolescence induces anxiety behaviors and enhances firing activity in BLA pyramidal neurons via mGluR5 upregulation. Mol. Neurobiol. 2018. 55: 5310–5320.

  59. Lopez de Armentia M., Sah P. Development and subunit composition of synaptic NMDA receptors in the amygdala: NR2B synapses in the adult central amygdala. J. Neurosci. 2003. 23: 6876–6883.

  60. Lu B. BDNF and activity-dependent synaptic modulation. Learn. Mem. 2003. 10: 86–98.

  61. Luján R., Shigemoto R., López-Bendito G. Glutamate and GABA receptor signalling in the developing brain. Neuroscience. 2005. 130: 567–580.

  62. Luhmann H.J., Prince D.A. Postnatal maturation of the GABAergic system in rat neocortex. J. Neurophysiol. 1991. 65: 247–263.

  63. Martin L.J., Furuta A., Blackstone C.D. AMPA receptor protein in developing rat brain: glutamate receptor-1 expression and localization change at regional, cellular, and subcellular levels with maturation. Neuroscience. 1998. 83: 917–928.

  64. McCullough K.M., Choi D., Guo J., Zimmerman K., Walton J., Rainnie D.G., Ressler K.J. Molecular characterization of Thy1 expressing fear-inhibiting neurons within the basolateral amygdala. Nat. Commun. 2016. 7: 13149.

  65. Menshanov P.N., Lanshakov D.A., Dygalo N.N. proBDNF is a major product of bdnf gene expressed in the perinatal rat cortex. Physiol. Res. 2015. 64: 925–934.

  66. Monyer H., Burnashev N., Laurie D.J., Sakmann B., Seeburg P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994. 12: 529–540.

  67. Moriceau S., Sullivan R.M. Maternal presence serves as a switch between learning fear and attraction in infancy. Nat. Neurosci. 2006. 9: 1004–1006.

  68. Nabavi S., Fox R., Proulx C.D., Lin J.Y., Tsien R.Y., Malinow R. Engineering a memory with LTD and LTP. Nature. 2014. 511: 348–352.

  69. Ortiz S., Latsko M.S., Fouty J.L., Dutta S., Adkins J.M., Jasnow A.M. Anterior cingulate cortex and ventral hippocampal inputs to the basolateral amygdala selectively control generalized fear. J. Neurosci. 2019. 39: 6526–6539.

  70. Pagliaccio D., Luby J.L., Bogdan R., Agrawal A., Gaffrey M.S., Belden A.C., Botteron K.N., Harms M.P., Barch D.M. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation. J. Abnorm. Psychol. 2015. 124: 817–833.

  71. Park H., Poo M.M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 2013. 14: 7–23.

  72. Pattwell S.S., Bath K.G. Emotional learning, stress, and development: An ever-changing landscape shaped by early-life experience. Neurobiol Learn Mem. 2017 Sep; 143: 36–48.

  73. Premachandran H., Zhao M., Arruda-Carvalho M. Sex differences in the development of the rodent corticolimbic system. Front. Neurosci. 2020. 14: 583477.

  74. Rasmusson A.M., Shi L., Duman R. Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology. 2002. 27: 133–142.

  75. Rice D., Barone S. Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health. Perspect. 2000. 108: 511–533.

  76. Rios M., Fan G., Fekete C., Kelly J., Bates B., Kuehn R., Lechan R.M., Jaenisch R. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol. Endocrinol. 2001. 15: 1748–1757.

  77. Ryan T.J., Roy D.S., Pignatelli M., Arons A., Tonegawa S. Memory. Engram cells retain memory under retrograde amnesia. Science. 2015. 348 (6238): 1007–1013.

  78. Ryazantseva M., Englund J., Shintyapina A., Huupponen J., Shteinikov V., Pitkänen A., Partanen J.M., Lauri S.E. Kainate receptors regulate development of glutamatergic synaptic circuitry in the rodent amygdala. Elife. 2020. 9: e52798.

  79. Sah P., Faber E.S., Lopez De Armentia M., Power J. The amygdaloid complex: anatomy and physiology. Physiol. Rev. 2003. 83: 803–834.

  80. Schipper P., Brivio P., de Leest D., Madder L., Asrar B., Rebuglio F., Verheij M.M.M., Kozicz T., Riva M.A., Calabrese F., Henckens M.J.A.G., Homberg J.R. Impaired fear extinction recall in serotonin transporter knockout rats is transiently alleviated during adolescence. Brain Sci. 2019. 9: 118.

  81. Schubert D., Martens G.J., Kolk S.M. Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol. Psychiatry. 2015. 20: 795–809.

  82. Selleck R.A., Zhang W., Samberg H.D., Padival M., Rosenkranz J.A. Limited prefrontal cortical regulation over the basolateral amygdala in adolescent rats. Sci. Rep. 2018. 8: 17171.

  83. Semple B.D., Blomgren K., Gimlin K., Ferriero D.M., Noble-Haeusslein L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 2013. 106–107: 1–16.

  84. Sengupta A., Winters B., Bagley E.E., McNally G.P. Disrupted prediction error links excessive amygdala activation to excessive fear. J. Neurosci. 2016. 36: 385–395.

  85. Sengupta A., Yau J.O.Y., Jean-Richard-Dit-Bressel P., Liu Y., Millan E.Z., Power J.M., McNally G.P. Basolateral amygdala neurons maintain aversive emotional salience. J. Neurosci. 2018. 38: 3001–3012.

  86. Shishkina G.T., Kalinina T.S., Berezova I.V., Bulygina V.V., Dygalo N.N. Resistance to the development of stress-induced behavioral despair in the forced swim test associated with elevated hippocampal Bcl-xl expression. Behav. Brain Res. 2010. 213: 218–224.

  87. Shishkina G.T., Kalinina T.S., Berezova I.V., Dygalo N.N. Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: correlations with serotonin metabolism and depressive-like behavior. Neuropharmacology. 2012. 62: 177–183.

  88. Siddiqui A., Shah B.H. Neonatal androgen manipulation differentially affects the development of monoamine systems in rat cerebral cortex, amygdala and hypothalamus. Brain Res. Dev. Brain Res. 1997. 98: 247–252.

  89. Somerville L.H., Jones R.M., Casey B.J. A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cogn. 2010, 72: 124–133.

  90. Sparta D.R., Smithuis J., Stamatakis A.M., Jennings J.H., Kantak P.A., Ung R.L., Stuber G.D. Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear. Front. Behav. Neurosci. 2014. 8: 129.

  91. Standley S., Tocco G., Tourigny M.F., Massicotte G., Thompson R.F., Baudry M. Developmental changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor properties and expression in the rat hippocampal formation. Neuroscience. 1995. 67: 881–892.

  92. Sternson S.M., Roth B.L. Chemogenetic tools to interrogate brain functions. Annu. Rev. Neurosci. 2014. 37: 387–407.

  93. Suliman S., Hemmings S.M.J., Seedat S. Brain-derived neurotrophic factor (BDNF) protein levels in anxiety disorders: systematic review and meta-regression analysis. Front. Integr. Neurosci. 2013. 7: 55.

  94. Tarazi F.I., Baldessarini R.J. Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain. Int. J. Dev. Neurosci. 2000. 18: 29–37.

  95. Tipps M., Marron Fernandez de Velasco E., Schaeffer A., Wickman K. Inhibition of pyramidal neurons in the basal amygdala promotes fear learning. eNeuro. 2018. 5 (5): ENEURO.0272-18.2018.

  96. Tole S., Grove E.A. Detailed field pattern is intrinsic to the embryonic mouse hippocampus early in neurogenesis. J. Neurosci. 2001. 21: 1580–1589.

  97. Tovote P., Fadok J.P., Lüthi A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 2015. 16: 317–331.

  98. Urbán N., Guillemot F. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front. Cell. Neurosci. 2014. 8: 396.

  99. VanTieghem M.R., Tottenham N. Neurobiological programming of early life stress: Functional development of amygdala-prefrontal circuitry and vulnerability for stress-related psychopathology. Curr. Top. Behav. Neurosci. 2018. 38: 117–136.

  100. Vicini S., Wang J.F., Li J.H., Zhu W.J., Wang Y.H., Luo J.H., Wolfe B.B., Grayson D.R. Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J. Neurophysiol. 1998. 79: 555–566.

  101. Wang H., Stradtman G.G. 3rd, Wang X.J., Gao W.J. A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex. Proc. Natl. Acad. Sci. U. S. A. 2008. 105: 16791–16796.

  102. Warnell K.R., Pecukonis M., Redcay E. Developmental relations between amygdala volume and anxiety traits: Effects of informant, sex, and age. Dev. Psychopathol. 2018. 30: 1503–1515.

  103. Wolff S.B., Gründemann J., Tovote P., Krabbe S., Jacobson G.A., Müller C., Herry C., Ehrlich I., Friedrich R.W., Letzkus J.J., Lüthi A. Amygdala interneuron subtypes control fear learning through disinhibition. Nature. 2014. 509: 453–458.

  104. Yin F., Guo H., Cui J., Shi Y., Su R., Xie Q., Chang J., Wang Y., Lai J. The basolateral amygdala regulation of complex cognitive behaviours in the five-choice serial reaction time task. Psychopharmacology (Berl). 2019. 236: 3135–3146.

  105. Yu H., Wang D.D., Wang Y., Liu T., Lee F.S., Chen Z.Y. Variant brain-derived neurotrophic factor Val66Met polymorphism alters vulnerability to stress and response to antidepressants. J. Neurosci. 2012. 32: 4092–4101.

  106. Yun S., Reynolds R.P., Petrof I., White A., Rivera P.D., Segev A., Gibson A.D., Suarez M., DeSalle M.J., Ito N., Mukherjee S., Richardson D.R., Kang C.E., Ahrens-Nicklas R.C., Soler I., Chetkovich D.M., Kourrich S., Coulter D.A., Eisch A.J. Stimulation of entorhinal cortex-dentate gyrus circuitry is antidepressive. Nat. Med. 2018. 24: 658–666.

  107. Zehr J.L., Todd B.J., Schulz K.M., McCarthy M.M., Sisk C.L. Dendritic pruning of the medial amygdala during pubertal development of the male Syrian hamster. J. Neurobiol. 2006. 66: 578–590.

  108. Zhang W., Rosenkranz J.A. Effects of repeated stress on age-dependent GABAergic regulation of the lateral nucleus of the amygdala. Neuropsychopharmacology. 2016. 41: 2309–2323.

  109. Zheng F., Zhou X., Moon C., Wang H. Regulation of brain-derived neurotrophic factor expression in neurons. Int. J. Physiol. Pathophysiol. Pharmacol. 2012. 4: 188–200.

  110. Zimmermann K.S., Richardson R., Baker K.D. Maturational changes in prefrontal and amygdala circuits in adolescence: Implications for understanding fear inhibition during a vulnerable period of development. Brain Sci. 2019. 9: 65.

  111. Zoratto F., Altabella L., Tistarelli N., Laviola G., Adriani W., Canese R. Inside the developing brain to understand teen behavior from rat models: Metabolic, structural, and functional-connectivity alterations among limbic structures across three pre-adolescent stages. Front. Behav. Neurosci. 2018. 12: 208.

Дополнительные материалы отсутствуют.