Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 3, стр. 295-305

Моноамины как адаптивные регуляторы развития: феномен и механизмы действия

Е. Е. Воронежская 1*, В. И. Мельникова 1, Е. Г. Ивашкин 123

1 ФГБУН Институт биологии развития им. Н.К. Кольцова РАН
Москва, Россия

2 ФГБУН Институт проблем экологии и эволюции им. А.Н. Северцова РАН
Москва, Россия

3 Marine Biological Laboratory
Woods Hole, USA

* E-mail: elena.voronezhskaya@idbras.ru

Поступила в редакцию 10.12.2020
После доработки 17.02.2021
Принята к публикации 02.03.2021

Аннотация

Значительная часть интегративных функций в организме осуществляется через моноаминергические системы: комплекс из низкомолекулярного медиатора – биогенного амина (серотонина и дофамина), ферментов его метаболизма и рецепторов. Это делает моноамины важнейшим компонентом нервной и эндокринной системы в организме, определяющим адаптационные способности организма в непрерывно меняющихся условиях окружающей среды. На примере собственного экспериментального материала и существующей литературы дается представление о регуляторной роли моноаминов в процессе развития, начиная со стадии яйцеклетки и раннего дробления и до формирования нейронных сетей, лежащих в основе поведения. Рассмотрены классический лиганд-рецепторный механизм и механизм неканонической модификации внутриклеточных белков (моноаминилирование) и их вклад в адаптивную регуляцию в разные периоды развития. Показана роль моноаминов и моноаминилирования как консервативного фактора, связывающего сигналы окружающей среды и физиологию развивающегося организма.

Ключевые слова: моноамины, серотонин, онтогенез, серотонилирование белков, лиганд-рецепторные взаимодействия, материнский эффект

DOI: 10.31857/S0044467721030126

Список литературы

  1. Бузников Г.А., Манухин Б.Н. Серотонин-подобные вещества в эмбриогенезе некоторых брюхоногих моллюсков. Журн. общ биол. 1961. 22: 223–229.

  2. Бузников Г.А. Донервные трансмиттеры как регуляторы эмбриогенеза. Современное состояние проблемы. Онтогенез. 2007. 38 (4): 262–270.

  3. Воронежская Е.Е., Хабарова М.Ю. Функция апикального органа в развитии беспозвоночных. ДАН. 2003. 390 (2): 272–275.

  4. Воронежская Е.Е., Хабарова М.Ю., Чабан А.К., Незлин Л.П. Влияние химической сигнализации на реализацию моторных программ в эмбриогенезе легочных моллюсков Lymnaea stagnalis и Helisoma trivolvis. Онтогенез. 2007. 38 (2): 94–104.

  5. Дьяконова В.Е. Нейротрансмиттерные механизмы контекст-зависимого поведения. Журнал высшей нервной деятельности им. И.П. Павлова. 2012. 62 (6): 1–17.

  6. Мещеряков В.Н. Прудовик Lymnaea stagnalis L. Объекты биологии развития: справ.-метод. пособие. М. Наука. 1975. 53–94.

  7. Никишин Д.А., Алешина Н.М., Шмуклер Ю.Б. Синтез и мембранный транспорт серотонина в развивающемся овариальном фолликуле мыши. ДАН. 2018а. 478 (1): 103–106.

  8. Никишин Д.А., Храмова Ю.В., Багаева Т.С., Семенова М.Л., Шмуклер Ю.Б. Экспрессия компонентов серотонинергической системы в фолликулогенезе и доимплантационном развитии мыши. Онтогенез. 2018b. 49 (3): 208–216.

  9. Сахаров Д.А. Множественность нейротрансмиттеров: функциональное значение Журн. эвол. биохим. физиол. 1990. 26: 733–740.

  10. Сахаров Д.А. Биологический субстрат генерации поведенческих актов. Ж. общ. биол. 2012. 73 (5) 334–348.

  11. Шмуклер Ю.Б., Никишин Д.А. О внутриклеточной рецепции медиаторов. Нейрохимия. 2018. 35 (4): 289–293.

  12. Abdala-Valencia H., Berdnikovs S., McCary C.A., Urick D., Mahadevia R., Marchese M.E., Swartz K., Wright L., Mutlu G.M., Cook-Mills J.M. Inhibition of allergic inflammation by supplementation with 5-hydroxytryptophan.Am. J. Physiol. Lung Cell. Mol. Physiol. 2012. 303 (8): L642–60.

  13. Ahern G.P. 5-HT and the immune system. Curr Opin Pharmacol. 2011 11 (1): 29–33.

  14. Amireault P., Dubé F. Intracellular cAMP and Calcium Signaling by Serotonin in Mouse Cumulus-Oocyte Complexes. Mol. Pharmacol. 2005a. 68 (6): 1678–1687.

  15. Amireault P., Dubé F. Serotonin and its Antidepressant-Sensitive Transport in Mouse Cumulus-Oocyte Complexes and Early Embryos. Biol. Reprod. 2005b. 73: 358–365.

  16. Amireault P., Sibon D., Côté F. Life without Peripheral Serotonin: Insights from Tryptophan Hydroxylase 1 Knockout Mice Reveal the Existence of Paracrine/Autocrine Serotonergic Networks. ACS Chem. Neurosci. 2013. 4 (1): 64–71.

  17. Aonuma H., Mezheritskiy M., Boldyshev B., Totani Y., Vorontsov D., Zakharov I., Ito E., Dyakonova V. The role of serotonin in the influence of intense locomotion on the behavior under uncertainty in the mollusk Lymnaea stagnalis. Frontiers in Physiology. 2020. 11. Art. 221. https://doi.org/10.3389/fphys.2020.00221

  18. Bader M. Serotonylation: Serotonin Signaling and Epigenetics. Front. Mol. Neurosci. 2020. 12: 288.

  19. Baganz N.L., Blakely R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci. 2013. 4 (1): 48–63.

  20. Basu B., Desai R., Balaji J., Chaerkady R., Sriram V., Maiti S., Panicker M. M. Serotonin in pre-implantation mouse embryos is localized to the mitochondria and can modulate mitochondrial potential. Reproduction. 2008. 135: 657–669.

  21. Beyer T., Danilchik M., Thumberger T., Vick P., Tisler M., Schneider I., Bogusch S., Andre P., Ulmer B., Walentek. P, Niesler B., Blum M., Schweickert A. Serotonin signaling is required for Wnt-dependent GRP specification and leftward flow in Xenopus. Curr. Biol. 2012. 22 (1): 33–39.

  22. Bonnin A., Goeden N., Chen K., Wilson M.L., King J., Shih J.C., Blakely R.D., Deneris E.S., Levitt P. A transient placental source of serotonin for the fetal forebrain. Nature. 2011. 472 (7343): 347–350.

  23. Bonnin A., Levitt P. Fetal, maternal and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience 2011. 197: 1–7.

  24. Burden H.W., Lawrence I.E. Jr. Presence of biogenic amines in early rat development. Am. J. Anat. 1973. 136 (2): 251–257.

  25. Buznikov G.A., Chudakova I.V., Zvezdina N.D. The role of neurohumours in early embryogenesis. i. serotonin content of developing embryos of sea urchin and loach. J. Embryol. Exp. Morphol. 1964. 12: 563–573.

  26. Buznikov G.A., Lambert H.W., Lauder J.M. Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis. Cell and Tissue Res. 2001.305 (2): 177–186.

  27. Buznikov G.A., Nikitina L.A., Voronezhskaya E.E., Bezuglov V.V., Willows A.D., Nezlin L.P. Localization of serotonin and its possible role in early embryos of Tritonia diomedea (Mollusca: Nudibranchia). Cell and Tissue Research. 2003. 311: 259–266.

  28. Candiani S., Augello A., Oliveri D., Passalacqua M., Pennati R., De Bernardi F., Pestarino M. Immunocytochemical localization of serotonin in embryos, larvae and adults of the lancelet. Branchiostoma floridae. Histochem. J. 2001. 33: 413–420.

  29. Chabbi-Achengli Y., Coudert A.E., Callebert J., Geoffroy V., Côté F., Collet C., de Vernejoul M.C. Decreased osteoclastogenesis in serotonin-deficient mice. Proc. Natl. Acad. Sci. U S A. 2012. 109 (7): 2567–2572.

  30. Chen H.J., Antonson A.M., Rajasekera T.A., Patterson J.M., Bailey M.T., Gur T.L. Prenatal stress causes intrauterine inflammation and serotonergic dysfunction, and long-term behavioral deficits through microbe- and CCL2-dependent mechanisms. Transl. Psychiatry. 2020. 10 (1): 191.

  31. Cooney C.A., Dave A.A., Wolff G.L. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr. 2002. 132: 2393S–2400S.

  32. Dias B.G., Ressler K.J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 2014. 17 (1): 89–96.

  33. Dubé F., Amireault P. Local serotonergic signaling in mammalian follicles, oocytes and early embryos. Life Sci. 2007. 81 (25–26): 1627–1637.

  34. Duerschmied D., Bode C. The role of serotonin in haemostasis. Hamostaseologie. 2009. 29 (4): 356–359.

  35. Emanuelsson H. Localization of serotonin in cleavage embryos of Ophryotrocha labronica La Greca and Bacci. 1974. Dev. Genes Evol. 175: 253–271.

  36. Emanuelsson H., Carlberg M., Lowkvist B. Presence of serotonin in early chick embryos. Cell. Differ. 1988. 24: 191–199.

  37. Farrelly L.A., Thompson R.E., Zhao S., Lepack A.E., Lyu Y., Bhanu N.V., Zhang B., Loh Y.-H.E., Ramakrishnan A., Vadodaria K.C., Heard K.J., Erikson G., Nakadai T., Bastle R.M., Lukasak B.J., Zebroski H., Alenina N., Bader M., Berton O., Roeder R.G., Molina H., Gage F.H., Shen L., Garcia B.A., Li H., Muir T.W., Maze I. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature. 2019. 567: 535–539.

  38. Fossat P., Bacqué-Cazenave J., De Deurwaerdère P., Delbecque J.P., Cattaert D. Comparative behavior. Anxiety-like behavior in crayfish is controlled by serotonin. Science. 2014. 344 (6189): 1293–1297.

  39. Fukumoto T., Kema I.P., Levin M. Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Curr. Biol. 2005. 15: 794–803.

  40. Glebov K., Voronezhskaya E.E., Khabarova M.Y., Ivashkin E., Nezlin L.P., Ponimaskin E.G. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca). 2014. BMC Dev. Biol. 14: 14.

  41. Guilluy C., Rolli-Derkinderen M., Tharaux P.L., Melino G., Pacaud P., Loirand G. Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells. J. Biol. Chem. 2007. 282 (5): 2918–2928.

  42. Hummerich R., Schloss P. Serotonin-more than a neurotransmitter: transglutaminase-mediated serotonylation of C6 glioma cells and fibronectin. Neurochem. Int. 2010. 57 (1): 67–75.

  43. Hummerich R., Thumfart J.O., Findeisen P., Bartsch D., Schloss P. Transglutaminase-mediated transamidation of serotonin, dopamine and noradrenaline to fibronectin: evidence for a general mechanism of monoaminylation. FEBS Lett. 2012. 586 (19): 3421–3428.

  44. Hummerich R., Costina V., Findeisen P., Schloss P. Monoaminylation of Fibrinogen and Glia-Derived Proteins: Indication for Similar Mechanisms in Posttranslational Protein Modification in Blood and Brain. ACS Chem. Neurosci. 2015. 6 (7): 1130–1136.

  45. Hinckley M., Vaccari S., Horner K., Chen R., Conti M. The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes. Dev. Biol. 2005. 287 (2): 249–261.

  46. Il’kova G., Rehak P., Vesela J., Cikos S., Fabian D., Czikkova S., Koppel J. Serotonin localization and its functional significance during mouse preimplantation embryo development. Zygote. 2004. 12 (3): 205–213.

  47. Issa T.B., Sagaama A., Issaoui N. Computational study of 3-thiophene acetic acid: Molecular docking, electronic and intermolecular interactions investigations. Comput. Biol. Chem. 2020. 86: 107268.

  48. Ivashkin E., Khabarova M., Voronezhskaya E. Serotonin transport and synthesis systems during early development of invertebrates: Functional analysis on a bivalve model. Acta Biol. Hung. 2012. 63: 217–220.

  49. Ivashkin E., Khabarova M., Melnikova V., Nezlin L., Kharchenko O., Voronezhskaya, E., Adameyko I. Serotonin mediates maternal effects and directs developmental and behavioral changes in the progeny of snails. Cell Rep. 2015. 12: 1144–1158.

  50. Ivashkin E., Melnikova V., Kurtova A., Brun N.R., Obukhova A., Khabarova M.Y., Voronezhskaya E.E. Transglutaminase activity determines nuclear localization of serotonin immunoreactivity in the early embryos of invertebrates and vertebrates. ACS Chem. Neurosci. 2019. 10: 3888–3899.

  51. Jong Y.I., Harmon S.K., O’Malley K.L. GPCR signalling from within the cell. Br. J. Pharmacol. 2018. 175 (21): 4026–4035.

  52. Khabarova M.Y., Voronezhskaya E.E. Pharmacological analysis of locomotion and heart contraction during the development of Helisoma (Mollusca: Gastropoda). Acta Biol. Hung. 2012. 63 (2): 206–209.

  53. Koene J.M. Neuro-endocrine control of reproduction in hermaphroditic freshwater snails: mechanisms and evolution. Frontiers in behavioral neuroscience 2010. 4: 167.

  54. Mercado C.P., Ziu E., Kilic F. Communication between 5-HT and small GTPases. Curr Opin Pharmacol. 2011. 11 (1): 23–28.

  55. Mousseau T.A., Fox C.W. The adaptive significance of maternal effects. Trends Ecol Evol. 1998. 13 (10): 403–407.

  56. Muma N.A., Mi Z. Serotonylation and transamidation of other monoamines. ACS Chem. Neurosci. 2015. 6: 961–969.

  57. Neilson L., Andalibi A., Kang D., Coutifaris C., Strauss J.F., Stanton J.A., Green D.P. Molecular phenotype of the human oocyte by PCR-SAGE. Genomics. 2000. 63 (1): 13–24.

  58. Nikishin D.A., Kremnyov S.V., Konduktorova V.V., Shmukler Y.B. Expression of serotonergic system components during early Xenopus embryogenesis. Int. J. Dev. Biol. 2012. 56 (5): 385–391.

  59. Nikishin D.A., Milošević I., Gojković M., Rakić L., Bezuglov V.V., Shmukler Y.B. Expression and functional activity of neurotransmitter system components in sea urchins' early development. Zygote. 2016. 24 (2): 206–218.

  60. Nikishin D.A., Alyoshina N.M., Semenova M.L., Shmukler Y.B. Analysis of Expression and Functional Activity of Aromatic L-Amino Acid Decarboxylase (DDC) and Serotonin Transporter (SERT) as Potential Sources of Serotonin in Mouse Ovary. Int. J. Mol. Sci. 2019. 20 (12): 3070.

  61. Numanoi N. Studies on the fertilization substance. V. Distribution of acetycholine esterase in egg particles of the sea urchin, Hemicentrotus pulcherrhimus. 1955. Scient. Papers Coll. Gen. Educ. Univ. Tokyo. 5: 37–41.

  62. Pavone L.M., Norris R.A. Distinct signaling pathways activated by “extracellular” and “intracellular” serotonin in heart valve development and disease. Cell. Biochem. Biophys. 2013. 67 (3): 819–828.

  63. Paulmann N., Grohmann M., Voigt J.P., Bert B., Vowinckel J., Bader M., Skelin M., Jevsek M., Fink H., Rupnik M., Walther D.J. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol. 2009. 7 (10): e1000229.

  64. Räsänen K., Kruuk L.E.B. Maternal effects and evolution at ecological time-scales. Functional Ecology. 2007. 21 (3): 408–421.

  65. Sakharov D.A. Integrative function of serotonin common to distantly related invertebrate animals. Early Brain. Ed. Gustafsson M., Reuter M. Abo: Abo Akademi Press. 1990. 73–88 pp.

  66. Sato K. Placenta-derived hypo-serotonin situations in the developing forebrain cause autism. Med. Hypotheses. 2013. 80 (4): 368–372.

  67. Schmidt-Rhaesa A., Harzsch S., Purschke G. Structure and Evolution of Invertebrate Nervous Systems. Oxford: Oxford University Press. 2016.

  68. St-Pierre J., Laurent L., King S., Vaillancourt C. Effects of prenatal maternal stress on serotonin and fetal development. Placenta. 2016. 48(1): S66-S71.

  69. Sze J.Y., Victor M., Loer C., Shi Y., Ruvkun G. Food and metabolic signaling defects in a serotonin-synthesis mutant. Nature. 2000. 403: 560–564.

  70. Tanaka T., Doe J.M., Horstmann S.A., Ahmad S., Ahmad A., Min S.J., Reynolds P.R., Suram S., Gaydos J., Burnham E.L., Vandivier R.W. Neuroendocrine signaling via the serotonin transporter regulates clearance of apoptotic cells. J. Biol. Chem. 2014.289 (15): 10466–10475. Caenorhabditis elegans

  71. Ugrumov M.V. Hypothalamic monoaminergic systems in ontogenesis: development and functional significance. Int. J. Dev. Biol. 1997. 41 (6): 809–816.

  72. Vitalis T., Ansorge M.S., Dayer A.G. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Front. Cell. Neurosci. 2013. 7: 93.

  73. Voronezhskaya E.E., Nezlin L.P., Khabarova M.Yu. Apical sensory neurons mediate developmental retardation induced by conspecific environmental stimuli in freshwater pulmonate snails. Development. 2004. 131: 3671–3680.

  74. Voronezhskaya E.E., Khabarova M.Y., Nezlin L.P., Ivashkin E.G. Delayed action of serotonin in molluscan development. Acta Biol. Hung. 2012. 63 (2): 210–216.

  75. Walther D.J., Peter J.U., Winter S., Höltje M., Paulmann N., Grohmann M., Vowinckel J., Alamo-Bethencourt V., Wilhelm C.S., Ahnert-Hilger G., Bader M. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet a-granule release. Cell. 2003. 115: 851–862.

  76. Walther D.J., Stahlberg S., Vowinckel J. Novel roles for biogenic monoamines: from monoamines in transglutaminase-mediated posttranslational protein modification to monoaminylation deregulation diseases. FEBS J. 2011. 278: 4740–4755.

  77. Waterland R.A., Jirtle R.L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 2003. 23 (15): 5293–5300.

  78. Watts S.W., Priestley J.R., Thompson J.M. Serotonylation of vascular proteins important to contraction. PLoS One. 2009. 4: e5682.

  79. Weaver I.C., Cervoni N., Champagne F.A., D’Alessio A.C., Sharma S., Seckl J.R., Dymov S., Szyf M., Meaney M.J. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004. 7 (8): 847–854.

Дополнительные материалы отсутствуют.