Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 2, стр. 244-269

Камо грядеше, хронопсихология?

А. А. Путилов *

ФИЦ фундаментальной и трансляционной медицины
Новосибирск, Россия

* E-mail: putilov@ngs.ru

Поступила в редакцию 22.11.2020
После доработки 22.12.2020
Принята к публикации 22.12.2020

Аннотация

Это первый обзор по хронопсихологии, относительно новой междисциплинарной области исследований, которая быстро развивается на стыке хронобиологии, сомнологии и психологии. Хронопсихология изучает механизмы ритмичности в поведении и психике, опираясь на методы хронобиологии, сомнологии и психометрии. В частности, хронобиология изучает биологические часы, а сомнология – их влияние на регуляторные процессы, непосредственно контролирующие цикл сна и бодрствования, нарушения которого отрицательно влияют на психическую деятельность. Mетоды психометрии и дифференциальной психологии широко применяются, например, при изучении хронотипа и его взаимосвязи с самыми разными особенностями человека – генетическими, психофизиологическими, поведенческими, когнитивными, личностными и психопатологическими. Особое внимание уделяется сну, сонливости, усталости, продуктивности работы/учебы, здоровому/нездоровому образу жизни людей разного пола и возраста. Прикладные исследования включают разработку – с учетом хронотипа каждого конкретного человека – рекомендаций по сохранению полноценного сна и здоровья в конкретной временной среде, оптимизации режима работы и отдыха, эффективному усвоению новых навыков и предотвращению несчастных случаев при активной деятельности в неподходящее для такой деятельности время суток.

Ключевые слова: хронотипология, сомнология, хронобиология, психология личности, индивидуальные различия, циркадианные ритмы, регуляция сна-бодрствования, сонливость, сменный труд

DOI: 10.31857/S004446772102009X

Список литературы

  1. Алякринский Б.С. Десинхроноз компонент общего адаптационного синдрома. В кн.: Стресс и его патогенетические механизмы. Б.С. Алякринский (ред.). Кишинёв: Штиинца, 1973. С. 9–11.

  2. Алякринский Б.С. Биологические ритмы и организация жизни человека в космосе. Проблемы космической биологии. Т. 46. М.: Наука, 1983. 248 с.

  3. Арсеньев Г.Н., Ткаченко О.Н., Украинцева Ю.В., Дорохов В.Б. Прогнозирование моментов критического снижения уровня бодрствования по показателям зрительно-моторной координации. Журнал высшей нервной деятельности им. И.П. Павлова. 2014. 64 (1): 64–76.

  4. Базанова О.М. Вариабельность и воспроизводимость индивидуальной частоты альфа-ритма ЭЭГ в зависимости от экспериментальных условий. Журнал высшей нервной деятельности им. И.П. Павлова. 2011. 61 (1): 102–111.

  5. Биологические ритмы. Ю. Ашофф (ред.). М.: Мир, 1984.

  6. Биологические часы. С.Э. Шноль (Пер. с англ., ред.). М.: Мир, 1964.

  7. Блехман И.И. Синхронизация в природе и технике. М.: Наука, 1981.

  8. Дорохов В.Б. Сомнология и безопасность профессиональной деятельности. Журнал высшей нервной деятельности им. И.П. Павлова. 2013. 63 (1): 33–33.

  9. Дубров А.П. Лунные ритмы у человека (Краткий очерк по селеномедицине). М.: Медицина, 1990. 60 с.

  10. Ковальзон В.М. Мозг и сон: от нейронов – к молекулам. Журнал высшей нервной деятельности им. И.П. Павлова. 2013. 63 (1): 48–60.

  11. Лебедева Н.Н., Каримова Е.Д. Устойчивость паттернов ЭЭГ человека в различных задачах: проблема аутентификации личности. Журнал высшей нервной деятельности им. И.П. Павлова. 2020. 70 (1): 40–49.

  12. Матюхин В.А., Путилов А.А., Ежов С.Н. Рекомендации по прогнозированию и профилактике десинхронозов (хронофизиологические аспекты географических перемещений). Новосибирск, 1983. 51 с.

  13. Плюснин Ю.М., Путилов А.А. Биоритмологические корреляты личностных черт. Психологич. ж. 1990. 11 (6): 47–50.

  14. Путилов А.А. Системообразующая функция синхронизации в живой природе. Новосибирск: Наука, 1987. 145 с.

  15. Путилов А.А. Текст анкеты для самооценки индивидуальных особенностей цикла сон-бодрствование. Бюлл. Сиб. от-ния АМН СССР. 1990, 1: 22–25.

  16. Путилов А.А. Совы, жаворонки и другие: о наших внутренних часах и о том, как они влияют на здоровье и характер. Новосибирск: Изд-во Новосиб. ун-та; М.: Совершенство, 1997. 264 с.

  17. Путилов А.А. Очерк истории и современного состояния экспериментальных исследований биоритмов: от наблюдений за движением листьев до экспериментов по принуждению к десинхронизации. В: Сборник научно-популярных статей и фотоматериалов, РФФИ, 2016, с. 187–219. http: //www.rfbr.ru/rffi/ru/popular_science_articles/o_1959340#1

  18. Путилов А.А. По физиологии и медицине – Дж. Холл, М. Росбаш и М. Янг (лауреаты Нобелевской премии 2017 г.). Природа. 2018. 1 (1229): 81–88.

  19. Путилов А.А. Методы самооценки хронобиологических различий. В кн.: Хронобиология и хрономедицина. С.М. Чибисов, С.И. Рапопорт, М.Л. Благонравов (ред.). М.: РУДН, 2018, с. 369–400.

  20. Путилов А.А. Хронобиология и сон. В кн.: Сомнология и медицина сна: Национальное руководство памяти А.М. Вейна и Я.И. Левина. М.Г. Полуэктов (ред.), 2-е изд. М.: ООО “Медконгресс”, 2020, с. 235–265.

  21. Achermann P., Borbély A.A. Simulation of daytime vigilance by the additive interaction of a homeostatic and a circadian process. Biol Cybern. 1994. 71 (2): 115–21.

  22. Adan A., Archer S.N., Hidalgo M.P., Di Milia L., Natale V., Randler C. Circadian typology: a comprehensive review. Chronobiol. Int. 2012. 299: 1153–1175.

  23. Aeschbach D., Borbely A.A. All-night dynamics of the human sleep EEG. J. Sleep Res. 1993. 2: 70–81.

  24. Akerstedt T., Folkard S. The three-process model of alertness and its extension to performance, sleep latency, and sleep length. Chronobiol. Int. 1997. 14: 115–123.

  25. Åkerstedt T., Torsvall L. Shift work: shift-dependent well-being and individual differences. Ergonomics 1981. 24 (4): 265–273.

  26. Aschoff J. (Ed.). Biological Rhythms (Handbook of Behavioral Neurobiology, Vol. 4). Plenum: New York, 1981.

  27. Aschoff J. Circadian rhythms in man. Science. 1965. 148 (3676): 1427–32.

  28. Aschoff J., Gerecke U., Wever R. Desynchronization of human circadian rhythms. Jpn. J. Physiol. 1967. 17 (4): 450–457.

  29. Aschoff J., von Goetz C. Masking of circadian activity rhythms in hamsters by darkness. J. Comp. Physiol A. 1988. 162 (4): 559–562.

  30. Bargiello T.A., Jackson F.R., Young M.W. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 1984. 312: 752–754.

  31. Baron K.G., Reid K.J. Circadian misalignment and health. Int. Rev. Psychiatry 2014. 26: 139–154.

  32. Bhatti P., Mirick D.K., Davis S. The impact of chronotype on melatonin levels among shift workers. Occup. Environ. Med. 2014. 71 (3): 195–200.

  33. Beauvalet J.C., Quiles C.L., de Oliveira M.A.B., Ilgenfritz C.A., Hidalgo M.P., Tonon A.C. Social jetlag in health and behavioral research: a systematic review. Chrono Physiol. Ther. 2017. 7: 19–31.

  34. Bin Y.S., Postnova S., Cistulli P.A. What works for jetlag? A systematic review of non-pharmacological interventions. Sleep Med. Rev. 2019. 43: 47–59.

  35. Bohle P., Tilley A.J. Brown S. Psychometric evaluation of the Early/Late Preference Scale. Ergonomics 2001. 44: 887–900.

  36. Boivin D.B., Boudreau P. Impacts of shift work on sleep and circadian rhythms. Pathol. Biol. (Paris) 2014. 62 (5): 292–301.

  37. Booker J.M., Hellekson C.J., Putilov A.A., Danilenko K.V. Seasonal depression and sleep disturbances in Alaska and Siberia: a pilot study. Arctic Med. Res. 1991. 50 (Suppl. 5): 281–284.

  38. Borbély A.A. A two process model of sleep regulation. Human Neurobiol. 1982. 1: 195–204.

  39. Borbély A.A., Baumann F., Brandeis D., Strauch I., Lehmann D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroenceph. Clin. Neurophysiol. 1981. 51: 483–493.

  40. Borisenkov M.F., Tserne T.A., Panev A.S., Petrova N.B., Timonin V.D., Kolomeichuk S.N., Vinogradova I.A., Kovyazina M.S., Kosova A.L., Kasyanova O.N. Seven-year survey of sleep timing in Russian children and adolescents: chronic 1-h forward transition of social clock is associated with increased social jetlag and winter pattern of mood seasonality. Biol. Rhythm Res. 2016. 48: 3–12.

  41. Boutrel B., Koob G.F. What keeps us awake: the neuropharmacology of stimulants and wake-promoting medications. Sleep 2004. 27: 1181–1194.

  42. Breithaupt H., Hildebrandt G., Dohre D., Josch R., Sieber U., Werner M. Tolerance to shift of sleep, as related to the individual’s circadian phase position. Ergonomics 1978. 21: 767–774.

  43. Burgess H.J., Eastman C.I. A late wake time phase delays the human dimlight melatonin rhythm. Neurosci. Lett. 2006. 395, 191–195.

  44. Chang A.M., Scheer F.A., Czeisler C.A. The human circadian system adapts to prior photic history. J. Physiol. 2011. 589 (Pt 5): 1095–102.

  45. Carskadon M.A. Sleep in adolescents: the perfect storm. Pediatr. Clin. N. Am. 2011. 58: 637–647.

  46. Chua E.C., Yeo S.C., Lee I.T., Tan L.C., Lau P., Tan S.S., Ho Mien I., Gooley J.J. Individual differences in physiologic measures are stable across repeated exposures to total sleep deprivation. Physiol. Rep. 2014. 2 (9): e12129.

  47. Cingi C., Emre I.E., Muluk N.B. Jetlag related sleep problems and their management: a review. Travel. Med. Infect. Dis. 2018. 24: 59–64.

  48. Comas M., Beersma D.G., Spoelstra K., Daan S. Circadian response reduction in light and response restoration in darkness: a “skeleton” light pulse PRC study in mice (Mus musculus). J. Biol. Rhythms 2007. 22 (5): 432–444.

  49. Costa G., Lievore F., Casaletti G., Gaffuri E., Folkard S. Circadian characteristics influencing interindividual differences in tolerance and adjustment to shiftwork. Ergonomics 1989. 32: 373–385.

  50. Crowley S.J., Van Reen E., LeBourgeois M.K., Acebo C., Tarokh L., Seifer R., Barker D.H., Carskadon M.A. A longitudinal assessment of sleep timing, circadian phase, and phase angle of entrainment across human adolescence. PLoS One 2014. 9 (11): e112199.

  51. Crumbley C., Wang Y., Kojetin D.J., Burris T.P. Characterization of the core mammalian clock component, NPAS2, as a REV-ERBalpha/RORalpha target gene. J. Biol. Chem. 2010. 285 (46): 35386–35392.

  52. Czeisler C.A., Brown E.N., Ronda J.M., Kronauer R.E., Richardson G.S., Freitag W.O. A clinical method to assess the endogenous circadian phase (ECP) of the deep circadian oscillator in man. Sleep Res, 1985. 14: 295.

  53. Czeisler C.A., Duffy J.F., Shanahan T.L., Brown E.N., Mitchell J.F., Rimmer D.W., Ronda J.M., Silva E.J., Allan J.S., Emens J.S., Dijk D.J., Kronauer R.E. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 1999. 284 (5423): 2177–2181.

  54. Daan S. The Colin S. Pittendrigh Lecture. Colin Pittendrigh, Jürgen Aschoff, and the natural entrainment of circadian systems. J. Biol. Rhythms. 2000. 15 (3): 195–207.

  55. Daan S., Beersma D.G.M., Borbély A.A. Timing of human sleep: Recovery process gated by a circadian pacemaker. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 1984; 246: R161–R178.

  56. Danilenko K.V., Cajochen C., Wirz-Justice A. Is sleep per se a zeitgeber in humans? J. Biol. Rhythms. 2003. 18 (2): 170–178.

  57. Dannemann M., Kelso J. The contribution of Neanderthals to phenotypic variation in modern humans. Am. J. Hum. Genet. 2017. 101: 578–589.

  58. Daub J.T., Hofer T., Cutivet E., Dupanloup I., Quintana-Murci L., Robinson-Rechavi M., Excoffier L. Evidence for polygenic adaptation to pathogens in the human genome. Mol. Bio.l Evol. 2013. 30 (7): 1544–1558.

  59. Dennis L.E., Wohl R.J., Selame L.A., Goel N. Healthy adults display long-term trait-like neurobehavioral resilience and vulnerability to sleep loss. Sci. Rep. 2017. 7 (1): 14889.

  60. Dijk D.J., Beersma D.G.M., Daan S. EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J. Biol. Rhythms 1987. 2: 207–219.

  61. Dijk D.J., Brunner D.P., Borbély A.A. Time course of EEG power density during long sleep in humans. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 1990. 258: R650–R661.

  62. Dijk D.J., Czeisler C.A. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 1995. 15: 3526–3538.

  63. Dijk D.J., Duffy J.F., Czeisler C.A. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J. Sleep Res. 1992. 1: 112–7.

  64. Di Milia L., Folkard S., Hill J., Walker C. Jr. A psychometric assessment of the Circadian Amplitude and Phase Scale. Chronobiol. Int. 2011. 28: 81–87.

  65. Di Milia L., Adan A., Natale V., Randler C. Reviewing the psychometric properties of contemporary circadian typology measures. Chronobiol. Int. 2013. 30: 1261–1271.

  66. Dinges D.F. An overview of sleepiness and accidents. J. Sleep Res. 1995. 4 (Suppl. 2): 4–14.

  67. Dorokhov V.B., Puchkova A.N., Taranov A.O., Slominsky P.A., Tupitsina A.V., Vavilin V.A., Ivanov I.D., Nechunaev V.V., Kolomeichuk S.N., Morozov A.V., Budkevich E.V., Budkevich R.O., Dementrienko V.V., Sveshnikov D.S., Donskaya O.G., Putilov A.A. An hour in the morning is worth two in the evening: association of morning component of morningness-eveningness with single nucleotide polymorphisms in circadian clock genes. Biol. Rhythm Res., 2018. 49 (4): 622–642.

  68. Drake C.L., Roehrs T., Richardson G., Walsh J.K., Roth T. Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep 2004. 27 (8): 1453–1462.

  69. Eastman C.I., Molina T.A., Dziepak M.E., Smith M.R. Blacks (African Americans) have shorter free-running circadian periods than whites (Caucasian Americans). Chronobiol. Int. 2012. 29: 1072–1077.

  70. Eastman C.I., Tomaka V.A., Crowley S.J. Circadian rhythms of European and African-Americans after a large delay of sleep as in jet lag and night work. Sci. Rep. 2016. 6: 36716.

  71. Eastman C.I., Tomaka V.A., Crowley S.J. Sex and ancestry determine the free-running circadian period. J. Sleep Res. 2017. 26 (5): 547–550.

  72. Edgar D.M., Dement W.C., Fuller C.A. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci. 1993. 13: 1065–1079.

  73. Englund C.E. Human chronopsychology: an autorhythmometric study of circadian periodicity in learning, mood and task performance. Dissertation, U.S. International University, San Diego (Calif), 1979.

  74. Finelli L.A., Baumann H., Borbely A.A., Achermann P. Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neurosci. 2000; 101: 523–529.

  75. Folkard S. Chronopsychology: implications for education. Chronobiologia 1977. 4: III.

  76. Folkard S., Hume K.I., Minors D.S., Waterhouse J.M., Watson F.L. Independence of the circadian rhythm in alertness from the sleep/wake cycle. Nature 1985. 313 (6004): 678–679.

  77. Folkard S., Monk T.H. Chronopsychology: circadian rhythms and human performance. In: Attention and performance. Gale A, Edwards JA (eds). Academic, New York, 1983, pp. 57–78.

  78. Fulcher B.D., Phillips A.J., Postnova S., Robinson P.A. A physiologically based model of orexinergic stabilization of sleep and wake. PLoS One. 2014. 9 (3): e91982.

  79. Furr R.M., Bacharach V. Psychometrics: an introduction. 3rd ed. New York: SAGE Publication, 2017.

  80. Goodwin B. Oscillatory behavior in enzymatic control processes. Adv. Enzym. Regul. 1965. 3: 425–428.

  81. Gunawardane K.G.C., Custance D.M., Piffer D. Evidence of sexual selection for evening orientation in human males: a cross cultural study in Italy and Sri Lanka, IBC 2011. 3 (13): 1–8.

  82. Halberg F. Chronobiology. Ann. Rev. Physiol. 1969. 31: 675–725.

  83. Halberg F. More on educative chronobiology, health and the computer. Int. J. Chronobiol. 1974; 2 (1): 87–105.

  84. Halberg F., Stephens A.N. Susceptibility to ouabain and physiologic circadian periodicity. Proc. Minnesota Acad. Sci. 1959. 27: 139–143.

  85. Hardin P.E., Hall J.C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 1990. 343 (6258): 536–540.

  86. Härmä M., Ilmarinen J., Knauth P. Physical fitness and other individual factors relating to the shiftwork tolerance of women. Chronobiol. Int. 1988. 54: 417–424.

  87. Horne J.A., Östberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976. 4: 97–110.

  88. Horne J., Östberg O. Individual differences in human circadian rhythms. Biol. Psychol. 1977. 5 (3): 179–190.

  89. Hur Y.-M. Stability of genetic influence on morningness–eveningness: a cross-sectional examination of South Korean twins from preadolescence to young adulthood. J. Sleep Res. 2007. 16: 17–23.

  90. Hur Y.M., Bouchard T.J., Jr, Lykken D.T. Genetic and environmental influence on morningness–eveningness. Pers. Individ. Diff. 1998. 25: 917–925.

  91. Jewett M.E., Kronauer R.E. Interactive mathematical models of subjective alertness and cognitive throughput in humans. J. Biol. Rhythms 1999. 14 (6): 588–597.

  92. Johnson M.P., Duffy J.F., Dijk D.J., Ronda J.M., Dyal C.M., Czeisler C.A. Short-term memory, alertness and performance: a reappraisal of their relationship to body temperature. J. Sleep Res. 1992. 1: 24–29.

  93. Jonason P.K., Jones A., Lyons M. Creatures of the night: Chronotypes and the Dark Triad traits. Person. Individ. Diff. 2013. 55: 538–541.

  94. Kanazawa S., Perina K. Why night owls are more intelligent. Person. Individ. Diff. 2009. 47: 685–690.

  95. Kerkhof G.A. Inter-individual differences in the human circadian system: A review. Biol. Psychology 1985. 20: 83–112.

  96. Kleitman N. Sleep and wakefulness (2nd edition, 1939 – 1st edition). Chicago: The University of Chicago Press, 1962.

  97. Konopka R.J., Benzer S. Clock Mutants of Drosophila melanogaster. Proc. Nat. Acad. Sci. 1971. 68 (9): 2112–2116.

  98. Koskenvuo M., Hublin C., Partinen M., Heikkilä K., Kaprio J. Heritability of diurnal type: a nationwide study of 8753 adult twin pairs. J. Sleep Res. 2007. 16: 156–162.

  99. Larsen R.L. Individual differences in circadian activity rhythm and personality. Person. Individ. Diff. 1985. 6: 305–311.

  100. Lazar A.S., Lazar Z.I., Dijk D.J. Circadian regulation of slow waves in human sleep: Topographical aspects. Neuroimage 2015. 116: 123–134.

  101. Leger D. The cost of sleep-related accidents: a report for the National Commission of Sleep Disorders Research. Sleep 1994. 17: 84–93.

  102. Leocadio-Miguel M.A., Louzada F.M., Duarte L.L., Areas R.P., Alam M., Freire M.V., Fontenele-Araujo J., Menna-Barreto L., Pedrazzoli M. Latitudinal cline of chronotype. Sci. Rep. 2017. 7 (1): 5437.

  103. Leproult R., Colecchia E.F., Berardi A.M., Stickgold R., Kosslyn S.M., Van Cauter E. Individual differences in subjective and objective alertness during sleep deprivation are stable and unrelated. Am. J. Physiol. Regulat. Integrat. Comp. Physiol. 2003. 284: R280–R290.

  104. Leung L., Grundy A., Siemiatycki J., Arseneau J., Gilbert L., Gotlieb W.H., Provencher D.M., Aronson K.J., Koushik A. Shift work patterns, chronotype, and epithelial ovarian cancer risk. Cancer Epidemiol. Biomarkers Prev. 2019/ 28 (5): 987–995.

  105. Levandovski R., Sasso E., Hidalgo M.P. Chronotype: a review of the advances, limits and applicability of the main instruments used in the literature to assess human phenotype. Trends Psychiat. Psychoth. 2013. 35: 3–11.

  106. Lorenzo I., Ramos J., Arce C., Guevara M.A., Corsi-Cabrera M. Effect of total sleep deprivation on reaction time and waking EEG activity in man. Sleep 1995. 18: 346–354.

  107. Magnus K. Schwingungen: Eine Einführung in die theoretische Behandlung von Schwingungsproblemen. BG Teubner Verlagsgesellschaft: Stuttgart, 1976.

  108. Malone S.K., Patterson F., Lozano A., Hanlon A. Differences in morning-evening type and sleep duration between Black and White adults: results from a propensity-matched UK Biobank sample. Chronobiol. Int. 2017. 34: 740–752.

  109. Marcoen N., Vandekerckhove M., Neu D., Pattyn N., Mairesse O. Individual differences in subjective circadian flexibility. Chronobiol. Int. 2015. 32: 1246–1253.

  110. Martinez-Nicolas A., Martinez-Madrid M.J., Almaida-Pagan P.F., Bonmati-Carrion M.-A., Madrid J.A., Rol M.A. Assessing chronotypes by ambulatory circadian monitoring. Front. Physiol. 2019. 10: 1396.

  111. Matousek M., Petersen I.A. A method for assessing alertness fluctuations in vigilance and the EEG spectrum. Electroencephalogr. Clin. Neurophysiol. 1983. 55: 108–113.

  112. Maukonen M., Havulinna A.S., Männistö S., Kanerva N., Salomaa V., Partonen T. Genetic associations of chronotype in the Finnish general population. J. Biol. Rhythms 2020. 35 (5): 501–511.

  113. Mitler M.M., Carskadon M.A., Czeisler C.A., Dement W.C., Dinges D.F., Graeber R.C. Catastrophes, sleep, and public policy: consensus report. Sleep 1988. 11: 100–109.

  114. Monk T.H., Kupfer, D.J. Which aspects of morningness-eveningness change with age? J. Biol. Rhythm 2007. 22: 278–280.

  115. Moog R., Hildebrandt G. Adaptation to shift work – experimental approaches with reduced masking effects. Chronobiol. Int. 1989. 6: 65–75.

  116. Moore R.Y., Eichler V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res.1972. 42 (1): 201–206.

  117. Naitoh P. Chronopsychological approach for optimizing human performance. In: F.M. Brown, R.C. Graeber (Eds.), Rhythmic Aspects of Behavior. Hillsdale, NJ: Erlbaum, 1982, pp. 41–104.

  118. Neubauer A.C. Psychometric comparison of two circadian rhythm questionnaires and their relationship with personality. Person. Individ. Diff. 1992. 13: 125–131.

  119. Ogińska H. Can you feel the rhythm? A short questionnaire to describe two dimensions of chronotype. Person. Individ. Diff. 2011. 50: 1039–1043.

  120. Oken B.S., Salinsky M. Alertness and attention: basic science and electrophysiologic correlates. J. Clin Neurophysiol. 1992. 9: 480–494.

  121. Paech G.M., Crowley S.J., Fogg L.F., Eastman C.I. Advancing the sleep/wake schedule impacts the sleep of African-Americans more than European-Americans. PLoS One 2017. 12 (10): e0186887.

  122. Partch C.L., Green C.B., Takahashi J.S. Molecular architecture of the mammalian circadian clock. Trends Cell. Biol. 2014. 24: 90–99.

  123. Perlis M.L., Kehr E.L., Smith M.T., Andrews P.J., Orff H., Giles D.E. Temporal and stagewise distribution of high frequency activity in patients with primary and secondary insomnia and in good sleeper control. J. Sleep Res. 2001. 10: 93–104.

  124. Piffer D. Sleep patterns and sexual selection: an evolutionary approach. Mankind Q. 2010. 50 (4): 361–375.

  125. Pittendrigh C.S. On temporal organization in living systems. Harvey Lect. 1960-1961. 56: 93–125.

  126. Pittendrigh C.S. (Ed.). Biological Clocks: Cold Spring Harbor Symposium on Quantitative Biology. Biological Lab., Long Island Biological Ass., 1961.

  127. Pittendrigh C., Daan S. The entrainment of circadian pacemakers in nocturnal rodents. IV. Entrainment: pacemaker as clock. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 1976. 106: R291–R331.

  128. Pritchard J.K., Di Rienzo A. Adaptation – not by sweeps alone. Nat. Rev. Genet. 2010. 11: 665–667.

  129. Putilov A.A. The timing of sleep modelling: circadian modulation of the homeostatic process. Biol. Rhythm Res. 1995. 26: 1–19.

  130. Putilov A.A. Association of the circadian phase with two morningness-eveningness scales of an enlarged version of the sleep-wake pattern assessment questionnaire. Arbeitswissbetriebl. Praxis 2000. 17: 317–322.

  131. Putilov A.A. Introduction of the tetra-circumplex criterion for comparison of the actual and theoretical structures of the sleep-wake adaptability. Biol. Rhythm Res. 2007. 38: 65–84.

  132. Putilov A.A. Geometry of Individual Variation in Personality and Sleep-Wake Adaptability. New York: Nova Science Pub. Inc. 2010. 262 p.

  133. Putilov A.A. Simulation of an ultradian sleep homeostasis through fitting time courses of its EEG indicators obtained during baseline recordings of night sleep. Biol. Rhythm Res. 2014a. 45: 345–368.

  134. Putilov A.A. What were “owls” doing in our ancestral photoperiodic environment? Chronobiological account for the evolutionary advantage of nocturnal lifestyle. Biol. Rhythm Res. 2014b. 45: 759–787.

  135. Putilov A.A. Three-dimensional structural representation of the sleep-wake adaptability. Chronobiol. Int. 2016. 33 (2): 169–180.

  136. Putilov A.A. Owls, larks, swifts, woodcocks and they are not alone: a historical review of methodology for multidimensional self-assessment of individual differences in sleep-wake pattern. Chronobiol. Int. 2017a. 34 (3): 426–437.

  137. Putilov A.A. Sleep, sleepiness, and the models. In: Proc. 9th Int. Workshop “Sleep – a window to the world of wakefulness” 16–18 March 2017, Moscow. 2017b, p. 55–56.

  138. Putilov A.A. A 3-D look at the Russian personality traits structure. Cur. Psychol. 2018a, 37 (3): 528–542.

  139. Putilov A.A. Associations of depression and seasonality with morning-evening preference: comparison of contributions of its morning and evening components. Psychiatry Res. 2018b. 262: 609–617.

  140. Putilov A.A., Donskaya O.G. Construction and validation of the EEG analogues of the Karolinska sleepiness scale based on the Karolinska drowsiness test. Clin. Neurophysiol. 2013. 124 (7): 1346–1352.

  141. Putilov A.A., Donskaya O.G. Alpha attenuation soon after closing the eyes as an objective indicator of sleepiness. Clin. Exp. Pharmacol. Physiol. 2014. 41: 956–64.

  142. Putilov A.A., Donskaya O.G., Budkevich E.V., Budkevich R.O. Reliability and external validity of the six scales of 72-item Sleep-Wake Pattern Assessment Questionnaire (SWPAQ). Biol. Rhythm Res. 2017. 48 (2): 275–285.

  143. Putilov A.A., Dorokhov V.B., Poluektov M.G. How have our clocks evolved? Adaptive and demographic history of the out-of-African dispersal told by polymorphic loci in circadian genes. Chronobiol. Int. 2018. 35 (4): 511–532.

  144. Putilov A.A., Dorokhov V.B., Poluektov M.G. Evening chronotype, late weekend sleep times and social jetlag as possible causes of sleep curtailment after maintaining perennial DST: ain’t they as black as they are painted? Chronobiol. Int. 2020a. 37: 82–100.

  145. Putilov A.A., Donskaya O.G., Verevkin E.G. Phase difference between chronotypes in self-reported maximum of alertness rhythm: an EEG predictor and a model-based explanation. J. Psychophysiol. 2014. 28: 242–256.

  146. Putilov A.A., Donskaya O.G., Verevkin E.G. How many diurnal types are there? A search for two further “bird species”. Pers. Individ. Dif. 2015. 72: 12–15.

  147. Putilov A.A., Donskaya O.G., Verevkin E.G. Can we feel like being neither alert nor sleepy? The electroencephalographic signature of this subjective sub-state of wake state yields an accurate measure of objective sleepiness level. Int. J. Psychophysiol. 2019. 135: 33–43.

  148. Putilov A.A., Dorokhov V.B., Puchkova A.N., Arsenyev G.N., Sveshnikov D.S. Genetic-based signatures of the latitudinal differences in chronotype. Biol. Rhythm Res. 2019. 50 (2): 255–271.

  149. Putilov A.A., Sveshnikov D.S., Puchkova A.N., Dorokhov V.B., Bakaeva Z.B., Yakunina E.B., Starshinov Y.P., Torshin V.I., Alipov N.N., Sergeeva O.V., Trutneva E.A., Lapkin M.M., Lopatskaya Z.N., Budkevich R.O., Budkevich E.V., Dyakovich M.P., Donskaya O.G., Plusnin J.M., Delwiche B., Colomb C., Neu D., Mairesse O. Single-Item Chrono-typing (SIC), a method to self-assess diurnal types by using 6 simple charts. Pers. Individ. Diff. 2021. 168: Article 110353.

  150. Putilov A.A., Verevkin E.G. Simulation of the ontogeny of social jet lag: a shift in just one of the parameters of a model of sleep-wake regulating process accounts for the delay of sleep phase across adolescence. Front. Physiol. 2018. 9: 1529.

  151. Putilov A.A., Verevkin E.G., Donskaya O.G. Overall and specific relationships be-tween inter-individual variations in personality and sleep-wake adaptability. Biol. Rhythm Res. 2013. 44: 287–311.

  152. Putilov A.A., Verevkin E.G., Donskaya O.G., Tkachenko O.N., Dorokhov V.B. Model-based simulations of weekday and weekend sleep times self-reported by larks and owls. Biol. Rhythm Res. 2020b. 51 (5): 709–726.

  153. Randler C., Díaz-Morales J. F., Rahafar A.,Vollmer C. Morningness-Eveningness and amplitude – development and validation of an improved composite scale to measure circadian preference and stability (MESSi). Chronobiol. Int. 2016. 33: 832–848.

  154. Randler C., Ebenhoh N., Fischer A., Hochel S., Schroff C., Stoll J.C., Vollmer C., Piffer D. Eveningness is related to men’s mating success. Person. Individ. Diff. 2012. 53 (3): 263–267.

  155. Randler C., Rahafar A. Latitude affects Morningness-Eveningness: evidence for the environment hypothesis based on a systematic review. Sci. Rep. 2017. 7: 39976.

  156. Roenneberg T., Daan S., Merrow M. The art of entrainment. J. Biol. Rhythms. 2003. 18 (3): 183–194.

  157. Roenneberg T., Kuehnle T., Juda M., Kantermann T., Allebrandt K., Gordijn M., Merrow M. Epidemiology of the human circadian clock. Sleep Med. Rev. 2007. 11 (6): 429–38.

  158. Roenneberg T., Kuehnle T., Pramstaller P.P., Ricken J., Havel M., Guth A., Merrow M. A marker for the end of adolescence. Cur. Biol. 2004. 14: R1038–R1039.

  159. Roenneberg T., Pilz L.K., Zerbini G., Winnebeck E.C. Chronotype and social jetlag: a (self-) critical review. Biology (Basel) 2019. 8 (3): 54.

  160. Roenneberg T., Wirz-Justice A., Merrow M. Life between clocks: daily temporal patterns of human chronotypes. J. Biol. Rhythms 2003. 18: 80–90.

  161. Saksvik I.B., Bjorvatn B., Hetland H., Sandal G.M., Pallesen S. Individual differences in tolerance to shift work – a systematic review. Sleep Med. Rev. 2011. 15 (4): 221–235.

  162. Samkoff J.S., Jacques C.H. A review of studies concerning effects of sleep deprivation and fatigue on residents' performance. Acad. Med. 1991. 66 (11): 687–693.

  163. Samson D.R., Crittenden A.N., Mabulla I.A., Mabulla A.Z., Nunn C.L. Hadza sleep biology: Evidence for flexible sleep-wake patterns in hunter-gatherers. Am. J. Phys. Anthropol. 2017. 162 (3): 573–582.

  164. Saper C.B. The neurobiology of sleep. Continuum (Minneap. Minn). 2013. 19 (1 Sleep Disorders): 19–31.

  165. Saper C.B., Chou T.C., Scammell T.E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001. 24: 726–731.

  166. Schoedel R., Pargent F., Au Q., Völkel S.T., Schuwerk T., Bühner M., Stachl C. To challenge the morning lark and the night owl: using smartphone sensing data to investigate day–night behaviour patterns. Eur. J. Pers. 2020. 34: 733–752.

  167. Sletten T.L., Segal A.Y., Flynn-Evans E.E., Lockley S.W., Rajaratnam S.M. Inter-individual differences in neurobehavioural impairment following sleep restriction are associated with circadian rhythm phase. PLoS One 2015. 10 (6): e0128273.

  168. Smith C.S., Folkard S., Schmieder R.A., Parra L.F., Spelten E., Almirall H., Sahu S., Periz L., Tisak J. Investigation of morning-evening orientation in six countries using the Preferences Scale.Person.Individ.Diff.2002. 32: 949–968.

  169. Smith C.S., Reilly C., Midkiff K. Evaluation of three circadian rhythm questionnaires with suggestion for an improved measure of morningness. J. Appl. Psychology 1989. 75: 728–738.

  170. Staner L., Cornette F., Maurice D., Viardot G., Le Bon O., Haba J., Staner C., Luthringer R., Muzet A., Macher J.P. Sleep microstructure around sleep onset differentiates major depressive insomnia from primary insomnia. J. Sleep Res. 2003. 12: 319–330.

  171. Stephan F.K., Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Nat. Acad. Sci. USA 1972. 69 (6): 1583–1586.

  172. Strijkstra A.M., Beersma D.G., Drayer B., Halbesma N., Daan S. Subjective sleepiness correlates negatively with global alpha (8–12 Hz) and positively with central frontal theta (4–8 Hz) frequencies in the human resting awake electroencephalogram. Neurosci. Lett. 2003. 340: 17–20.

  173. Takahashi J.S. Molecular components of the circadian clock in mammals. Diabetes Obes. Metab. 2015. 17 (Suppl 1): 6–11.

  174. Tavares P.S., Carpena M.X., Carone C.M.M., Del-Ponte B., Santos I.S., Tovo-Rodrigues L. Is social jetlag similar to travel-induced jetlag? Results of a validation study. Chronobiol. Int. 2020. 37 (4): 542–551.

  175. Tkachenko O., Dinges D.F. Interindividual variability in neurobehavioral response to sleep loss: a comprehensive review. Neurosci. Biobehav. Rev. 2018. 89: 29–48.

  176. Toh K.L., Jones C.R., He Y., Eide E.J., Hinz W.A., Virshup D.M., Ptácek L.J., Fu Y.H. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001. 291 (5506): 1040–1043.

  177. Torsvall L., Åkerstedt T. A diurnal type scale: construction, consistency and validation in shift work. Scand. J. Work Environ. Health 1980. 6: 283–290.

  178. Van Dongen H.P.A. Shift work and inter-individual differences in sleep and sleepiness. Chronobiol. Int. 2006. 23 (6): 1139–1147.

  179. Verevkin E., Putilov D., Donskaya O., Putilov A. A new SWPAQ’s scale predicts the effects of sleep deprivation on segmental structure of alpha waves. Biol. Rhythm Res. 2008. 39 (1): 21–37.

  180. Vetter C. Circadian disruption: what do we actually mean? Eur. J. Neurosci. 2018. 1–20.

  181. Watson N.F., Buchwald D., Harden K.P. A twin study of genetic influences on diurnal preference and risk for alcohol use outcomes. J. Clin. Sleep Med. 2013. 9: 1333–1339.

  182. Wainschtein P., Jain D.P., Yengo L., and other 39. Recovery of trait heritability from whole genome sequence data. Preprint bioRxiv, 2019.

  183. Weitzman E.D., Czeisler C.A., Moore-Ede M.C. Sleep-wake neuroendocrine and body temperature circadian rhythms under entrained and non-entrained (free running) conditions in man. Acta Endocrinol. 1978. 89 (Suppl.220), p. 25.

  184. Wendt H.W. Population, sex and constitution in typologies based on individual circadian rhythms. J. Int. Cycle Res. 1977. 8: 286–290.

  185. Wittmann M., Dinich J., Merrow M., Roenneberg T. Social jetlag: misalignment of biological and social time. Chronobiol. Int. 2006. 23 (1-2): 497–509.

  186. Wyatt J.K., Ritz-De Cecco A., Czeisler C.A., Dijk D.J. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1999. 277: R1152–63.

  187. Zehring W.A., Wheeler D.A., Reddy P., Konopka R.J., Kyriacou C.P., Rosbash M., Hall J.C. P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 1984. 39: 369–376.

  188. Zerbini G. Conflicted clocks: social jetlag, entrainment and the role of chronotype: From physiology to academic performance; from students to working adults. University of Groningen; Chapter 8. Melatonin expression: winter and summer, week in and week out. (Zerbini, Roenneberg and Merrow). 2017.

Дополнительные материалы отсутствуют.