Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 2, стр. 237-243

Разнообразие и функциональные особенности кальций-зависимых калиевых каналов, определяющие их роль в пластичности нейронов головного мозга

Е. С. Никитин 1*, П. М. Балабан 1

1 Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия

* E-mail: nikitin@ihna.ru

Поступила в редакцию 21.10.2020
После доработки 05.12.2020
Принята к публикации 22.12.2020

Аннотация

Уникальные характеристики кальций-зависимых калиевых каналов прочно переплетены с особенностью их функции, а также динамики и условий срабатывания и закрытия. В настоящем обзоре мы анализируем имеющиеся данные о кальций-зависимых калиевых каналах и их функциональное назначение, которое связано с механизмами кратковременной пластичности и обеспечением регуляции активности и возбудимости нейронов. Также будут рассмотрены эпигенетические механизмы регуляции экспрессии генов этих каналов как проявление одного из механизмов долговременной пластичности, лежащей в основе обучения и памяти.

Ключевые слова: следовая гиперполяризация, потенциал действия, кальций, калиевый канал, возбудимость, нейрон

DOI: 10.31857/S0044467721020088

Список литературы

  1. Abiraman K., Tzingounis A.V., Lykotrafitis G. KCa2 channel localization and regulation in the axon initial segment. FASEB J. 2018. 32 (4): 1794–1805.

  2. Bean B.P. The action potential in mammalian central neurons. Nat Rev Neurosci. 2007. 8 (6): 451–65.

  3. Bishop H.I., Guan D., Bocksteins E., Parajuli L.K., Murray K.D., Cobb M.M., Misonou H., Zito K., Foehring R.C., Trimmer J.S. Distinct Cell- and Layer-Specific Expression Patterns and Independent Regulation of Kv2 Channel Subtypes in Cortical Pyramidal Neurons. J Neurosci. 2015. 35 (44): 14922–42.

  4. Bock T., Stuart G.J. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons. J Neurophysiol. 2016. 115 (3): 1740–8.

  5. Bond C.T., Herson P.S., Strassmaier T., Hammond R., Stackman R., Maylie J., Adelman J.P. Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2004. 24 (23): 5301–5306.

  6. Bond C.T., Maylie J., Adelman J.P. SK channels in excitability, pacemaking and synaptic integration. Curr Opin Neurobiol. 2005. 15 (3): 305–311.

  7. Bregestovski P.D., Printseva O., Serebryakov V., Stinnakre J., Turmin A., Zamoyski V. Comparison of Ca2+-dependent K+ channels in the membrane of smooth muscle cells isolated from adult and foetal human aorta. Pflugers Arch. 1988. 413 (1): 8–13.

  8. Cai X., Liang C.W., Muralidharan S., Kao J.P., Tang C.M., Thompson S.M. Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron. 2004. 44 (2): 351–364.

  9. Colwell C.S. BK channels and circadian output. Nature neuroscience. 2006. 9 (8): 985–986.

  10. Contet C., Goulding S.P., Kuljis D.A., Barth A.L. BK Channels in the Central Nervous System. Int Rev Neurobiol. 2016. 128: 281–342.

  11. Cueni L., Canepari M., Luján R., Emmenegger Y., Watanabe M., Bond C.T., Franken P., Adelman J.P., Lüthi A. T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci. 2008. 11 (6): 683–692.

  12. Cui J. BK-type calcium-activated potassium channels: coupling of metal ions and voltage sensing. J Physiol. 2010. 588 (Pt 23): 4651–4658.

  13. Cui J., Yang H., Lee U.S. Molecular mechanisms of BK channel activation. Cellular and molecular life sciences : CMLS. 2009. 66 (5): 852–875.

  14. Du W., Bautista J.F., Yang H., Diez-Sampedro A., You S.A., Wang L., Kotagal P., Luders H.O., Shi J., Cui J., Richerson G.B., Wang Q.K. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet. 2005. 37 (7): 733–738.

  15. Foust A.J., Yu Y., Popovic M., Zecevic D., McCormick D.A. Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons. J Neurosci. 2011. 31 (43): 15490–15498.

  16. Groh A., Meyer H.S., Schmidt E.F., Heintz N., Sakmann B., Krieger P. Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb Cortex. 2010. 20 (4): 826–836.

  17. Guan D., Armstrong W.E., Foehring R.C. Electrophysiological properties of genetically identified subtypes of layer 5 neocortical pyramidal neurons: Ca (2) (+) dependence and differential modulation by norepinephrine. J Neurophysiol. 2015. 113 (7): 2014–2032.

  18. Hammond R.S., Bond C.T., Strassmaier T., Ngo-Anh T.J., Adelman J.P., Maylie J., Stackman R.W. Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity. J Neurosci. 2006. 26 (6): 1844–1853.

  19. Higham J., Sahu G., Wazen R.M., Colarusso P., Gregorie A., Harvey B.S.J., Goudswaard L., Varley G., Sheppard D.N., Turner R.W., Marrion N.V. Preferred Formation of Heteromeric Channels between Coexpressed SK1 and IKCa Channel Subunits Provides a Unique Pharmacological Profile of Ca (2+)-Activated Potassium Channels. Mol Pharmacol. 2019. 96 (1): 115–126.

  20. Hu H., Shao L.R., Chavoshy S., Gu N., Trieb M., Behrens R., Laake P., Pongs O., Knaus H.G., Ottersen O.P., Storm J.F. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci. 2001. 21 (24): 9585–9597.

  21. Jacob V., Petreanu L., Wright N., Svoboda K., Fox K. Regular Spiking and Intrinsic Bursting Pyramidal Cells Show Orthogonal Forms of Experience-Dependent Plasticity in Layer V of Barrel Cortex. Neuron. 2012. 73 (2): 391–404.

  22. Joiner W.J., Wang L.Y., Tang M.D., Kaczmarek L.K. hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci U S A. 1997. 94 (20): 11013–8.

  23. Khandai P., Forcelli P.A., N’Gouemo P. Activation of small conductance calcium-activated potassium channels suppresses seizure susceptibility in the genetically epilepsy-prone rats. Neuropharmacology. 2020. 163: 107865.

  24. King B., Rizwan A.P., Asmara H., Heath N.C., Engbers J.D., Dykstra S., Bartoletti T.M., Hameed S., Zamponi G.W., Turner R.W. IKCa channels are a critical determinant of the slow AHP in CA1 pyramidal neurons. Cell Rep. 2015. 11 (2): 175–82.

  25. Kohler M., Hirschberg B., Bond C.T., Kinzie J.M., Marrion N.V., Maylie J., Adelman J.P. Small-conductance, calcium-activated potassium channels from mammalian brain. Science. 1996. 273 (5282): 1709–14.

  26. Kole M.H., Letzkus J.J., Stuart G.J. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron. 2007. 55 (4): 633–47.

  27. Kshatri A.S., Gonzalez-Hernandez A., Giraldez T. Physiological Roles and Therapeutic Potential of Ca2+ Activated Potassium Channels in the Nervous System. Frontiers in Molecular Neuroscience. 2018. 11 (258).

  28. Leo A., Citraro R., Constanti A., De Sarro G., Russo E. Are big potassium-type Ca (2+)-activated potassium channels a viable target for the treatment of epilepsy? Expert Opin Ther Targets. 2015. 19 (7): 911–926.

  29. Marty A. Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature. 1981. 291 (5815): 497–500.

  30. McManus O.B. Calcium-activated potassium channels: regulation by calcium. J Bioenerg Biomembr. 1991. 23 (4): 537–560.

  31. Meadows J.P., Guzman-Karlsson M.C., Phillips S., Brown J.A., Strange S.K., Sweatt J.D., Hablitz J.J. Dynamic DNA methylation regulates neuronal intrinsic membrane excitability. Science signaling. 2016. 9 (442): ra83–ra83.

  32. Meredith A.L., Wiler S.W., Miller B.H., Takahashi J.S., Fodor A.A., Ruby N.F., Aldrich R.W. BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nature Neuroscience. 2006. 9 (8): 1041–1049.

  33. N’Gouemo P., Faingold C.L., Morad M. Calcium channel dysfunction in inferior colliculus neurons of the genetically epilepsy-prone rat. Neuropharmacology. 2009. 56 (3): 665–675.

  34. Pantazis A., Olcese R. Biophysics of BK Channel Gating. Int Rev Neurobiol. 2016. 128: 1–49.

  35. Rao-Ruiz P., Couey J.J., Marcelo I.M., Bouwkamp C.G., Slump D.E., Matos M.R., van der Loo R.J., Martins G.J., van den Hout M., van Ijcken W.F., Costa R.M., van den Oever M.C., Kushner S.A. Engram-specific transcriptome profiling of contextual memory consolidation. Nature Communications. 2019. 10 (1): 2232.

  36. Roshchin M.V., Ierusalimsky V.N., Balaban P.M., Nikitin E.S. Ca (2+)-activated KCa3.1 potassium channels contribute to the slow afterhyperpolarization in L5 neocortical pyramidal neurons. Sci Rep. 2020. 10 (1): 14484.

  37. Roshchin M.V., Matlashov M.E., Ierusalimsky V.N., Balaban P.M., Belousov V.V., Kemenes G., Staras K., Nikitin E.S. A BK channel-mediated feedback pathway links single-synapse activity with action potential sharpening in repetitive firing. Sci Adv. 2018. 4 (7): eaat1357.

  38. Shu Y., Hasenstaub A., Duque A., Yu Y., McCormick D.A. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature. 2006. 441 (7094): 761–765.

  39. Stackman R.W., Hammond R.S., Linardatos E., Gerlach A., Maylie J., Adelman J.P., Tzounopoulos T. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J Neurosci. 2002. 22 (23): 10163–10171.

  40. Tatsuki F., Sunagawa G.A., Shi S., Susaki E.A., Yukinaga H., Perrin D., Sumiyama K., Ukai-Tadenuma M., Fujishima H., Ohno R., Tone D., Ode K.L., Matsumoto K., Ueda H.R. Involvement of Ca (2+)-Dependent Hyperpolarization in Sleep Duration in Mammals. Neuron. 2016. 90 (1): 70–85.

  41. Tiwari M.N., Mohan S., Biala Y., Yaari Y. Differential contributions of Ca (2+)-activated K (+) channels and Na (+) /K (+)-ATPases to the generation of the slow afterhyperpolarization in CA1 pyramidal cells. Hippocampus. 2018. 28 (5): 338–357.

  42. Tiwari M.N., Mohan S., Biala Y., Yaari Y. Protein Kinase A-Mediated Suppression of the Slow Afterhyperpolarizing KCa3.1 Current in Temporal Lobe Epilepsy. The Journal of Neuroscience. 2019. 39 (50): 9914–9926.

  43. Trimmer J.S. Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron. 2015. 85 (2): 238–256.

  44. Whitt J.P., Montgomery J.R., Meredith A.L. BK channel inactivation gates daytime excitability in the circadian clock. Nature Communications. 2016. 7 (1): 10837.

  45. Yu Y., Maureira C., Liu X., McCormick D. P/Q and N channels control baseline and spike-triggered calcium levels in neocortical axons and synaptic boutons. J Neurosci. 2010. 30 (35): 11858–11869.

Дополнительные материалы отсутствуют.