Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 2, стр. 164-183

Роль стриатума в организации произвольного движения

Н. Ю. Ивлиева *

Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия

* E-mail: nivlieva@mail.ru

Поступила в редакцию 21.07.2020
После доработки 16.10.2020
Принята к публикации 22.12.2020

Аннотация

Стриопаллидарная система является ключевой структурой в регуляции моторного поведения (Базян и др., 2011), однако механизмы и специфика ее участия в организации движения не прояснены даже в общих чертах. За последние годы были разработаны многочисленные молекулярно-генетические подходы к исследованию функций стриатума; результаты этих исследований пролили свет на организацию релевантных связей и на функционирование отдельных его элементов и этим еще больше заострили основные противоречия во взглядах на роль стриопаллидарной системы в двигательном поведении; в первую очередь это касается функций нейронов, дающих начало прямому и непрямому пути стриатума, а также участия дофаминергической системы в организации движения. В этой работе приведен краткий обзор новых данных о связях стриатума и рассмотрены последние исследования, в которых, во-первых, в центре внимания находилась двигательная функция и, во-вторых, в экспериментальной парадигме в явном виде не присутствовало научение.

Ключевые слова: стриатум, движение, прямой путь, непрямой путь, базальные ганглии, дофамин, ацетилхолин, локомоция, черное вещество

DOI: 10.31857/S0044467721020052

Список литературы

  1. Базян А.С., Григорьян Г.А., Иоффе М.Е. Регуляция моторного поведения. Усп. физиол. наук. 2011. 41 (1): 3–25.

  2. Ивлиев Д.А., Ивлиева Н.Ю. Плавное снижение активности нейронов вентральной области покрышки среднего мозга в процессе выполнения пищедобывательного движения. Журнал высшей нервной деятельности им. И.П. Павлова. 2018. 68 (3): 265–272. https://doi.org/10.7868/S0044467718030012

  3. Ивлиев Д.А., Ивлиева Н.Ю. Активность нейронов базального крупноклеточного ядра переднего мозга крысы предсказывает результат пищедобывательного движения. Журнал высшей нервной деятельности им. И.П. Павлова. 2019. 69(4): 479–492. https://doi.org/10.1134/S0044467719040051

  4. Ивлиева Н.Ю. Участие мезокортико-лимбической дофаминергической системы в адаптивном поведении. Журнал высшей нервной деятельности им. И.П. Павлова. 2010. 60 (3): 259–278.

  5. Майоров В.И. Функции дофамина в инструментальном условном рефлексе. Журнал высшей нервной деятельности им. И.П. Павлова. 2018. 68 (4): 404–414.

  6. Майоров В.И., Серков А.Н. Активность нейронов вентральной тегментальной области среднего мозга при первом выполнении условного рефлекса активного избегания. Журнал высшей нервной деятельности им. И.П. Павлова. 2016. 66 (6): 725–729.

  7. Albin R.L., Young A.B., Penney J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989. 12: 366–375.

  8. Alcacer C., Andreoli L., Sebastianutto I., Jakobsson J., Fieblinger T., Cenci M.A. Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease therapy. J Clin Invest. 2017. 127 (2): 720–734. https://doi.org/10.1172/JCI90132

  9. Alexander G.E., Crutcher M.D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990. 13 (7): 266–271.

  10. Abudukeyoumu N., Hernandez-Flores T., Garcia-Munoz M., Arbuthnott G.W. Cholinergic modulation of striatal microcircuits. Eur J Neurosci. 2019. 49 (5): 604–622. https://doi.org/10.1111/ejn.13949

  11. Assous M., Tepper J.M. Excitatory extrinsic afferents to striatal interneurons and interactions with striatal microcircuitry. Eur J Neurosci. 2019. 49 (5): 593–603. https://doi.org/10.1111/ejn.13881

  12. Barbera G., Liang B., Zhang L., Gerfen C.R., Culurciello E., Chen R., Li Y., Lin D.T. Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information. Neuron. 2016. 92 (1): 202–213. https://doi.org/10.1016/j.neuron.2016.08.037

  13. Bariselli S., Fobbs W.C., Creed M.C., Kravitz A.V. A competitive model for striatal action selection. Brain Res. 2019. 1713: 70–79. https://doi.org/10.1016/j.brainres.2018.10.009

  14. Bateup H.S., Santini E., Shen W., Birnbaum S., Valjent E., Surmeier D.J., Fisone G., Nestler E.J., Greengard P. Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci U S A. 2010. 107 (33): 14845–14850. https://doi.org/10.1073/pnas.1009874107

  15. Bay Kønig A., Ciriachi C., Gether U., Rickhag M. Chemogenetic Targeting of Dorsomedial Direct-pathway Striatal Projection Neurons Selectively Elicits Rotational Behavior in Mice. Neuroscience. 2019. 401: 106–116. https://doi.org/10.1016/j.neuroscience.2019.01.013

  16. Beeler J.A. Thorndike’s law 2.0: Dopamine and the regulation of thrift // Frontiers in neuroscience. 2012. 6: 116. https://doi.org/10.3389/fnins.2012.00116

  17. Berridge K. C. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology. 2007. 191 (3): 391–431.

  18. Brimblecombe K.R., Cragg S.J. The Striosome and Matrix Compartments of the Striatum: A Path through the Labyrinth from Neurochemistry toward Function. ACS Chem Neurosci. 2017. 8 (2): 235–242. https://doi.org/10.1021/acschemneuro.6b00333

  19. Burke D.A., Rotstein H.G., Alvarez V.A. Striatal Local Circuitry: A New Framework for Lateral Inhibition. Neuron. 2017. 96 (2): 267–284. https://doi.org/10.1016/j.neuron.2017.09.019

  20. Cacciapaglia F., Wightman R.M., Carelli R.M. Rapid dopamine signaling differentially modulates distinct microcircuits within the nucleus accumbens during sucrose-directed behavior. Journal of Neuroscience. 2011. 31 (39): 13860–13869.

  21. Caveney S., Cladman W., Verellen L., Donly C. Ancestry of neuronal monoamine transporters in the Metazoa. Journal of Experimental Biology. 2006. 209: 4858–4868. https://doi.org/10.1242/jeb.02607

  22. Cazorla M., de Carvalho F.D., Chohan M.O., Shegda M., Chuhma N., Rayport S., Ahmari S.E., Moore H., Kellendonk C. Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron. 2014. 81 (1): 153–164. https://doi.org/10.1016/j.neuron.2013.10.041

  23. Chang C.Y., Esber G.R., Marrero-Garcia Y., Yau H.J., Bonci A., Schoenbaum G. Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors. Nature neuroscience. 2016. 19 (1): 111–116. https://doi.org/10.1038/nn.4191

  24. Chuhma N., Mingote S., Kalmbach A., Yetnikoff L., Rayport S. Heterogeneity in Dopamine Neuron Synaptic Actions Across the Striatum and Its Relevance for Schizophrenia. Biol Psychiatry. 2017. 81 (1): 43–51. https://doi.org/10.1016/j.biopsych.2016.07.002

  25. Chuhma N., Mingote S., Yetnikoff L., Kalmbach A., Ma T., Ztaou S., Sienna A.C., Tepler S., Poulin J.F., Ansorge M., Awatramani R., Kang U.J., Rayport S. Dopamine neuron glutamate cotransmission evokes a delayed excitation in lateral dorsal striatal cholinergic interneurons. Elife. 2018. 7. pii: e39786. https://doi.org/10.7554/eLife.39786

  26. Civier O., Bullock D., Max L., Guenther F.H. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation. Brain Lang. 2013. 126 (3): 263–278. https://doi.org/10.1016/j.bandl.2013.05.016

  27. Cui G., Jun S.B., Jin X., Pham M.D., Vogel S.S., Lovinger D.M., Costa R.M. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 2013. 494 (7436): 238–242. https://doi.org/10.1038/nature11846

  28. DeLong M.R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990. 13 (7): 281–285.

  29. Dodson P.D., Dreyer J.K., Jennings K.A., Syed E.C., Wade-Martins R., Cragg S.J., Bolam J.P., Magill P.J. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism. Proceedings of the National Academy of Sciences. 2016. 113 (15): E2180–E2188. https://doi.org/10.1073/pnas.1515941113

  30. Durieux P.F., Schiffmann S.N., de Kerchove d’Exaerde A. Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions. EMBO J. 2012. 31 (3): 640–653. https://doi.org/10.1038/emboj.2011.400

  31. Dunwiddie T.V., Masino S.A. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001. 24: 31–55. https://doi.org/10.1146/annurev.neuro.24.1.31

  32. Flagel S.B., Clark J.J., Robinson T.E., Mayo L., Czuj A., Willuhn I., Akers C.A., Clinton S.M., Phillips P.E., Akil H. A selective role for dopamine in stimulus-reward learning. Nature. 2011. 469 (7328): 53–57. https://doi.org/10.1038/nature09588

  33. Fobbs W.C., Bariselli S., Licholai J.A., Miyazaki N.L., Matikainen-Ankney B.A., Creed M.C., Kravitz A.V. Continuous Representations of Speed by Striatal Medium Spiny Neurons. J Neurosci. 2020. 40 (8): 1679–1688. https://doi.org/10.1523/JNEUROSCI.1407-19.2020

  34. Freeze B.S., Kravitz A.V., Hammack N., Berke J.D., Kreitzer A.C. Control of basal ganglia output by direct and indirect pathway projection neurons. J Neurosci. 2013. 33. (47): 18531–18539. https://doi.org/10.1523/JNEUROSCI.1278-13.2013

  35. Fujiyama F., Unzai T., Karube F. Thalamostriatal projections and striosome-matrix compartments. Neurochem Int. 2019. 125: 67–73. https://doi.org/10.1016/j.neuint.2019.01.024

  36. Fuxe K., Ferré S., Genedani S., Franco R., Agnati L.F. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav. 2007. 92 (1–2): 210–217. https://doi.org/10.1016/j.physbeh.2007.05.034

  37. Gagnon D., Petryszyn S., Sanchez M.G., Bories C., Beaulieu J.M., De Koninck Y., Parent A., Parent M. Striatal Neurons Expressing D(1) and D(2) Receptors are Morphologically Distinct and Differently Affected by Dopamine Denervation in Mice. Sci Rep. 2017. 7 (41432). https://doi.org/10.1038/srep41432

  38. Gangarossa G., Espallergues J., Mailly P., De Bundel D., de Kerchove d’Exaerde A., Hervé D., Girault J.-A., Valjent E., Krieger P. Spatial distribution of D1R- and D2R-expressing medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum. Front. Neural Circuits. 2013. 7: 124. https://doi.org/10.3389/fncir.2013.00124

  39. Gerfen C.R., Surmeier D.J. Modulation of striatal projection systems by dopamine. Annual review of neuroscience. 2011. 34: 441–466. https://doi.org/10.1146/annurev-neuro-061010-113641

  40. Gielow M.R., Zaborszky L. The input-output relationship of the cholinergic basal forebrain. Cell reports. 2017. 18 (7): 1817–1830. https://doi.org/10.1016/j.celrep.2017.01.060

  41. Gong S., Zheng C., Doughty M.L., Losos K., Didkovsky N., Schambra U.B., Nowak N.J., Joyner A., Leblanc G., Hatten M.E., Heintz N. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003. 425 (6961): 917–925. https://doi.org/10.1038/nature02033

  42. Graybiel A.M. The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem. 1998. 70 (1–2): 119–136.

  43. Grillner S., Robertson B. The Basal Ganglia Over 500 Million Years. Curr Biol. 2016. 26 (20): R1088–R1100. https://doi.org/10.1016/j.cub.2016.06.041

  44. Gritton H.J., Howe W.M., Romano M.F., DiFeliceantonio A.G., Kramer M.A., Saligrama V., Bucklin M.E., Zemel D., Han X. Unique contributions of parvalbumin and cholinergic interneurons in organizing striatal networks during movement. Nat Neurosci. 2019. 22 (4): 586–597. https://doi.org/10.1038/s41593-019-0341-3

  45. Haber S.N., Fudge J.L., McFarland N.R. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000. 20 (6): 2369–2382. https://doi.org/10.1523/JNEUROSCI.20-06-02369.2000

  46. Haber S.N. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016. 18 (1): 7–21.

  47. Hikosaka O., Takikawa Y., Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000. 80: 953–978.

  48. Hintiryan H., Foster N.N., Bowman I., Bay M., Song M.Y., Gou L., Yamashita S., Bienkowski M.S., Zingg B., Zhu M., Yang X.W., Shih J.C., Toga A.W., Dong H.W. The mouse cortico-striatal projectome. Nat Neurosci. 2016. 19 (8): 1100–1114. https://doi.org/10.1038/nn.4332

  49. Hjorth J., K.T., Kotaleski J.H. Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity. J Neurosci. 2009. 29 (16): 5276–5286. https://doi.org/10.1523/JNEUROSCI.6031-08.2009

  50. Howe M.W., Tierney P.L., Sandberg S.G., Phillips P.E., Graybiel A.M. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature. 2013. 500 (7464): 575–579. https://doi.org/10.1038/nature12475

  51. Howe M.W., Dombeck D.A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature. 2016. 535 (7613): 505–510. https://doi.org/10.1038/nature18942

  52. Hunnicutt B.J., Jongbloets B.C., Birdsong W.T., Gertz K.J., Zhong H., Mao T. A comprehensive excitatory input map of the striatum reveals novel functional organization. Elife. 2016. 5. pii: e19103. https://doi.org/10.7554/eLife.19103

  53. Hutton S.R., Otis J.M., Kim E.M., Lamsal Y., Stuber G.D., Snider W.D. ERK/MAPK Signaling Is Required for Pathway-Specific Striatal Motor Functions. J Neurosci. 2017. 37 (34): 8102–8115. https://doi.org/10.1523/JNEUROSCI.0473-17.2017

  54. Ingham C.A., Bolam J.P., Wainer B.H., Smith A.D. A correlated light and electron microscopic study of identified cholinergic basal forebrain neurons that project to the cortex in the rat. J Comp Neurol. 1985. 239 (2): 176–192.

  55. Isomura Y., Takekawa T., Harukuni R., Handa T., Aizawa H., Takada M., Fukai T. Reward-modulated motor information in identified striatum neurons. J Neurosci. 2013. 33 (25): 10209–10220. https://doi.org/10.1523/JNEUROSCI.0381-13.2013

  56. Ivlieva N.Yu., Ivliev D.A. Specific role of dopamine in striatum during instrumental learning. Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 2014. 64 (3): 251–254.

  57. Ivlieva N.Y., Timofeeva N.O., Ivliev D.A. The Dopamine Impels Us to Action as Suggested by the Neuronal Activity in the Ventral Tegmental Area during Avoidance Conditioning. The Russian Journal of Cognitive Science. 2014. 1 (1-2): 54–64.

  58. James S.S., Papapavlou C., Blenkinsop A., Cope A.J., Anderson S.R., Moustakas K., Gurney K.N. Integrating Brain and Biomechanical Models-A New Paradigm for Understanding Neuro-muscular Control. Front Neurosci. 2018. 12: 39. https://doi.org/10.3389/fnins.2018.00039

  59. Johansson Y., Silberberg G. The Functional Organization of Cortical and Thalamic Inputs onto Five Types of Striatal Neurons Is Determined by Source and Target Cell Identities. Cell Rep. 2020. 30 (4): 1178–1194.e3. https://doi.org/10.1016/j.celrep.2019.12.095

  60. Klaus A., Martins G.J., Paixao V.B., Zhou P., Paninski L., Costa R.M. The Spatiotemporal Organization of the Striatum Encodes Action Space. Neuron. 2017. 95 (5): 1171–1180.e7. https://doi.org/10.1016/j.neuron.2017.08.015

  61. Klug J.R., Engelhardt M.D., Cadman C.N., Li H., Smith J.B., Ayala S., Williams E.W., Hoffman H., Jin X. Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions. Elife. 2018. 7. pii: e35657. https://doi.org/10.7554/eLife.35657

  62. Kravitz A.V., Freeze B.S., Parker P.R., Kay K., Thwin M.T., Deisseroth K., Kreitzer A.C. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010. 466 (7306): 622–626. https://doi.org/10.1038/nature09159

  63. Kreitzer A.C. Physiology and pharmacology of striatal neurons. Annual review of neuroscience. 2009. 32: 127–147.

  64. Lemos J.C., Friend D.M., Kaplan A.R., Shin J.H., Rubinstein M., Kravitz A.V., Alvarez V.A. Enhanced GABA Transmission Drives Bradykinesia Following Loss of Dopamine D2 Receptor Signaling. Neuron. 2016. 90 (4): 824–838. https://doi.org/10.1016/j.neuron.2016.04.040

  65. Langdon A.J., Sharpe M.J., Schoenbaum G., Niv Y. Model-based predictions for dopamine. Current opinion in neurobiology. 2018. 49: 1–7. https://doi.org/10.1016/j.conb.2017.10.006

  66. LeBlanc K.H., London T.D., Szczot I., Bocarsly M.E., Friend D.M., Nguyen K.P., Mengesha M.M., Rubinstein M., Alvarez V.A., Kravitz A.V. Striatopallidal neurons control avoidance behavior in exploratory tasks. Mol Psychiatry. 2020. 25 (2): 491–505. https://doi.org/10.1038/s41380-018-0051-3

  67. Lin S.C., Brown R.E., Hussain Shuler M.G., Petersen C.C., Kepecs A. Optogenetic Dissection of the Basal Forebrain Neuromodulatory Control of Cortical Activation, Plasticity, and Cognition. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2015. 35 (41): 13896–13903. https://doi.org/10.1523/JNEUROSCI.2590-15.2015

  68. Liu C., Kershberg L., Wang J., Schneeberger S., Kaeser P.S. Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites. Cell. 2018. 172 (4): 706–718.e15. https://doi.org/10.1016/j.cell.2018.01.008

  69. Maia T.V., Frank M.J. An Integrative Perspective on the Role of Dopamine in Schizophrenia. Biol. Psychiatry. 2017. 81 (1): 52–66. https://doi.org/10.1016/j.biopsych.2016.05.021

  70. Mc Nab F., Klingberg T. Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci. 2008. 11 (1): 103–107.

  71. Mallet N., Micklem B.R., Henny P., Brown M.T., Williams C., Bolam J.P., Nakamura K.C., Magill P.J. Dichotomous organization of the external globus pallidus. Neuron. 2012. 74 (6): 1075–1086. https://doi.org/10.1016/j.neuron.2012.04.027

  72. Mandelbaum G., Taranda J., Haynes T.M., Hochbaum D.R., Huang K.W., Hyun M., Umadevi Venkataraju K., Straub C., Wang W., Robertson K., Osten P., Sabatini B.L. Distinct Cortical-Thalamic-Striatal Circuits through the Parafascicular Nucleus. Neuron. 2019. 102 (3): 636–652.e7. https://doi.org/10.1016/j.neuron.2019.02.035

  73. Marche K., Apicella P. Changes in activity of fast-spiking interneurons of the monkey striatum during reaching at a visual target. J Neurophysiol. 2017. 117 (1): 65–78. https://doi.org/10.1152/jn.00566.2016

  74. Markowitz J.E., Gillis W.F., Beron C.C., Neufeld S.Q., Robertson K., Bhagat N.D., Peterson R.E., Peterson E., Hyun M., Linderman S.W., Sabatini B.L., Datta S.R. The Striatum Organizes 3D Behavior via Moment-to-Moment Action Selection. Cell. 2018. 174 (1): 44–58.e17. https://doi.org/10.1016/j.cell.2018.04.019

  75. Melzer S., Gil M., Koser D.E., Michael M., Huang K.W., Monyer H. Distinct Corticostriatal GABAergic Neurons Modulate Striatal Output Neurons and Motor Activity. Cell Rep. 2017. 19 (5): 1045–1055. https://doi.org/10.1016/j.celrep.2017.04.02428467898

  76. Menegas W., Bergan J.F., Ogawa S.K. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. Elife. 2015. V. 4. P. e10032. https://doi.org/10.7554/eLife.10032

  77. Meng C., Zhou J., Papaneri A., Peddada T., Xu K., Cui G. Spectrally Resolved Fiber Photometry for Multi-component Analysis of Brain Circuits. Neuron. 2018. 98 (4): 707–717.e4. https://doi.org/10.1016/j.neuron.2018.04.012

  78. Mink J.W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996. 50 (4): 381–425. https://doi.org/10.1016/s0301-0082(96)00042-1

  79. Miyamoto Y., Katayama S., Shigematsu N., Nishi A., Fukuda T. Striosome-based map of the mouse striatum that is conformable to both cortical afferent topography and uneven distributions of dopamine D1 and D2 receptor-expressing cells. Brain Struct Funct. 2018. 223 (9): 4275–4291. https://doi.org/10.1007/s00429-018-1749-3

  80. Moriya S., Yamashita A., Kawashima S., Nishi R., Yamanaka A., Kuwaki T. Acute Aversive Stimuli Rapidly Increase the Activity of Ventral Tegmental Area Dopamine Neurons in Awake Mice. Neuroscience. 2018. 386: 16–23. https://doi.org/10.1016/j.neuroscience.2018.06.027

  81. Nakajima M., Schmitt L.I., Halassa M.M. Prefrontal Cortex Regulates Sensory Filtering through a Basal Ganglia-to-Thalamus Pathway. Neuron. 2019. 103 (3): 445–458.e10. https://doi.org/10.1016/j.neuron.2019.05.026

  82. Nambu A. Somatotopic organization of the primate Basal Ganglia. Front Neuroanat. 2011. 5: 26. https://doi.org/10.3389/fnana.2011.00026

  83. Nestler E.J., Lüscher C. The Molecular Basis of Drug Addiction: Linking Epigenetic to Synaptic and Circuit Mechanisms. Neuron. 2019. 102 (1): 48–59. https://doi.org/10.1016/j.neuron.2019.01.016

  84. Neve K.A., Neve R.L. Molecular biology of dopamine receptors. The dopamine receptors. Humana Press, Totowa, NJ, 1997. P. 27–76.

  85. Nisenbaum E.S., Wilson C.J. Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. J Neurosci. 1995. 15 (6): 4449–4463.

  86. Oleson E.B., Gentry R.N., Chioma V.C., Cheer J.F. Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance. The Journal of neuroscience. 2012. 32 (42): 14804–14808. https://doi.org/10.1523/JNEUROSCI.3087-12.2012

  87. Owen S.F., Liu M.H., Kreitzer A.C. Thermal constraints on in vivo optogenetic manipulations. Nat Neurosci. 2019. 22 (7): 1061–1065. https://doi.org/10.1038/s41593-019-0422-3

  88. Parker J.G., Marshall J.D., Ahanonu B., Wu Y.W., Kim T.H., Grewe B.F., Zhang Y., Li J.Z., Ding J.B., Ehlers M.D., Schnitzer M.J. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature. 2018. 557 (7704): 177–182. https://doi.org/10.1038/s41586-018-0090-6

  89. Pasquereau B., Turner R.S. Dopamine neurons encode errors in predicting movement trigger occurrence. Journal of neurophysiology. 2014. 113(4): 1110–1123.

  90. Plotkin J.L., Goldberg J.A. Thinking Outside the Box (and Arrow): Current Themes in Striatal Dysfunction in Movement Disorders. Neuroscientist. 2019. 25 (4): 359–379. https://doi.org/0.1177/1073858418807887

  91. Poulin J.F., Caronia G., Hofer C., Cui Q., Helm B., Ramakrishnan C., Chan C.S., Dombeck D.A., Deisseroth K., Awatramani R. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci. 2018. 21 (9): 1260–1271. https://doi.org/10.1038/s41593-018-0203-4

  92. Puryear C.B., Kim M.J., Mizumori S.J.Y. Conjunctive encoding of movement and reward by ventral tegmental area neurons in the freely navigating rodent. Behavioral neuroscience. 2010. 124 (2): 234–247. https://doi.org/10.1037/a0018865

  93. Reiner A., Hart N.M., Lei W., Deng Y. Corticostriatal projection neurons–dichotomous types and dichotomous functions. Frontiers in neuroanatomy. 2010. 4: 142. https://doi.org/10.3389/fnana.2010.00142

  94. Richfield E.K., Penney J.B., Young A.B. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience. 1989. 30 (3): 767–777.

  95. Rock C., Zurita H., Wilson C., Apicella A.J. An inhibitory corticostriatal pathway. Elife. 2016. 5: pii: e15890. https://doi.org/10.7554/eLife.15890

  96. Roitman M.F., Stuber G.D., Phillips P.E., Wightman R.M., Carelli. Dopamine operates as a subsecond modulator of food seeking. Journal of Neuroscience. 2004. 24 (6): 1265–1271.

  97. Roseberry T.K., Lee A.M., Lalive A.L., Wilbrecht L., Bonci A., Kreitzer A.C. Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia. Cell. 2016. 164 (3): 526–537. https://doi.org/10.1016/j.cell.2015.12.037

  98. Salamone J.D., Correa M., Farrar A., Mingote S.M. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology. 2007. 191 (3): 461–482.

  99. Saunders A., Oldenburg I.A., Berezovskii V.K., Johnson C.A., Kingery N.D., Elliott H.L., Xie T., Gerfen C.R., Sabatini B.L. A direct GABAergic output from the basal ganglia to frontal cortex. Nature. 2015. 521 (7550): 85–89. https://doi.org/10.1038/nature14179

  100. Schechtman E., Noblejas M.I., Mizrahi A.D., Dauber O., Bergman H. Pallidal spiking activity reflects learning dynamics and predicts performance. Proc Natl Acad Sci U S A. 2016. 113 (41): E6281–E6289.

  101. Schultz W., Ruffieux A., Aebischer P. The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation. Exp Brain Res. 1983. 51: 377–387.

  102. Schultz W. Updating dopamine reward signals. Current opinion in neurobiology. 2013. 23 (2): 229–238.

  103. Sharott A., Magill P.J., Bolam J.P., Brown P. Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the rat. J Physiol. 2005. 562 (Pt 3): 951–63. https://doi.org/10.1113/jphysiol.2004.073189

  104. Shen W., Flajolet M., Greengard P., Surmeier D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science. 2008. 321 (5890): 848–851.

  105. Silkis I. The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia. Biosystems. 2001. 59 (1): 7–14. https://doi.org/10.1016/s0303-2647(00)00135-0

  106. da Silva J.A., Tecuapetla F., Paixão V., Costa R.M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature. 2018. 554 (7691): 244–248. https://doi.org/10.1038/nature25457

  107. Smith Y., Raju D., Nanda B., Pare J.F., Galvan A., Wichmann T. The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull. 2009. 78 (2–3): 60–68. https://doi.org/10.1016/j.brainresbull.2008.08.015

  108. Smith J.B., Klug J.R., Ross D.L., Howard C.D., Hollon N.G., Ko V.I., Hoffman H., Callaway E.M., Gerfen C.R., Jin X. Genetic-Based Dissection Unveils the Inputs and Outputs of Striatal Patch and Matrix Compartments. Neuron. 2016. 91 (5): 1069–1084. https://doi.org/10.1016/j.neuron.2016.07.046

  109. Steinberg E.E., Keiflin R., Boivin J.R., Witten I.B., Deisseroth K., Janak P.H. A causal link between prediction errors, dopamine neurons and learning. Nature neuroscience. 2013. 16 (7): 966–973. https://doi.org/10.1038/nn.3413

  110. Straub C., Saulnier J.L., Bègue A., Feng D.D., Huang K.W., Sabatini B.L. Principles of Synaptic Organization of GABAergic Interneurons in the Striatum. Neuron. 2016. 92 (1): 84–92. https://doi.org/10.1016/j.neuron.2016.09.007

  111. Taverna S., Ilijic E., Surmeier D.J. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. Journal of Neuroscience. 2008. 28 (21): 5504–5512.

  112. Tecuapetla F., Jin X., Lima S.Q., Costa R.M. Complementary Contributions of Striatal Projection Pathways to Action Initiation and Execution. Cell. 2016. 166 (3): 703–715. https://doi.org/10.1016/j.cell.2016.06.032

  113. Tepper J.M., Koós T., Ibanez-Sandoval O., Tecuapetla F., Faust T.W., Assous M. Heterogeneity and Diversity of Striatal GABAergic Interneurons: Update 2018. Front Neuroanat. 2018. 12 (91): https://doi.org/10.3389/fnana.2018.00091

  114. Trudeau L.E., Hnasko T.S., Wallén-Mackenzie A., Morales M., Rayport S., Sulzer D. The multilingual nature of dopamine neurons. Prog Brain Res. 2014. 211: 141–164. https://doi.org/10.1016/B978-0-444-63425-2.00006-4

  115. Tsai H.C., Zhang F., Adamantidis A., Stuber G.D., Bonci A., de Lecea L., Deisseroth K. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009. 324 (5930): 1080–1084. https://doi.org/10.1126/science.1168878

  116. Tye K.M., Mirzabekov J.J., Warden M.R., Ferenczi E.A., Tsai H.C., Finkelstein J., Kim S.Y., Adhikari A., Thompson K.R., Andalman A.S., Gunaydin L.A., Witten I.B., Deisseroth K. Dopamine neurons modulate neural encoding and expression of depression-related behavior. Nature. 2013. 493 (7433): 537–541. https://doi.org/10.1038/nature11740

  117. Varazzani C., San-Galli A., Gilardeau S., Bouret S. Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys. Journal of Neuroscience. 2015. 35 (20): 7866–7877. https://doi.org/10.1523/JNEUROSCI.0454-15.2015

  118. Villalobos N., Oviedo-Chávez A., Alatorre A., Ríos A., Barrientos R., Delgado A., Querejeta E. Striatum and globus pallidus control the electrical activity of reticular thalamic nuclei. Brain Res. 2016. 1644: 258–266. https://doi.org/10.1016/j.brainres.2016.05.032

  119. Wall N.R., De La Parra M., Callaway E.M., Kreitzer A.C. Differential innervation of direct-and indirect-pathway striatal projection neurons. Neuron. 2013. 79 (2): 347–360. https://doi.org/10.1016/j.neuron.2013.05.014

  120. Watabe-Uchida M., Zhu L., Ogawa S.K., Vamanrao A., Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron. 2012. 74 (5): 858–873. https://doi.org/10.1016/j.neuron.2012.03.017

  121. Watabe-Uchida M., Eshel N., Uchida N. Neural Circuitry of Reward Prediction Error. Annu Rev Neurosci. 2017. 40: 373–394.

  122. Wise R.A. Dual roles of dopamine in food and drug seeking: the drive-reward paradox. Biological psychiatry. 2013. 73 (9): 819–826. https://doi.org/10.1016/j.biopsych.2012.09.001

  123. Wise R.A., Bozarth M.A. Brain mechanisms of drug reward and euphoria. Psychiatric medicine. 1985. 3 (4): 445–460.

  124. Yamin H.G., Stern E.A., Cohen D. Parallel processing of environmental recognition and locomotion in the mouse striatum. J Neurosci. 2013. 33 (2): 473–484. https://doi.org/10.1523/JNEUROSCI.4474-12.2013

  125. Yapo C., Nair A.G., Clement L., Castro L.R., Hellgren Kotaleski J., Vincent P. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons. J. Physiol. 2017 595 (24): 7451–7475. https://doi.org/10.1113/JP274475

  126. Zingg B., Hintiryan H., Gou L., Song M.Y., Bay M., Bienkowski M.S., Foster N.N., Yamashita S., Bowman I., Toga A.W., Dong H.W. Neural networks of the mouse neocortex. Cell. 2014. 156 (5): 1096–1111. https://doi.org/10.1016/j.cell.2014.02.023

Дополнительные материалы отсутствуют.