Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 2, стр. 184-201

Память: аксиоматика и факты

Ю. И. Аршавский *

Калифорнийский Университет
г. Сан Диего, США

* E-mail: yarshavs@ucsd.edu

Поступила в редакцию 28.09.2020
После доработки 22.12.2020
Принята к публикации 22.12.2020

Аннотация

Принято считать, что нейрофизиология является в основном экспериментальной наукой, знания которой базируются на достоверных фактах. Однако, если мы обратимся к нейрофизиологии сложных и до сих пор малопонятных механизмов высших (когнитивных) функций головного мозга животных и особенно человека (таких как память, генерация и восприятие речи, формирование абстрактных понятий и т.п.), то увидим, что парадоксальным образом знания в этой области в значительной степени базируются на априорной аксиоматике. Общепризнанные аксиомы во многом определяют направление экспериментальных исследований и интерпретацию полученных результатов. Больше того, исследователи зачастую игнорируют или “забывают” полученные ими факты, если они противоречат общепризнанной аксиоматике. В настоящей статье я проиллюстрирую сказанное на примере изучения механизмов формирования и хранения памяти. Эта функция мозга исследовалась особенно интенсивно, поскольку в отличие от многих других когнитивных функций память существует как у человека, так и у животных. Хотя память исследовалась на животных, принадлежащих к разным биологическим типам, я буду обсуждать результаты, полученные при изучении декларативной (explicit) памяти у человека и млекопитающих животных.

Ключевые слова: память, гипотеза синаптической пластичности, долговременная потенциация, реконсолидация памяти, стабильность синапсов, эпилепсия, концептуальные нейроны

DOI: 10.31857/S0044467721020039

Список литературы

  1. Анохин К.В. Молекулярные сценарии консолидации долговременной памяти. Журнал высшей нервной деятельности им. И.П. Павлова. 1997. 47: 261 –279.

  2. Аршавский Ю.И. И.М. Гельфанд о математике и нейрофизиологии. Вестник РАН. 2010. 80 (10): 937–941.

  3. Аршавский Ю.И. Нейронные механизмы памяти: синаптическая и геномная гипотезы. Журнал высшей нервной деятельности им. И.П. Павлова. 2011. 61 (6): 660–674.

  4. Аршавский Ю.И. Можно ли судить о сознании животных на основании их поведения? Журнал высшей нервной деятельности им. И.П. Павлова. 2018. 68 (2): 152–162.

  5. Аршавский Ю.И., Делягина Т.Г., Орловский Г.Н. Центральные генераторы: механизм работы и их роль в управлении автоматизированными движениями. Журнал высшей нервной деятельности им. И.П. Павлова. 2015. 65 (2): 156–187.

  6. Бородинова А.А., Балабан П.М. Эпигенетическая регуляция как основа долговременных изменений в нервной системе: В поисках механизмов специфичности. Биохимия. 2020. 85 (9): 1139–1158.

  7. Либерман Е.А., Минина С.В., Шкловский-Корди Н.Е. Мозг как система квантовых компьютеров и путь к объединению наук. Москва: ИППИ АН СССР, 1987.

  8. Литвин О.О., Анохин К.В. Механизмы реорганизации памяти при извлечении приобретенного поведенческого опыта у цыплят: эффекты блокады синтеза белка в мозге. Журнал высшей нервной деятельности им. И.П. Павлова. 1999. 49 (4): 554–565.

  9. Лурия А.Р. Маленькая книжка о большой памяти. Москва: Изд. МГУ, 1968.

  10. Муравьева Е.В., Анохин К.В. Участие синтеза белка в реконсолидации памяти в разное время после обучения условно-рефлекторному замиранию у мышей. Журнал высшей нервной деятельности им. И.П. Павлова. 2006. 56 (2): 274–281.

  11. Скребицкий В.Г., Чепкова А.Н. Синаптическая пластичность в аспекте обучения и памяти. Успехи физиол. наук. 1999. 30: 3–13.

  12. Abel T., Nguyen P.V., Barad M., Deuel T.A., Kandel E.R., Bourtchouladze R. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell. 1997. 88 (5): 615–626.

  13. Abraham W.C., Williams J.M. Properties and mechanisms of LTP maintenance. Neuroscientist. 2003. 9 (6): 463–474.

  14. Acker D., Paradis S., Miller P. Stable memory and computation in randomly rewiring neural networks. J. Neurophysiol. 2019. 122 (1): 66–80.

  15. Alarcón G., Martinez J., Kerai S.V., Lacruz M.E., Quiroga R.Q., Selway R.P., Richardson M.P., García Seoane J.J., Valentín A. In vivo neuronal firing patterns during human epileptiform discharges replicated by electrical stimulation. Clin. Neurophysiol. 2012. 123 (9):1736–1744.

  16. Albo Z., Gräff J. The mysteries of remote memory. Philos. Trans. R. Soc. Lond. Biol. Sci. 2018. 373 (1742): 20170029.

  17. Alvarado-Rojas C., Lehongre K., Bagdasaryan J., Bragin A., Staba R., Engel J.Jr., Navarro V., Le Van Quyen M. Single-unit activities during epileptic discharges in the human hippocampal formation. Front. Comput. Neurosci. 2013 7: 140.

  18. Anokhin K., Litvin O., Radyushkin K. Memory retranscription at the time of retrieval: a clue to dynamic nature of memory. In: Memory and Emotions. Ed. P. Calabrese, A. Neugebauer, World Scientific Publ, New Jersey, 2002. 45–61.

  19. Arshavsky Y.I. Cellular and network properties in the functioning of the nervous system: from central pattern generators to cognition. Brain Res. Rev. 2003. 41 (2-3): 229–267.

  20. Arshavsky Y.I. “The seven sins” of the Hebbian synapse: can the hypothesis of synaptic plasticity explain long-term memory consolidation? Prog. Neurobiol. 2006. 80: 99–113.

  21. Arshavsky Y.I. Neurons versus networks: The interplay between individual neurons and neural networks in cognitive functions. Neuroscientist. 2017. 23 (4): 341–355.

  22. Asok A., Leroy F., Rayman J.B., Kandel E.R. Molecular mechanisms of the memory trace. Trends Neurosci. 2019. 42 (1): 14–22.

  23. Attardo A., Fitzgerald J.E., Schnitzer M.J. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature. 2015. 523: 592–596.

  24. Aur D., Jog M.S. Neuroelectrodynamics, Understanding the Brain Language. Amsterdam: IOS Press. 2010.

  25. Bailey C.H. Structural changes and the storage of long-term memory in Aplysia. Can. J. Physiol. Pharmacol. 1999. 77: 738–747.

  26. Bailey C.H., Kandel E.R., Harris K.M. Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb. Perspect. Biol. 2015. 7 (7): a021758.

  27. Bannerman D.M., Good M.A., Butcher S.P., Ramsay M., Morris R.G. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature. 1995. 378: 182–186.

  28. Bannerman D.M., Sprengel R., Sanderson D.J., McHugh S.B., Rawlins J.N., Monyer H., Seeburg P.H. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 2014. 15 (3): 181–192.

  29. Ben-Ari Y., Represa A. Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus. Trends Neurosci. 1990. 13 (8): 312–318.

  30. Bliss T.V., Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 1973. 232: 331–356.

  31. Brakebusch C., Seidenbecher C.I., Asztely F., Rauch U., Matthies H., Meyer H., Krug M., Böckers T.M., Zhou X., Kreutz M.R., Montag D., Gundelfinger E.D., Fässler R. Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Mol. Cell Biol. 2002. 22 (21): 7417–7427.

  32. Bramham C.R. Local protein synthesis, actin dynamics, and LTP consolidation. Curr. Opin. Neurobiol. 2008. 18 (5): 524–531.

  33. Bruza P.D., Busemeyer J.R. Quantum models of cognition and decision. Cambridge, Engl.: Cambridge University Press. 2012.

  34. Burns A.M., Gräff J. Cognitive epigenetic priming: leveraging histone acetylation for memory amelioration. Curr. Opin. Neurobiol. 2021. 67: 75–84.

  35. Campbell R.R., Wood M.A. How the epigenome integrates information and reshapes the synapse. Nat. Rev. Neurosci. 2019. 20 (3): 133–147.

  36. Chen C., Tonegawa S. Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu. Rev. Neurosci. 1997. 20: 157–184.

  37. Chklovskii D.B., Mel B.W., Svoboda K. Cortical rewiring and information storage. Nature. 2004. 431 (7010): 782–788.

  38. Choquet D., Triller A. The dynamic synapse. Neuron. 2013. 80 (3): 691–703.

  39. Clandinin T.R., Marder E. Editorial overview: Microcircuit evolution and computation. 2016. Curr. Opin, Neurobiol. 2016. 41: 188–190.

  40. Collingridge G.L., Peineau S., Howland J.G., Wang Y.T. Long-term depression in the CNS. Nat. Rev. Neurosci. 2010. 11 (7): 459–473.

  41. Craig E., Dillingham C.M., Milczarek M.M., Phillips H.M., Davies M., Perry J.C., Vann S.D. Lack of change in CA1 dendritic spine density or clustering in rats following training on a radial-arm maze task. Wellcome Open Res. 2020. 5: 68.

  42. Crick F. Memory and molecular turnover. Nature. 1984. 312: 101.

  43. Davis H.P., Squire L.R. Protein synthesis and memory: a review. Psychol. Bull. 1984. 96: 518–559.

  44. Dossani R.H., Missios S., Nanda A. The legacy of Henry Molaison (1926–2008) and the impact of his bilateral mesial temporal lobe surgery on the study of human memory. World Neurosurg. 2015. 84 (4): 1127–1135.

  45. Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci. 2000. 1 (1): 41–50.

  46. Engert F., Bonhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature. 1999. 399: 66–70.

  47. Evans B.D., Stringer S.M. Transformation-invariant visual representations in self-organizing spiking neural networks. Front. Comput. Neurosci. 2012. 6: 46.

  48. Fauth M.J., van Rossum M.C. Self-organized reactivation maintains and reinforces memories despite synaptic turnover. Elife. 2019. 8: e43717.

  49. Fifkova E., Anderson C.L. Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer. Exp. Neurol. 1981. 74: 621–627.

  50. Fifkova E., Van Harreveld A. Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J. Neurocytol. 1977. 6: 211–230.

  51. Frankland P.W., Bontempi B. The organization of recent and remote memories. Nat. Rev. Neurosci. 2005. 6 (2): 119–130.

  52. Gallistel C.R. The neurobiological bases for the computational theory of mind. In: On concepts, modules, and language. Eds. De Almeida R.G., Gleitman L. New York: Oxford University Press, 2017. 275–296.

  53. Gallistel C.R., Matzel L.D. The neuroscience of learning: beyond the Hebbian synapse. Annu. Rev. Psychol. 2013. 64: 169–200.

  54. Gelbard-Sagiv H., Mukamel R., Harel M., Malach R., Fried I. Internally generated reactivation of single neurons in human hippocampus during free recall. Science. 2008. 322 (5898): 96–101.

  55. Gelfand I.M. Two archetypes in the psychology of man. Nonlinear Sci. Today. 1991. 1 (5): 11–16.

  56. Giese K.P., Fedorov N.B., Filipkowski R.K., Silva A.J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998. 279 (5352): 870–873.

  57. Gräff J., Mansuy I.M. Epigenetic codes in cognition and behaviour. Behav. Brain Res. 2008. 192 (1): 70–87.

  58. Grant S.G. Synapse molecular complexity and the plasticity behaviour problem. Brain Neurosci. Adv. 2018. 2: 1–7.

  59. Grutzendler J., Kasthuri N., Gan W.B. Long-term dendritic spine stability in the adult cortex. Nature. 2002. 420 (6917): 812–816.

  60. Gu L., Kleiber S., Schmid L., Nebeling F., Chamoun M., Steffen J., Wagner J., Fuhrmann M. Long-term in vivo imaging of dendritic spines in the hippocampus reveals structural plasticity. J. Neurosci. 2014. 34 (42): 13948–13953.

  61. Gunji Y.P., Sonoda K., Basios V. Quantum cognition based on an ambiguous representation derived from a rough set approximation. Biosystems. 2016. 141: 55–66.

  62. Hameroff S., Nip A., Porter M., Tuszynski J. Conduction pathways in microtubules, biological quantum computation, and consciousness. Biosystems. 2002. 64 (1–3): 149–168.

  63. Hameroff S., Penrose R. Consciousness in the universe: a review of the 'Orch OR’ theory. Phys. Life Rev. 2014. 11 (1): 39–78.

  64. Hebb D.O. The Organization of Behavior. New York: Wiley, 1949.

  65. Hernandez P.J., Abel T. The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol. Learn. Mem. 2008. 89 (3): 293–311.

  66. Holliday R. Is there an epigenetic component in long-term memory? J. Theor. Biol. 1999. 200: 339–341.

  67. Holtmaat A., Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 2009. 10 (9): 647–658.

  68. Holtmaat A.J., Trachtenberg J.T., Wilbrecht L., Shepherd G.M., Zhang X., Knott G.W., Svoboda K. Transient and persistent dendritic spines in the neocortex in vivo. Neuron. 2005. 45 (2): 279–291.

  69. Huys Q.J.M., Browning M., Paulus M., Frank M.J. Advances in the computational understanding of mental illness. Neuropsychopharmacology. 2020. 46: (in press).

  70. Igamberdiev A.U., Shklovskiy-Kordi N.E. The quantum basis of spatiotemporality in perception and consciousness. Prog. Biophys. Mol. Biol. 2017. 130 (Pt A): 15–25.

  71. Judge M.E., Quartermain D. Characteristics of retrograde amnesia following reactivation of memory in mice. Physiol. Behav. 1982. 28: 585–590.

  72. Kandel E.R., Dudai Y., Mayford M.R. The molecular and systems biology of memory. Cell. 2014. 157 (1): 163–186.

  73. Korf J. Quantum and multidimensional explanations in a neurobiological context of mind. Neuroscientist. 2015. 21 (4): 345–355.

  74. Lai C.S., Franke T.F., Gan W.B. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature. 2012. 483 (7387): 87–91.

  75. Lamprecht R., LeDoux J. Structural plasticity and memory. Nat. Rev. Neurosci. 2004. 5 (1): 45–54.

  76. Langille J.J., Gallistel C.R. Locating the engram: Should we look for plastic synapses or information-storing molecules? Neurobiol. Learn. Mem. 2020. 169: 107164.

  77. Leuner B., Falduto J., Shors T.J. Associative memory formation increases the observation of dendritic spines in the hippocampus. J. Neurosci. 2003. 23: 659–665.

  78. Levenson J.M., Sweatt J.D. Epigenetic mechanisms in memory formation. Nat. Rev. Neurosci. 2005. 6: 108–118.

  79. Li X., Wei W., Ratnu V.S., Bredy T.W. On the potential role of active DNA demethylation in establishing epigenetic states associated with neural plasticity and memory. Neurobiol. Learn. Mem. 2013. 105:125–132.

  80. Liberman E.A., Minina S.V., Shklovsky-Kordi N.E. Quantum molecular computer model of the neuron and a pathway to the union of the sciences. Biosystems. 1989. 22 (2): 135–154.

  81. Loewenstein Y., Yanover U., Rumpel S. Predicting the dynamics of network connectivity in the neocortex. J. Neurosci. 2015. 35 (36): 12535–12544.

  82. Lopantsev V., Both M., Draguhn A. Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges. Eur. J. Neurosci. 2009. 29 (6): 1153–1164.

  83. Lynch M.A. Long-term potentiation and memory. Physiol. Rev. 2004. 84 (1): 87–136.

  84. Malenka R.C., Nicoll R.A. Long-term potentiation–a decade of progress? Science. 1999 285 (5435): 1870–1874.

  85. Manin D.Yu., Manin Yu.I. Cognitive networks: brains, internet, and civilizations. In: Humanizing Mathematics and its Philosophy. Ed. Sriraman B. Berlin: Springer, 2017. 85–96.

  86. Martin S.J., Grimwood P.D., Morris R.G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 2000. 23: 649–711.

  87. Mayford M., Siegelbaum S.A., Kandel E.R. Synapses and memory storage. Cold Spring Harb. Perspect. Biol. 2012. 4 (6): a005751.

  88. McGaugh J.L. Memory – a century of consolidation. Science 2000. 287: 248–251.

  89. Migaud M., Charlesworth P., Dempster M., Webster L.C., Watabe A.M., Makhinson M., He Y., Ramsay M.F., Morris R.G., Morrison J.H., O’Dell T.J., Grant S.G. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature. 1998. 396 (6710): 433–439.

  90. Miller C.A., Gavin C.F., White J.A. Cortical DNA methylation maintains remote memory. Nat. Neurosci. 2010. 13: 664–666.

  91. Mongillo G., Rumpel S., Loewenstein Y. Intrinsic volatility of synaptic connections – a challenge to the synaptic trace theory of memory. Curr. Opin. Neurobiol. 2017. 46: 7–13.

  92. Montkowski A., Holsboer F. Intact spatial learning and memory in transgenic mice with reduced BDNF. Neuroreport. 1997. 8 (3): 779–782.

  93. Morris R.G., Anderson E., Lynch G.S., Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986. 319 (6056): 774–776.

  94. Morris R.G., Steele R.J., Bell J.E., Martin S.J. N-methyl-d-aspartate receptors, learning and memory: chronic intraventricular infusion of the NMDA receptor antagonist d-AP5 interacts directly with the neural mechanisms of spatial learning. Eur. J. Neurosci. 2013. 37 (5): 700–717.

  95. Nader K., Schafe G.E., Le Doux J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000. 406: 722–726.

  96. Nagaoka A., Takehara H., Hayashi-Takagi A., Noguchi J., Ishii K., Shirai F., Yagishita S., Akagi T., Ichiki T., Kasai H. Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo. Sci. Rep. 2016. 6: 26651.

  97. Neves G., Cooke S.F., Bliss T.V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 2008. 9 (1): 65–75.

  98. Nicoll R.A. A brief history of long-term potentiation. Neuron. 2017. 93 (2): 281–290.

  99. Nithianantharajah J., Komiyama N.H., McKechanie A., Johnstone M., Blackwood D.H., St Clair D., Emes R.D., van de Lagemaat L.N., Saksida L.M., Bussey T.J., Grant S.G. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat. Neurosci. 2013. 16 (1): 16–24.

  100. Noguchi J., Nagaoka A., Watanabe S., Ellis-Davies G.C., Kitamura K., Kano M., Matsuzaki M., Kasai H. In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice. J. Physiol. 2011. 589 (10): 2447–2457.

  101. Okabe S., Collin C., Auerbach J.M., Meiri N., Bengzon J., Kennedy M.B., Segal M., McKay R.D. Hippocampal synaptic plasticity in mice overexpressing an embryonic subunit of the NMDA receptor. J. Neurosci. 1998. 18 (11): 4177–4188.

  102. Parker E.S., Cahill L., McGaugh J.L. A case of unusual autobiographical remembering. Neurocase. 2006. 12: 35–49.

  103. Peña de Ortiz S., Arshavsky Y.I. DNA recombination as a possible mechanism in declarative memory: a hypothesis. J. Neurosci. Res. 2001. 63: 72–81.

  104. Pfeiffer T., Poll S., Bancelin S., Angibaud J., Inavalli V.K., Keppler K., Mittag M., Fuhrmann M., Nägerl U.V. Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo. Elife. 2018. 7: e34700.

  105. Poo M.M., Pignatelli M., Ryan T.J., Tonegawa S., Bonhoeffer T., Martin K.C., Rudenko A., Tsai L.H., Tsien R.W., Fishell G., Mullins C., Gonçalves J.T., Shtrahman M., Johnston S.T., Gage F.H., Dan Y., Long J., Buzsáki G., Stevens C. What is memory? The present state of the engram. BMC Biol. 2016. 14: 40.

  106. Queenan B.N., Ryan T.J., Gazzaniga M.S., Gallistel C.R. On the research of time past: the hunt for the substrate of memory. Ann. N. Y. Acad. Sci. 2017. 396: 108–125.

  107. Quiroga R.Q. Concept cells: the building blocks of declarative memory functions. Nat. Rev. Neurosci. 2012. 13 (8): 587–597.

  108. Quiroga R.Q., Fried I., Koch C. Brain cells for grandmother. 2013. Sci. Am. 308 (2): 30–35.

  109. Quiroga R.Q., Kraskov A., Koch C., Fried I. Explicit encoding of multimodal percepts by single neurons in the human brain. Curr. Biol. 2009. 19 (15): 1308–1313.

  110. Rampon C., Tang Y.P., Goodhouse J., Shimizu E., Kyin M., Tsien J.Z. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat. Neurosci. 2000. 3 (3): 238–244.

  111. Rayman J.B., Kandel E.R. Functional prions in the brain. Cold Spring Harb. Perspect. Biol. 2017. 9 (1): a023671.

  112. Reber T.P., Bausch M., Mackay S., Boström J., Elger C.E., Mormann F. Representation of abstract semantic knowledge in populations of human single neurons in the medial temporal lobe. PLoS Biol. 2019. 17 (6): e3000290.

  113. Restivo L., Vetere G., Bontempi B., Ammassari-Teule M. The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J. Neurosci. 2009. 29 (25): 8206–8214.

  114. Rey H.G., Gori B., Chaure F.J., Collavini S., Blenkmann A.O., Seoane P., Seoane E., Kochen S., Quian Quiroga R. Single neuron coding of identity in the human hippocampal formation. Curr. Biol. 2020. 30 (6): 1152–1159.

  115. Rolls E.T. Cerebral Cortex: Principles of Operation. Oxford: Oxford University Press, 2016.

  116. Sanders J., Cowansage K., Baumgärtel K., Mayford M. Elimination of dendritic spines with long-term memory is specific to active circuits. J. Neurosci. 2012. 32 (36): 12570–12578.

  117. Sara S.J. Retrieval and reconsolidation: toward a neurobiology of remembering. Learn. Mem. 2000. 7: 73–84.

  118. Schafe G.E., Nader K., Blair H.T., LeDoux J.E. Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci. 2001. 24: 540–546.

  119. Scoville W.B., Milner B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiat. 1957. 20: 11–21.

  120. Si K., Kandel E.R. The role of functional prion-like proteins in the persistence of memory. Cold Spring Harb Perspect Biol. 2016. 8 (4): a021774.

  121. Silva A.J. Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. J. Neurobiol. 2003. 54 (1): 224–237.

  122. Squire L.R. The legacy of patient H.M. for neuroscience. Neuron. 2009. 61 (1): 6–9.

  123. Squire L.R., Genzel L., Wixted J.T., Morris R.G. Memory consolidation. Cold Spring Harb Perspect Biol. 2015. 7 (8): a021766.

  124. Steinmetz P.N., Cabrales E., Wilson M.S., Baker C.P., Thorp C.K., Smith K.A., Treiman D.M. Neurons in the human hippocampus and amygdala respond to both low- and high-level image properties. J. Neurophysiol. 2011. 105 (6): 2874–2884.

  125. Steward O., Schuman E.M. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 2001. 24: 299–325.

  126. Suratkal S.S., Yen Y.H., Nishiyama J. Imaging dendritic spines: molecular organization and signaling for plasticity. Curr Opin Neurobiol. 2021. 67: 66–74.

  127. Suthana N.A., Parikshak N.N., Ekstrom A.D., Ison M.J., Knowlton B.J., Bookheimer S.Y., Fried I. Specific responses of human hippocampal neurons are associated with better memory. Proc. Natl. Acad. Sci. U. S. A. 2015. 112 (33): 10503–10508.

  128. Tang Y.P., Shimizu E., Dube G.R., Rampon C., Kerchner G.A., Zhuo M., Liu G., Tsien J.Z. Genetic enhancement of learning and memory in mice. Nature. 1999. 401 (6748): 63–69.

  129. Tonegawa S., Liu X., Ramirez S., Redondo R. Memory engram cells have come of age. Neuron. 2015. 87 (5): 918–931.

  130. Toni N., Buchs P.A., Nikonenko I., Bron C.R., Muller D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature. 1999. 402: 421–425.

  131. Trachtenberg J.T., Chen B.E., Knott G.W., Feng G., Sanes J.R., Welker E., Svoboda K. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 2002. 420 (6917): 788–794.

  132. Treffert D.A., Christensen D.D. Inside the mind of a savant. Sci. Am. 2005. 293: 108–113.

  133. Trettenbrein P.C. The demise of the synapse as the locus of memory: A looming paradigm shift. Front. Syst. Neurosci. 2016. 10: 88.

  134. Tsien J.Z. Linking Hebb’s coincidence-detection to memory formation. Curr, Opin. Neurobiol. 2000. 10 (2): 266–273.

  135. Tsien J.Z., Huerta P.T., Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell. 1996. 87 (7): 1327–1338.

  136. Van Harreveld A., Fifkova E. Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Exp. Neurol. 1975. 49: 736–749.

  137. Wang H., Hu Y., Tsien J.Z. Molecular and systems mechanisms of memory consolidation and storage. Prog. Neurobiol. 2006. 79 (3): 123–135.

  138. Ziv N.E., Brenner N. Synaptic tenacity or lack thereof: Spontaneous remodeling of synapses. Trends Neurosci. 2018. 41 (2): 89–99.

  139. Zovkic I.B. Epigenetics and memory: an expanded role for chromatin dynamics. Curr Opin Neurobiol. 2021. 67: 58–65.

  140. Zovkic I.B., Guzman-Karlsson M.C., Sweatt J.D. Epigenetic regulation of memory formation and maintenance. Learn. Mem. 2013. 20 (2): 61–74.

Дополнительные материалы отсутствуют.