Журнал высшей нервной деятельности им. И.П. Павлова, 2020, T. 70, № 4, стр. 473-487


Mohammadmahdi Sabahi 1, Sara Ami Ahmadi 1, Rasool Haddadi 2***

1 Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences
Hamadan, Iran

2 Department of Pharmacology and Toxicology, Medicinal plant and natural products Research Center, School of Pharmacy, Hamadan University of Medical Sciences
Hamadan, Iran

* E-mail: haddadi.rasool@gmail.com
** E-mail: haddadi.r@umsha.ac.ir

Поступила в редакцию 28.03.2019
После доработки 1.12.2019
Принята к публикации 16.12.2019



Buspirone is a partial agonist of 5HT1A receptors, 8-OHDPAT (8-Hydroxy-2-(dipropylamino) tetralin) is an agonist of 5HT1A receptors, and fluoxetine is a serotonin uptake inhibitor. Among 5-HT receptor subtypes, 5-HT1A receptor plays a crucial role in modulating extrapyramidal motor disorders, including antipsychotic-induced extrapyramidal symptoms. Aim. This study aimed to investigate the effect of chronic administration of buspirone, 8-OHDPAT and different doses of fluoxetine on haloperidol-induced extrapyramidal disorders and general locomotor activity in male rats. Methods. Extrapyramidal disorders were induced by haloperidol injection 1mg/kg intraperitoneally (i.p.). To investigate the effect of serotonergic drugs on haloperidol-induced extrapyramidal disorders, we used 8-OHDPAT (1 mg/Kg), buspirone (10 mg/Kg), and fluoxetine (0.5 mg/Kg and 1 mg/Kg) as a chronic injection. Following this, the different groups of rats were placed in a rotarod, bar test and open field test apparatus, where their behavior and locomotor activity during these tasks were recorded respectively. Findings. Data analysis showed that i.p. injection of fluoxetine (0.5 mg/Kg and 1 mg/Kg), buspirone (10 mg/kg) and 8-OHDPAT (1 mg/Kg) decreased catalepsy compared with the control group (p < 0.001). The attenuation of haloperidol-induced motor imbalance was observed with fluoxetine (0.5 mg/Kg) just in 15th day of treatment (p < 0.001), fluoxetine (1 mg/Kg) in all days (p < 0.001), 8-OHDPAT (1mg/Kg) in all days (p < 0.05) and buspirone (10 mg/kg) just in 10th and 15th day of treatment (p < 0.001). Conclusion. It may be concluded that fluoxetine, buspirone, and 8-OHDPAT improve extrapyramidal disorders and locomotor impairment in haloperidol-induced Parkinsonism model through activation of nigral 5HT1A receptors.

Keywords: Buspirone, Fluoxetine, general locomotor activity, Haloperidol, 8-OHDPAT

DOI: 10.31857/S0044467720040097

Список литературы

  1. Ahmadi S., Sabahi M., Haddadi R. The preventive/protective effect of testosterone on haloperidol-induced extrapyramidal disorders in male rats. Journal of Babol University of Medical Sciences. 2018. 20 (7): 55–62.

  2. Ahmadi S.A., Sabahi M., Haddadi R. The effect of acute and repeated administration of buspirone, 8-OHDPAT and fluoxetine on haloperidol-induced extrapyramidal symptoms. Neuropsychopharmacologia Hungarica: a Magyar Pszichofarmakologiai Egyesulet lapja – official journal of the Hungarian Association of Psychopharmacology. 2019. 21 (2): 59–68.

  3. Aristieta A., Morera-Herreras T., Ruiz-Ortega J., Miguelez C., Vidaurrazaga I., Arrue A., Zumarraga M., Ugedo L. Modulation of the subthalamic nucleus activity by serotonergic agents and fluoxetine administration. Psychopharmacology. 2014. 231 (9): 1913–1924.

  4. Association A.P. (2006). American Psychiatric Association Practice Guidelines for the treatment of psychiatric disorders: compendium 2006, American Psychiatric Pub.

  5. Bantick R.A., De Vries M.H., Grasby P.M. The effect of a 5-HT1A receptor agonist on striatal dopamine release. Synapse. 2005. 57 (2): 67–75.

  6. Carey R., Damianopoulos E., De Palma G. 8-OHDPAT can restore the locomotor stimulant effects of cocaine blocked by haloperidol. Pharmacology Biochemistry and Behavior. 2000. 66 (4): 863–872.

  7. Christoffersen C.L., Meltzer L.T. Reversal of haloperidol-induced extrapyramidal side effects in cebus monkeys by 8-hydroxy-2-(di-n-propylamino) tetralin and its enantiomers. Neuropsychopharmacology. 1998. 18 (5): 399–402.

  8. De la Casa L.G., Carcel L., Ruiz-Salas J.C., Vicente L., Mena A. Conditioned increase of locomotor activity induced by haloperidol. PloS one. 2018. 13 (10): e0200178.

  9. Dunstan R., Broekkamp C.L., Lloyd K.G. Involvement of caudate nucleus, amygdala or reticular formation in neuroleptic and narcotic catalepsy. Pharmacology Biochemistry and Behavior. 1981. 14 (2): 169–174.

  10. Esposito E., Di Matteo V., Di Giovanni G. Serotonin–dopamine interaction: an overview. Progress in Brain Research. 2008. 172: 3–6.

  11. Farde L., Nordström A.-L., Wiesel F.-A., Pauli S., Halldin C., Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Archives of general psychiatry. 1992. 49 (7): 538–544.

  12. Gardner C.R. Potential use of drugs modulating 5HT activity in the treatment of anxiety. General Pharmacology: The Vascular System. 1988. 19 (3): 347–356.

  13. Haddadi R., Brooshghalan S.E., Farajniya S., Nayebi A.M., Sharifi H. Short-Term Treatment with Silymarin Improved 6-OHDA-Induced Catalepsy andMotor Imbalance in Hemi-Parkisonian Rats. Advanced Pharmaceutical Bulletin. 2015. 5 (4): 463–469.

  14. Haddadi R., Nayebi A.M., Brooshghalan S.E. Silymarin prevents apoptosis through inhibiting the Bax/caspase-3 expression and suppresses toll like receptor-4 pathway in the SNc of 6-OHDA intoxicated rats. Biomedicine & Pharmacotherapy. 2018a. 104: 127–136.

  15. Haddadi R., Poursina M., Zeraati F., Nadi F. Gastrodin microinjection suppresses 6-OHDA-induced motor impairments in parkinsonian rats: insights into oxidative balance and microglial activation in SNc. Inflammopharmacology. 2018b. 1–12.

  16. Halman M., Goldbloom D.S. Fluoxetine and neuroleptic malignant syndrome. Biological psychiatry. 1990. 28 (6): 518–521.

  17. Hicks P.B. The effect of serotonergic agents on haloperidol-induced catalepsy. Life sciences. 1990. 47 (18): 1609–1615.

  18. Kulikova E., Tikhonova M., Volcho K., Khomenko T., Salakhutdinov N., Kulikov A., Popova N. Comparison of behavioral effects of fluoxetine, imipramine and new psychotropic drug TC-2153 on mice with hereditary predisposition to catalepsy. Zhurnal vysshei nervnoi deiatelnosti imeni I.P. Pavlova. 2015. 65 (1): 105–112.

  19. McMillen B. Comparative chronic effects of buspirone or neuroleptics on rat brain dopaminergic neurotransmission. Journal of neural transmission. 1985. 64 (1): 1–12.

  20. Meltzer H. Y., Li Z., Kaneda Y., Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2003. 27 (7): 1159–1172.

  21. Mignon L., Wolf  W.A. Postsynaptic 5-HT 1A receptors mediate an increase in locomotor activity in the monoamine-depleted rat. Psychopharmacology. 2002. 163 (1): 85–94.

  22. Moore T.J., Furberg C.D. The harms of antipsychotic drugs: evidence from key studies. Drug safety. 2017. 40 (1): 3–14.

  23. Nayebi A.M., Rad S.R., Saberian M., Azimzadeh S., Samini M. Buspirone improves 6-hydroxydopamine-induced catalepsy through stimulation of nigral 5-HT 1A receptors in rats. Pharmacological reports. 2010. 62 (2): 258–264.

  24. Ohno Y., Imaki J., Mae Y., Takahashi T., Tatara A. Serotonergic modulation of extrapyramidal motor disorders in mice and rats: role of striatal 5-HT 3 and 5-HT 6 receptors. Neuropharmacology. 2011. 60 (2): 201–208.

  25. Ossowska K., Karcz M., Wardas J., Wolfarth S. Striatal and nucleus accumbens D 1/D 2 dopamine receptors in neuroleptic catalepsy. European journal of pharmacology. 1990. 182 (2): 327–334.

  26. Perälä J., Suvisaari J., Saarni S.I., Kuoppasalmi K., Isometsä E., Pirkola S., Partonen T., Tuulio-Henriksson A., Hintikka J., Kieseppä T. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Archives of general psychiatry. 2007. 64 (1): 19–28.

  27. Pires J., Silva S., Futuro-Neto H. Dorsal raphe nucleus lesions have no effect on neuroleptic-induced catalepsy and on the anticataleptic activity of buspirone. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica. 1990. 24 (6): 615–617.

  28. Rao S., Hrishikeshavan H., Guruswami M. Effect of serotonergic agents on neuroleptic induced catalepsy in rats. Functional neurology. 1989. 5 (4): 353–360.

  29. Sabahi M., Amiahmadi S., Haddadi R. Effects of Estrogen and Progesterone on Catalepsy and Motor and Balance Impairment Classified as Haloperidol-induced Extrapyramidal Disorders. Journal of Obstetrics, Gynecology and Cancer Research (JOGCR). 2018. 3 (1): 1–7.

  30. Sandyk R., Fisher H. Serotonin in involuntary movement disorders. International journal of neuroscience. 1988. 42 (3-4): 185-208.

  31. Sharifi H., Mohajjel Nayebia A., Farajnia S. Dose-dependent effect of flouxetine on 6-OHDA-induced catalepsy in male rats: a possible involvement of 5-HT1A receptors. Advanced pharmaceutical bulletin. 2013. 3 (1): 203–206.

  32. Sharifi H., Nayebi A., Farajnia S., Haddadi R. Effect of chronic administration of buspirone and fluoxetine on inflammatory cytokines in 6-hydroxydopamine-lesioned rats. Drug research. 2015a. 65 (08): 393–397.

  33. Sharifi H., Nayebi A.M., Farajnia S., Haddadi R. Effect of Buspirone, Fluoxetine and 8-OHDPAT on Striatal Expression of Bax, Caspase-3 and Bcl-2 Proteins in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rats. Advanced pharmaceutical bulletin. 2015b. 5 (4): 491.

  34. Shimizu S., Mizuguchi Y., Ohno Y. Improving the treatment of schizophrenia: role of 5-HT receptors in modulating cognitive and extrapyramidal motor functions. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2013. 12 (6): 861–869.

  35. Shireen E. Experimental treatment of antipsychotic-induced movement disorders. Journal of Experimental Pharmacology. 2016. 8: 1.

  36. Tatara A., Shimizu S., Shin N., Sato M., Sugiuchi T., Imaki J., Ohno Y. Modulation of antipsychotic-induced extrapyramidal side effects by medications for mood disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2012. 38 (2): 252–259.

  37. Üçok A., Gaebel W. Side effects of atypical antipsychotics: a brief overview. World Psychiatry. 2008. 7 (1): 58–62.

  38. van Os J., Hanssen M., Bijl R.V., Vollebergh W. Prevalence of psychotic disorder and community level of psychotic symptoms: an urban-rural comparison. Archives of General Psychiatry. 2001. 58 (7): 663–668.

  39. Wade M., Tai S., Awenat Y., Haddock G. A systematic review of service-user reasons for adherence and nonadherence to neuroleptic medication in psychosis. Clinical Psychology Review. 2017. 51: 75–95.

  40. Wei L., Chen L. Effects of 5-HT in globus pallidus on haloperidol-induced catalepsy in rats. Neuroscience letters. 2009. 454 (1): 49–52.

  41. Zubkov E., Kulikov A., Naumenko V., Popova N. Chronic Actions of Thyroxine on Behavior and Serotonin Receptors in Mouse Strains with Contrasting Predispositions to Catalepsy. Neuroscience and behavioral physiology. 2009. 39 (9): 909–914.

Дополнительные материалы отсутствуют.