Известия РАН. Механика твердого тела, 2023, № 5, стр. 58-78

УПРАВЛЕНИЕ РАЗВОРОТОМ ТВЕРДОГО ТЕЛА (КОСМИЧЕСКОГО АППАРАТА) С КОМБИНИРОВАННЫМ КРИТЕРИЕМ ОПТИМАЛЬНОСТИ НА ОСНОВЕ КВАТЕРНИОНОВ

М. В. Левский a*

a Научно-исследовательский институт космических систем им. А.А. Максимова – филиал Государственного космического научно-производственного центра им. М.В. Хруничева
Королев, Россия

* E-mail: levskii1966@mail.ru

Поступила в редакцию 22.05.2022
После доработки 30.08.2022
Принята к публикации 19.10.2022

Аннотация

Изучается динамическая задача оптимального разворота твердого тела (например, космического аппарата) из произвольного начального в назначенное конечное угловое положение при наличии ограничений на управляющие переменные. Время разворота не фиксировано. Для оптимизации программы управления вращением применяется комбинированный критерий качества, минимизируемый функционал объединяет в заданной пропорции энергетические затраты и длительность маневра. На основе принципа максимума Л.С. Понтрягина и кватернионных моделей управляемого движения твердого тела получено решение поставленной задачи. Условия оптимальности переориентации записаны в аналитической форме, и раскрыты свойства оптимального вращения. Для построения оптимальной программы вращения записаны формализованные уравнения и расчетные формулы. Оптимальное управление представлено в форме синтеза. Закон управления сформулирован в виде явной зависимости управляющих переменных от фазовых координат. Приведены аналитические уравнения и соотношения для нахождения оптимального движения. Даны ключевые соотношения, определяющие оптимальные значения параметров алгоритма управления вращением. Также описана конструктивная схема решения краевой задачи принципа максимума для произвольных условий разворота (начального и конечного положений и моментов инерции твердого тела). Для динамически симметричного твердого тела получено решение задачи переориентации в замкнутой форме. Представлены численный пример и результаты математического моделирования, демонстрирующие практическую реализуемость разработанного метода управления ориентацией космического аппарата.

Ключевые слова: переориентация, кватернион, управляющая функция, принцип максимума, комбинированный критерий оптимальности, краевая задача, закон управления

Список литературы

  1. Sinitsin L.I., Kramlikh A.V. Synthesis of the optimal control law for the reorientation of a nanosatellite using the procedure of analytical construction of optimal regulators // J. Phys.: Conf. Ser. 2021. V. 1745. P. 012053. https://doi.org/10.1088/1742-6596/1745/1/012053

  2. Велищанский М.А., Крищенко А.П., Ткачев С.Б. Синтез алгоритмов переориентации космического аппарата на основе концепции обратной задачи динамики // Изв. РАН. ТиСУ. 2003. № 5. С. 156–163.

  3. Junkins J.L., Turner J.D. Optimal Spacecraft Rotational Maneuvers. Elsevier, 1986. 515 p.

  4. Решмин С.А. Пороговая абсолютная величина релейного управления при наискорейшем приведении спутника в желаемое угловое положение // Изв. РАН. ТиСУ. 2018. № 5. С. 30–41. https://doi.org/10.1134/S106423071805012X

  5. Scrivener S., Thompson R. Survey of Time-optimal Attitude Maneuvers // J. Guid. Contr. Dyn. 1994. V. 17. № 2. P. 225–233.

  6. Zhou H., Wang D., Wu B., Ek Poh. Time-optimal reorientation for rigid satellite with reaction wheels // Int. J. Contr. 2012. V. 85. № 10. P. 1–12. https://doi.org/10.1134/S106423071805012X

  7. Решмин С.А. Пороговая абсолютная величина релейного управления при наискорейшем приведении спутника в гравитационно-устойчивое положение // Док. Ак. наук. 2018. Т. 480. № 6. С. 671–675. https://doi.org/10.1134/S1028335818060101

  8. Левский М.В. Применение принципа максимума Л.С. Понтрягина к задачам оптимального управления ориентацией космического аппарата // Изв. РАН. ТиСУ. 2008. № 6. С. 144–157. https://doi.org/10.1134/S1064230708060117

  9. Shen H., Tsiotras P. Time-optimal Control of Axi-symmetric Rigid Spacecraft with two Controls // AIAA J. Guid. Contr. Dyn. 1999. V. 22. № 5. P. 682–694. https://doi.org/10.2514/2.4436

  10. Молоденков A.В., Сапунков Я.Г. Аналитическое решение задачи оптимального по быстродействию разворота осесимметричного космического аппарата в классе конических движений // Изв. РАН. ТиСУ. 2018. № 2. С. 131–147. https://doi.org/10.7868/S0002338818020117

  11. Бранец В.Н., Черток М.Б., Казначеев Ю.В. Оптимальный разворот твердого тела с одной осью симметрии // Космич. исслед. 1984. Т. 22. Вып. 3. С. 352–360.

  12. Бранец В.Н., Шмыглевский И.П. Применение кватернионов в задачах ориентации твердого тела. М.: Наука, 1973. 320 с.

  13. Айпанов Ш.А., Жакыпов А.Т. Метод разделения переменных и его применение для задачи оптимального разворота космического аппарата // Космич. исслед. 2020. Т. 58. № 1. С. 73–84. https://doi.org/10.31857/S002342062001001X

  14. Стрелкова Н.А. Об оптимальной переориентации твердого тела // Проблемы механики управляемого движения. Нелинейные динамические системы. Пермь: ПГУ, 1990. С. 115–133.

  15. Левский М.В. Кинематически оптимальное управление переориентацией космического аппарата // Изв. РАН. ТиСУ. 2015. № 1. С. 119–136. https://doi.org/10.1134/S1064230714050116

  16. Зелепукина О.В., Челноков Ю.Н. Построение оптимальных законов изменения вектора кинетического момента динамически симметричного твердого тела // Изв. РАН. МТТ. 2011. № 4. С. 31–49. https://doi.org/10.3103/S0025654411040030

  17. Бирюков В.Г., Челноков Ю.Н. Построение оптимальных законов изменения вектора кинетического момента твердого тела // Изв. РАН. МТТ. 2014. № 5. С. 3–21. https://doi.org/10.3103/S002565441405001X

  18. Левский М.В. Синтез оптимального управления терминальной ориентацией космического аппарата с использованием метода кватернионов // Изв. РАН. МТТ. 2009. № 2. С. 7–24. https://doi.org/10.3103/S0025654409020022

  19. Levskii M.V. About Method for Solving the Optimal Control Problems of Spacecraft Spatial Orientation // Probl. Nonlin. Anal. Eng. Syst. 2015. V. 21. № 2. P. 61–75.

  20. Молоденков А.В., Сапунков Я.Г. Аналитическое решение задачи оптимального разворота осесимметричного космического аппарата в классе конических движений // Изв. РАН. ТиСУ. 2016. № 6. С. 129–145. https://doi.org/10.1134/S1064230707020189

  21. Молоденков А.В., Сапунков Я.Г. Аналитическое квазиоптимальное решение задачи поворота осесимметричного твердого тела с комбинированным функционалом // Изв. РАН. ТиСУ. 2020. № 3. С. 39–49. https://doi.org/10.31857/S0002338820030105

  22. Сапунков Я.Г., Молоденков А.В. Аналитическое решение задачи оптимального в смысле комбинированного функционала разворота осесимметричного космического аппарата // Автоматика и телемеханика. 2021. № 7. С. 86–106. https://doi.org/10.31857/S0005231021070059

  23. Молоденков А.В., Сапунков Я.Г. Аналитическое приближенное решение задачи оптимального разворота космического аппарата при произвольных граничных условиях // Изв. РАН. ТиСУ. 2015. № 3. С. 170–180. https://doi.org/10.7868/S0002338815030142

  24. Левский М.В. Использование универсальных переменных в задачах оптимального управления ориентацией космических аппаратов // Мехатрон. автомат. управл. 2014. № 1. С. 53–59.

  25. Quang M. Lam. Robust and adaptive reconfigurable control for satellite attitude control subject to under-actuated control condition of reaction wheel assembly // Math. Eng. Sci. Aerosp. 2018. V. 9. № 1. P. 47–63.

  26. Levskii M.V. Special aspects in attitude control of a spacecraft, equipped with inertial actuators // J. Comp. Sci. Appl. Inform.Technol. 2017. V. 2. № 4. P. 1–9.

  27. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. M.: Наука, 1983. 392 с.

  28. Янг Л. Лекции по вариационному исчислению и теории оптимального управления. М.: Мир, 1974. 488 с.

  29. Любушин А.А. О применении модификаций метода последовательных приближений для решения задач оптимального управления // ЖВМиМФ. 1982. Т. 22. № 1. С. 30–35.

  30. Левский М.В. Способ управления разворотом космического аппарата и система для его реализации. Патент на изобретение РФ № 2114771 // Бюллетень “Изобретения. Заявки и патенты”. 1998. № 19. С. 234–236.

  31. Левский М.В. Система управления пространственным разворотом космического аппарата. Патент на изобретение РФ № 2006431 // Бюллетень “Изобретения. Заявки и патенты”. 1994. № 2. С. 49–50.

  32. Журавлев В.Ф., Климов Д.М. Прикладные методы в теории колебаний. М.: Наука, 1988. 328 с.

  33. Левский М.В. Устройство формирования параметров регулярной прецессии твердого тела. Патент на изобретение РФ № 2146638 // Бюллетень “Изобретения. Заявки и патенты”. 2000. № 8. С. 148.

Дополнительные материалы отсутствуют.