Коллоидный журнал, 2023, T. 85, № 5, стр. 629-640

Микроэмульсии лецитина как носители лекарственных веществ

Н. М. Мурашова *

Российский химико-технологический университет имени Д.И. Менделеева
125047 Москва, Миусская пл., 9, Россия

* E-mail: namur_home@mail.ru

Поступила в редакцию 29.06.2023
После доработки 29.07.2023
Принята к публикации 03.08.2023

Аннотация

В работе описаны примеры микроэмульсий на основе широко известного биосовместимого поверхностно-активного вещества (ПАВ) лецитина и возможности их применения в качестве носителей лекарственных веществ. Основной проблемой при разработке микроэмульсий лецитина является поиск подходящих соПАВ. Для получения микроэмульсий лецитина в качестве соПАВ лучше всего подходят молекулы с короткой алкильной цепью (4–5 атомов С) и относительно большой полярной “головой”, например короткоцепочечные алифатические спирты, кислоты и амины; при этом требуются высокие концентрации соПАВ (массовое соотношение соПАВ : лецитин обычно составляет 1 : 1). Чаще всего для получения микроэмульсий лецитина в различных природных и синтетических маслах в качестве соПАВ используют этанол, н-пропанол или н-бутанол. Чтобы заменить токсичные спирты на менее токсичные компоненты, в микроэмульсии лецитина можно ввести другие известные ПАВ, такие как Brij 96V (полиэтиленгликольолеат), Tween 80 (полиоксиэтилен-20-сорбитанмоноолеат), Tween 20 (полиоксиэтилен-20-сорбитанмонолаурат), Тритон Х-100 (трет-октилфениловый эфир полиэтиленгликоля) или олеиновую кислоту. Описаны композиции на основе микроэмульсий лецитина для местной анестезии, для доставки витаминов, с противовоспалительным, противогрибковым, противораковым и ранозаживляющим действием. Рассмотренные примеры показывают перспективность исследования и разработки микроэмульсий лецитина как носителей лекарственных веществ.

Ключевые слова: лецитин, микроэмульсии, подбор соПАВ, доставка лекарственных веществ

Список литературы

  1. Lawrence M.J., Rees G.D. Microemulsion-based media as novel drug delivery systems // Advanced Drug Delivery Reviews. 2012. V. 64. Supplement. P. 175–193. https://doi.org/10.1016/j.addr.2012.09.018

  2. Fanun M. Microemulsions as delivery systems // Current Opinion in Colloid and Interface Science. 2012. V. 17. № 5. P. 306–313. https://doi.org/10.1016/j.cocis.2012.06.001

  3. Callender S.P., Mathews J.A., Kobernyk K., Wettig S.D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery // International Journal of Pharmaceutics. 2017. V. 526. № 1–2. P. 425–442. https://doi.org/10.1016/j.ijpharm.2017.05.005

  4. Shukla T., Upmanyu N., Agrawal M. et al. Biomedical applications of microemulsion through dermal and transdermal route // Biomedicine & Pharmacotherapy. 2018. V. 108. P. 1477–1494. https://doi.org/10.1016/j.biopha.2018.10.021

  5. Alves L.P., da Silva Oliveira K., da Paixao Santos J.A. et al. A review on developments and prospects of anti-inflammatory in microemulsions // Journal of Drug Delivery Science and Technology. 2020. V. 60. P. 102008. https://doi.org/10.1016/j.jddst.2020.102008

  6. Szumała P., Macierzanka A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems // International Journal of Pharmaceutics. 2022. V. 615. P. 121488. https://doi.org/10.1016/j.ijpharm.2022.12148

  7. van Nieuwenhuyzen W. Production and Utilization of Natural Phospholipids // Ahmad M.U., Xu X. (Editors) Polar lipids. Biology, Chemistry and Technology. Urbana, Illinois, USA: AOCS Press. 2015. P. 245–276. https://doi.org/10.1016/B978-1-63067-044-3.50013-3

  8. Sjolund M., Rilfors L., Lindblom G. Reversed hexagonal phase formation in lecithin−alkane−water systems with different acyl chain unsaturation and alkane length // Biochemistry. 1989. V. 28. № 3. P. 1323–1329. https://doi.org/10.1021/bi00429a057

  9. Angelico R., Ceglie A., Olsson U., Palazzo G. Phase diagram and phase properties of the system lecithin−water−cyclohexane // Langmuir. 2000. V. 16. № 5. P. 2124–2132. https://doi.org/10.1021/la9909190

  10. Angelico R., Ceglie A., Colafemmina G. et al. Phase behavior of the lecithin/water/isooctane and lecithin/water/decane systems // Langmuir. 2004. V. 20. № 3. P. 619–631. https://doi.org/10.1021/la035603d

  11. Щипунов Ю.А. Самоорганизующиеся структуры лецитина // Успехи химии. 1997. Т. 66. № 4. С. 328–352.

  12. Kumar V.V., Kumar C., Raghunathan P. Studies on lecithin reverse micelles: Optical birefringence, viscosity, light scattering, electrical conductivity and electron microscopy // Journal of Colloid and Inteface Science. 1984. V. 99. № 2. P. 315–323.

  13. Scartazzini R., Luisi P.L. Organogels from lecithins // Journal of Physical Chemistry. 1988. V. 92. № 3. P. 829–833. https://doi.org/10.1021/j100314a047

  14. Мурашова Н.М., Юртов Е.В. Лецитиновые органогели как перспективные функциональные наноматериалы // Российские нанотехнологии. 2015. Т. 10. № 7–8. С. 5–14.

  15. Shinoda K., Carlsson A., Lindman B. On the importance of hydroxyl groups in the polar head-group of nonionic surfactants and membrane lipids // Advances in Colloid and Interface Science. 1996. V. 64. P. 253–271. https://doi.org/10.1016/0001-8686(95)00287-1

  16. Shinoda K., Araki M., Sadaghiani A. et al. Lecithin-based microemulsions: Phase behavior and microstructure // Journal of Physical Chemistry. 1991. V. 95. № 2. P. 989–993. https://doi.org/10.1021/j100155a091

  17. Aboofazeli R., Lawrence M.J. Investigations into the formation and characterization of phospholipid microemulsions. I. Pseudo-ternary phase diagrams of systems containing water−lecithin−alcohol−isopropyl myristate // International Journal of Pharmaceutics. 1993. V. 93. № 1–3. P. 161–175. https://doi.org/10.1016/0378-5173(93)90174-E

  18. Aboofazeli R., Lawrence M.J. Investigations into the formation and characterization of phospholipid microemulsions. II. Pseudo-ternary phase diagrams of systems containing water−lecithin−isopropyl myristate and alcohol: Influence of purity of lecithin // International Journal of Pharmaceutics. 1994. V. 106. № 1. P. 51–61. https://doi.org/10.1016/0378-5173(94)90275-5

  19. Aboofazeli R., Lawrence C.B., Wicks S.R., Lawrence M.J. Investigations into the formation and characterization of phospholipid microemulsions. III. Pseudo-ternary phase diagrams of systems containing water-lecithin-isopropyl myristate and either an alkanoic acid, amine, alkanediol, polyethylene glycol alkyl ester or alcohol as cosurfactant // International Journal of Pharmaceutics. 1994. V. 111. № 1. P. 63–72. https://doi.org/10.1016/0378-5173(94)90402-2

  20. Aboofazeli R., Patel N., Thomas M., Lawrence M.J. Investigations into the formation and characterization of phospholipid microemulsions. IV. Pseudo-ternary phase diagrams of systems containing water-lecithin-alcohol and oil: The influence of oil // International Journal of Pharmaceutics. 1995. V. 125. № 1. P. 107–116. https://doi.org/10.1016/0378-5173(95)00125-3

  21. Kahlweit M., Busse G., Faulhaber B. Preparing microemulsions with lecithins // Langmuir. 1995. V. 11. № 5. P. 1576–1583. https://doi.org/10.1021/la00005a027

  22. Schurtenberger P., Peng Q., Leser M.E., Luizi P.-L. Structure and phase behavior of lecithin-based microemulsions: A study of the chain-length dependence // Journal of Colloid and Interface Science. 1993. V. 156. № 1. P. 43–51. https://doi.org/10.1006/jcis.1993.1078

  23. Avramiotis S., Bekiari V., Lianos P., Xenakis A. Structural and dynamic properties of lecithin–alcohol based w/o microemulsions: A luminescence quenching study // Journal of Colloid and Interface Science. 1997. V. 194. № 2. P. 326–331. https://doi.org/10.1006/jcis.1997.5135

  24. Reis M.F.T., Bonomo R.C.F., de Souza A.O. et al. Calorimetric studies of microemulsion systems with lecithin, isooctane and butanol // Food Research International. 2012. V. 49. № 2. P. 672–676. https://doi.org/10.1016/j.foodres.2012.08.014

  25. Papadimitrou V., Pispas S., Syriou S. et al. Biocompatble microemulsions based on limonene: Formulation, structure and application // Langmuir. 2008. V. 24. № 7. P. 3380–3386. https://doi.org/10.1021/la703682c

  26. Leser M.E., van Evert W.C., Agterof W.G.M. Phase behaviour of lecithin–alcohol–triacylglycerol mixtures // Colloids and Surfaces A. Physicochemical and Engineering Aspects. 1996. V. 116. № 3. P. 293–308. https://doi.org/10.1016/0927-7757(96)03628-X

  27. Mouri A., Diat O., Lerner D.A. et al. Water solubilization capacity of pharmaceutical microemulsions based on Peceol, lecithin and ethanol // International Journal of Pharmaceutics. 2014. V. 475. № 1–2. P. 324–334. https://doi.org/10.1016/j.ijpharm.2014.07.018

  28. Xu M., Yu Q., Zhao Q. et al. Development and in vitro-in vivo evaluation of water-in-oil microemulsion formulation for the oral delivery of troxerutin // Drug Development and Industrial Pharmacy. 2016. V. 42. № 2. P. 280–287. https://doi.org/10.3109/03639045.2015.1047849

  29. Abbasi S., Radi M. Food grade microemulsion systems: Canola oil/lecithin:n-propanol/ water // Food Chemistry. 2016. V. 194. P. 972– 979. https://doi.org/10.1016/j.foodchem.2015.08.078

  30. Jalali-Jivan M., Abbasi S. Novel approach for lutein extraction: Food grade microemulsion containing soy lecithin and sunflower oil // Innovative Food Science and Emerging Technologies. 2020. V. 66. P. 102505. https://doi.org/10.1016/j.ifset.2020.102505

  31. Amiri-Rigi A., Abbasi S. Extraction of lycopene using a lecithin-based olive oil microemulsion // Food Chemistry. 2019. V. 272. P. 568–573. https://doi.org/10.1016/j.foodchem.2018.08.080

  32. Trotta M., Cavalli R., Ugazio E., Gasco M.R. Phase behaviour of microemulsion systems containing lecithin and lysolecithin as surfactants // International Journal of Pharmaceutics. 1996. V. 143. № 1. P. 67–73. https://doi.org/10.1016/S0378-5173(96)04688-1

  33. Trotta M., Pattarino F., Grosa G. Formation of lecithin-based microemulsions containing n-alkanol phosphocholines // International Journal of Pharmaceutics. 1998. V. 174. № 1–2. P. 253–259. https://doi.org/10.1016/S0378-5173(98)00273-7

  34. Graf A., Ablinger E., Peters S. et al. Microemulsions containing lecithin and sugar-based surfactants: Nanoparticle templates for delivery of proteins and peptides // International Journal of Pharmaceutics. 2008. V. 350. № 1–2. P. 351–360. https://doi.org/10.1016/j.ijpharm.2007.08.053

  35. Brime B., Moreno M.A., Frutos G. et al. Amphotericin B in oil−water lecithin-based microemulsions: Formulations and toxicity evaluation // Journal of Pharmaceutical Sciences. 2002. V. 91. № 4. P. 1178–1185. https://doi.org/10.1002/jps.10065

  36. Moreno M.A., Ballesteros M.P., Frutos P. Lecithin-based oil-in-water microemulsions for parenteral use; pseudoternary phase diagrams, characterization and toxicity studies // Journal of Pharmaceutical Sciences. 2003. V. 92. № 7. P. 1428–1437. https://doi.org/10.1002/jps.10412

  37. Pestana K.C., Formariz T.P., Franzini C.M. et al. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B // Colloids and Surfaces B: Biointerfaces. 2008. V. 66. № 2. P. 253–259. https://doi.org/10.1016/j.colsurfb.2008.06.016

  38. Lin C.-C., Lin H.-Y., Chi M.-H. et al. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line // Food Chemistry. 2014. V. 154. P. 282–290. https://doi.org/10.1016/j.foodchem.2014.01.012

  39. Nguyen T.T.L., Edelen A., Neighbors B., Sabatini D.A. Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: Formulation and potential applications // Journal of Colloid and Interface Science. 2010. V. 348. № 2. P. 498–504. https://doi.org/10.1016/j.jcis.2010.04.053

  40. Das A., Mitra R.K. Formulation and characterization of a biocompatible microemulsion composed of mixed surfactants: lecithin and Triton X-100 // Colloid and Polymer Science. 2014. V. 292. № 3. P. 635–644. https://doi.org/10.1007/s00396-013-3110-y

  41. Yuan J.S., Acosta E.J. Extended release of lidocaine from linker-based lecithin microemulsions // International Journal of Pharmaceutics. 2009. V. 368. № 1–2. P. 63–71. https://doi.org/10.1016/j.ijpharm.2008.09.063

  42. Acosta E., Chung O., Xuan X.Y. Lecithin-linker microemulsions in transdermal delivery // Journal of Drug Delivery Science and Technology. 2011. V. 21. № 1. P. 77–87. https://doi.org/10.1016/S1773-2247(11)50007-3

  43. Nouraei M., Acosta E.J. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions // Journal of Colloid and Interface Science. 2017. V. 495. P. 178–190. https://doi.org/10.1016/j.jcis.2017.01.114

  44. Murashova N.M., Prokopova L.A., Trofimova E.S., Yurtov E.V. Effects of oleic acid and phospholipids on the formation of lecithin organogel and microemulsion // Journal of Surfactants and Detergents. 2018. V. 21. № 5. P. 635–645. https://doi.org/10.1002/jsde.12170

  45. Мурашова Н.М. Самоорганизующиеся структуры ди-(2-этилгексил)фосфата натрия и лецитина в системах “вода–масло–ПАВ” и функциональные наноматериалы на их основе. Диссертация на соискание ученой степени доктора химических наук. М.: РХТУ им. Д.И. Менделеева, 2022. 380 с.

  46. Мурашова Н.М., Трофимова Е.С., Костюченко М.Ю. и др. Микроэмульсии и лиотропные жидкие кристаллы лецитина как системы для трансдермальной доставки лекарственных веществ // Российские нанотехнологии. 2019. Т. 14. № 1–2. С. 69–75.

  47. Мурашова Н.М., Нгуен Х.Т. Микроэмульсии лецитина с маслом гака и эфирным маслом куркумы // Коллоидный журнал. 2023. Т. 85. № 2. С. 191–199.

  48. Changez M., Varshney M., Chander J., Dinda A.M. Effect of the composition of lecithin/n-propanol/isopropyl myristate/water microemulsions on barrier properties of mice skin for transdermal permeation of tetracaine hydrochloride: In vitro // Colloids and Surfaces B: Biointerfaces. 2006. V. 50. № 1. P. 18–25. https://doi.org/10.1016/j.colsurfb.2006.03.018

  49. Changez M., Chander J., Dinda A.M. Transdermal permeation of tetracaine hydrochloride by lecithin microemulsion: In vivo // Colloids and Surfaces B: Biointerfaces. 2006. V. 48. № 1. P. 58–66. https://doi.org/10.1016/j.colsurfb.2006.01.007

  50. Paolino D., Ventura C.A., Nistico S. et al. Lecithin microemulsions for the topical administration of ketoprofen: Percutaneous adsorption through human skin and in vivo human skin tolerability // International Journal of Pharmaceutics. 2002. V. 244. № 1–2. P. 21–31. https://doi.org/10.1016/s0378-5173(02)00295-8

  51. Savic V., Todosijevic M., Ilic T. et al. Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances // International Journal of Pharmaceutics. 2017. V. 529. № 1–2. P. 491–505. https://doi.org/10.1016/j.ijpharm.2017.07.036

  52. Basov A., Fedulova L., Vasilevskaya E. et al. Sus scrofa immune tissues as a new source of bioactive substances for skin wound healing // Saudi Journal of Biological Sciences. 2021. V. 28. № 3. P. 1826–1834. https://doi.org/10.1016/j.sjbs.2020.12.028

  53. Yuan J.S., Ansari M., Samaan M., Acosta E.M. Linker-based lecithin microemulsions for transdermal delivery of lidocaine // International Journal of Pharmaceutics. 2008. V. 349. № 1– 2. P. 130–143. https://doi.org/10.1016/j.ijpharm.2007.07.047

  54. Brime B., Molero G., Frutos P., Frutos G. Comparative therapeutic efficacy of a novel lyophilized ampho-tericin B lecithin-based oil–water microemulsion and deoxycholate-amphotericin B in immunocompetent and neutropenic mice infected with Candida albicans // European Journal of Pharmaceutical Sciences. 2004. V. 22. № 5. P. 451–458. https://doi.org/10.1016/j.ejps.2004.04.008

Дополнительные материалы отсутствуют.