Журнал аналитической химии, 2023, T. 78, № 9, стр. 783-806

Однозарядные аргидные ионы ArM+ в методе масс-спектрометрии с индуктивно связанной плазмой

А. А. Пупышев *

Уральский федеральный университет
620066 Екатеринбург, ул. Мира, 19, Россия

* E-mail: pupyshev@gmail.com

Поступила в редакцию 18.04.2023
После доработки 24.04.2023
Принята к публикации 24.04.2023

Аннотация

Рассмотрено проявление в методе масс-спектрометрии с индуктивно связанной плазмой (МС-ИСП) однозарядных аргидных ионов ArМ+, которые могут создавать значимые спектральные помехи при определении всех элементов Периодической системы с атомным номером выше 40 и измерении их изотопного состава. Приведены примеры таких характерных помех, указаны рекомендуемые и используемые таблицы помех для различных элементов. Обобщены опубликованные данные по определению энергий диссоциации ионов ArМ+ экспериментальными и теоретическими методами. Обсуждена связь энергий диссоциации аргидных ионов с их интенсивностями в масс-спектре. Рассмотрено экспериментальное определение численных значений уровня помех ArM+/M+ в МС-ИСП и влияние различных приборных и операционных факторов на это отношение. Указаны основные пути учета, снижения интенсивности ArM+ в масс-спектрах или полного удаления помех аргидных ионов. Сделаны заключение и рекомендации по рассмотренным публикациям.

Ключевые слова: масс-спектрометрия с индуктивно связанной плазмой, аргидные ионы, энергии диссоциации ионов, операционные параметры приборов, эффективность образования аргидных ионов в индуктивно связанной плазме, дискриминация ионов по массе.

Список литературы

  1. Пупышев А.А., Суриков В.Т. Масс-спектрометрия с индуктивно связанной плазмой. Образование ионов. Екатеринбург: Изд-во УрО РАН, 2006. 276 с.

  2. Becker J.S. Inorganic Mass Spectrometry. Principles and Applications. John Wiley & Sons Ltd., 2007. 519 p.

  3. Becker J.S., Dietze H.-J. Investigations on cluster and molecular ion formation by plasma mass spectrometry // Fresenius J. Anal. Chem. 1997. V. 359. P. 338. https://doi.org/10.1007/s002160050583

  4. Hattendorf B., Gusmini B., Dorta L., Houk R.S., Gunther D. Mass spectrometric observation of doubly charged alkaline-earth argon ions // Chem. Phys. Chem. 2016. V. 17. P. 1. https://doi.org/10.1002/cphc.201600441

  5. Hattendorf B., Gusmini B., Dorta L., Houk R.S., Gunther D. Abundance and impact of doubly charged polyatomic argon interferences in ICPMS spectra // Anal. Chem. 2016. V. 88. P. 7281. https://doi.org/10.1021/acs.analchem.6b01614

  6. Пупышев А.А., Эпова Е.Н. Спектральные помехи полиатомных ионов в методе масс-спектрометрии с индуктивно связанной плазмой // Аналитика и контроль. 2001. Т. 5. № 4. С. 335.

  7. May T.W., Wiedmeyer R.H. A Table of polyatomic interferences in ICP-MS // Atom. Spectrosc. 1998. V. 19. № 5. P. 150. https://doi.org/10.46770/AS.1998.05.002

  8. Hattendorf B. Ion molecule reactions for the suppression of spectral interferences in elemental analysis by inductively coupled plasma mass spectrometry. Thesis … doctor of natural sciences. Zürich: Eidgenössische Technische Hochschule, 2002. 169 p.

  9. Taylor H.E. Inductively Coupled Plasma Mass-spectrometry. Practices and Techniques. Academic Press, 2001. 291 p.

  10. Fang Liu. Building a database with background equivalent concentrations to predict spectral overlaps in ICP-MS. Diss. … doctor of philosophy. Ohio, USA: The Ohio State University, 2017. 342 p.

  11. Mason T.F.D., Weiss D.J., Horstwood M., Parrish R.R., Russell S.S., Mullane E., Coles B.J. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry. Part 1. Spectral interferences and their correction // J. Anal. Atom. Spectrom. 2004. V. 19. P. 209. https://doi.org/10.1039/B306958C

  12. Gregoire D.C., Sturgeon R.E. Background spectral features in electrothermal vaporization inductively coupled plasma mass spectrometry: Molecular ions resulting from the use of chemical modifiers // Spectrochim. Acta B: Atom. Spectrosc. 1993. V. 48. № 11. P. 1347. https://doi.org/10.1016/0584-8547(93)80123-c

  13. Vanhaecke F. Single-collector inductively coupled plasma mass spectrometry / Isotopic Analysis. Fundamentals and Applications Using ICP-MS / Ed. Vanhaecke Frank, Degryse Patrick. WILEY-VCH Verlag GmbH & Co. KGaA, 2012. P. 31.

  14. Пупышев А.А., Сермягин Б.А. Дискриминация ионов по массе при изотопном анализа в методе масс-спектрометрии с индуктивно связанной плазмой. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2006. 132 с.

  15. Houk R.S., Praphairaksit Narong. Dissociation of polyatomic ions in the inductively coupled plasma // Spectrochim. Acta B: Atom. Spectrosc. 2001. V. 56. P. 1069. https://doi.org/10.1016/S0584-8547(01)00236-1

  16. Nonose N.S., Matsuda N., Fudagawa N., Kubota M. Some characteristics of polyatomic ion spectra in inductively coupled plasma mass spectrometry // Spectrochim. Acta B: Atom. Spectrosc. 1994. V. 49. № 10. P. 955. https://doi.org/10.1016/0584-8547(94)80084-7

  17. Sakata K., Kawabata K. Reduction of fundamental polyatomic ions in inductively coupled plasma mass spectrometry // Spectrochim. Acta B: Atom. Spectrosc. 1994. V. 49. № 10. P. 1027. https://doi.org/10.1016/0584-8547(94)80088-X

  18. Becker J.S., Seifert G., Saprykin A.I., Dietze H.-J. Mass spectrometric and theoretical investigations into the formation of argon molecular ions in plasma mass spectrometry // J. Anal. Atom. Spectrom. 1996. V. 11. P. 643. https://doi.org/10.1039/JA9961100643

  19. Rowley L.K. Fundamental studies of interferences in ICP-MS. Thesis … doctor of philosophy. Plymouth: University of Plymouth, 2000. 246 p.

  20. Hattendorf B., Gunther D., Schonbachler M., Halliday A. Simultaneous ultratrace determination of Zr and Nb in chromium matrixes with ICP-dynamic reaction cell MS // Anal. Chem. 2001. V. 73. P. 5494. https://doi.org/10.1021/ac015549a

  21. Mei-Fu Zhou, John Malpas, Min Sun, Ying Liu, Xiao Fu. A new method to correct Ni- and Cu-argide interference in the determination of the platinum-group elements, Ru, Rh, and Pd, by ICP-MS // Geochem. J. 2001. V. 35. P. 413. https://doi.org/10.2343/geochemj.35.413

  22. Petibon C.M., Longerich H.P., Horn I., Tubrett M.N. Neon inductively coupled plasma for laser ablation-inductively coupled plasma-mass spectrometry // A-ppl. Spectrosc. 2002. V. 56. № 5. P. 658. https://doi.org/10.1366/0003702021955231

  23. Jones D.M.R. A study of ion-molecule reactions in a dynamic reaction cell to improve elemental analysis with inductively coupled plasma-mass spectrometry. Diss. … doctor of philosophy. Ohio, USA: The Ohio State University, 2007. 629 p.

  24. Guillong M., Danyushevsky L., Walleb M., Raveggic M. The effect of quadrupole ICPMS interface and ion lens design on argide formation. Implications for LA-ICPMS analysis of PGE’s in geological samples // J. Anal. Atom. Spectrom. 2011. V. 26. P. 1401. https://doi.org/10.1039/c1ja10035a

  25. Fialho L.L., Pereira C.D., Nóbrega J.A. Combination of cool plasma and collision-reaction interface for correction of polyatomic interferences on copper signals in inductively coupled plasma quadrupole mass spectrometry // Spectrochim. Acta B: Atom. Spectrosc. 2011. V. 66. P. 389. https://doi.org/10.1016/j.sab.2011.04.001

  26. Witte T.M., Houk R.S. Metal argide (MAr+) ions are lost during ion extraction in laser ablation-inductively coupled plasma-mass spectrometry // Spectrochim. Acta B: Atom. Spectrosc. 2012. V. 69. P. 25. https://doi.org/10.1016/j.sab.2012.02.008

  27. Witte T.M. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates. Diss. … doctor of philosophy. Ames, Iowa: Iowa State University, 2011. 192 p.

  28. Ebert C.H., Witte T.M., Houk R.S. Investigation into the behavior of metal-argon polyatomic ions (MAr+) in the extraction region of inductively coupled plasma-mass spectrometry // Spectrochim. Acta B: Atom. Spectrosc. 2012. V. 76. P. 119. https://doi.org/10.1016/j.sab.2012.06.046

  29. Chernonozhkin S.M., Costas-Rodrıguez M., Claeys P., Vanhaecke F. Evaluation of the use of cold plasma conditions for Fe isotopic analysis via multi-collector ICP-mass spectrometry: Effect on spectral interferences and instrumental mass discrimination // J. Anal. Atom. Spectrom. 2017. V. 32. P. 538. https://doi.org/10.1039/C6JA00428H

  30. Радциг А.А., Смирнов Б.М. Параметры атомов и атомных ионов: Справочник. Москва: Энергоатомиздат, 1986. 344 с.

  31. Giantureo F.A., Niedner G., Noll M., Semprini E., Stefani F., Toennies J.P. Potential energy curves for the (ArH)+ and (NeH)+ systems from the interplay of theory and experiments // Z. Phys. D: Atoms, Molecules and Clusters. 1987. V. 7. P. 281. https://doi.org/10.1007/BF01384995

  32. Хьюбер К.П., Герцберг Г. Константы двухатомных молекул. Часть 1. Молекулы Ag2-MoO. Москва: Мир, 1984. 408 с. (Huber K.P., Herzberg G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. New York et al.: Van Nostrand Reinhold Company, 1979. 716 p.)

  33. Pettitt B.M., Jacobson K., Matcha R.L. Collinear reaction surface for He and ArH+ // The J. Chem. Phys. 1980. V. 72. P. 2892. https://doi.org/10.1063/1.439398

  34. Grandinetti F. Noble Gas Chemistry Structure, Bonding, and Gas-phase Chemistry. Weinheim, Germany: Wiley-VCH, 2018. 345 p.

  35. Grandinetti F. Gas-phase ion chemistry of the noble gases: Recent advances and future perspectives // Eur. J. Mass Spectrom. 2011. V. 17. P. 423. https://doi.org/10.1255/ejms.1151

  36. Rosmus P. Molecular constants for the 1Σ+ ground state of the ArH+ ion // Theoret. Chim. Acta (Berl.). 1979. V. 51. P. 359. https://doi.org/10.1007/BF00548944

  37. Schutte C.J.H. An ab initio molecular orbital study of the argon hydride molecule-ions, ArH+ and ArD+, at the MP4(SDQ)/6-311++G(3df, 3dp) level. III: A study of some physical properties of ArH+, compared with those of HeH+, NeH+ and KrH+ and the diatomic Van der Waals molecules He2, Ne2, Ar2 and Kr2 // Chem. Phys. Lett. 2002. V. 353. № 5–6. P. 389. https://doi.org/10.1016/S0009-2614(01)00919-8

  38. Lorenzen J., Hotop H., Ruf M.-W., Morgner H. Rovibronic structure in the electron energy spectrum for associative ionization: Ne(3P2), Ar(3P2)+H // Z. Phys. A: Atoms and Nuclei. 1980. V. 297. P. 19. https://doi.org/10.1007/BF01414240

  39. Nonose N. Formation of interfering polyatomic ion species in inductively coupled plasma mass spectrometer // J. Mass Spectrom. Soc. Jpn. 1997. V. 45. № 1. P. 77. https://doi.org/10.5702/massspec.45.77

  40. Luo Yu-Ran. Comprehensive Handbook of Chemical Bond Energies. Boca Raton: CRC Press, 2007. 1686 p. https://doi.org/10.1201/9781420007282

  41. Ruette F., Sanchez M., Anez R., Bermudez A., Sierraalta A. Diatomic molecule data for parametric methods. I // J. Mol. Struct: THEOCHEM. 2005. V. 729. P. 19. https://doi.org/10.1016/j.theochem.2005.04.024

  42. Frenking G., Koch W., Cremer D., Gauss J., Liebman J.F. Neon and argon bonding in first-row cations NeX+ and ArX+ (X = Li–Ne) // J. Phys. Chem. 1989. V. 93. P. 3410. https://doi.org/10.1021/j100346a008

  43. Bauschlicher C.W., Jr., Partridge H., Langhoff S.R. Theoretical study of metal noble gas positive ions // J. Chem. Phys. 1989. V. 91. P. 4733. https://doi.org/10.1063/1.456762

  44. Bauschlicher C. Jr., Partridge H., Langhoff S.R. Comparison of the bonding between ML+ and ML (M = Metal, L = Noble Gas) // Chem. Phys. Lett. 1990. V. 165. P. 272. https://doi.org/10.1016/0009-2614(90)85441-E

  45. Gardner A.M., Withers C.D., Graneek J.B., Wright T.G., Viehland L.A., Breckenridge W.H. Theoretical study of M+-RG and M2+-RG complexes and transport of M+ through RG (M = Be and Mg, RG = He–Rn) // J. Phys. Chem A. 2010. V. 114. P. 7631. https://doi.org/10.1021/jp4075652

  46. Lüder Ch., Velegrakis M. Photofragmentation spectrum of the Sr+Ar complex // J. Chem. Phys. 1996. V. 105. P. 2167. https://doi.org/10.1063/1.472090

  47. Wong M.W., Radom L. Multiply bonded argon-containing ions: Structures and stabilities of XAr+ cations (X = B, C, N; n = 1–3) // J. Phys. Chem. 1989. V. 93. P. 6303. https://doi.org/10.1021/j100354a009

  48. Koskinen J.T., Cooks R.G. Novel rare gas ions BXe+, BKr+, and BAr+ formed in a halogen/rare gas exchange reaction // J. Phys. Chem. A. 1999. V. 103. № 48. P. 9565. https://doi.org/10.1021/jp993091z

  49. Broström L., Larsson M., Mannervik S., Sonnek D. The visible photoabsorption spectrum and potential curves of ArN+ // J. Chem. Phys. 1991. V. 94. P. 2734. https://doi.org/10.1063/1.459850

  50. Technical overview and performance capability of the Agilent 7900s ICP-MS for semiconductor applications. Agilent Technologies, Inc., 2020. 6 p. DE.0433912037

  51. Karlau D.J., Weise J. The potential of Ar–O+(4X) // Chem. Phys. Lett. 1977. V. 45. № 1. P. 92.

  52. Frenking G., Koch W., Deakyne C.A., Liebman A., Bartlettle B. The ArF+ cation. Is it stable enough to be isolated in a salt? // J. Am. Chem. Soc. 1989. V. 111. № 1. P. 31. https://doi.org/10.1021/ja00183a005

  53. Гурвич Л.В., Карачевцев Г.В., Кондратьев В.Н., Лебедев Ю.А., Медведев В.А., Потапов В.К., Ходеев Ю.С. Энергии разрыва химических связей. Потенциалы ионизации и сродство к электрону. Москва: Наука, 1974. 354 с.

  54. Partridge H., Bauschlicher C.W., Jr., Langhoff S.R. Theoretical study of metal ions bound to He, Ne, and Ar // J. Phys. Chem. 1992. V. 96. P. 5350. https://doi.org/10.1021/j100192a032

  55. Gaied W., Habli H., Oujia B., Gadea F.X. Theoretical study of the MgAr molecule and its ion Mg+Ar: potential energy curves and spectroscopic constants // Eur. Phys. J. D. 2011. V. 62. P. 371. https://doi.org/10.1140/epjd/e2011-10572-y

  56. Buthelezi T., Bellert D., Hayes T., Brucat P.J. The adiabatic binding energy of NbAr+ // Chem. Phys. Lett. 1996. V. 262. P. 303. https://doi.org/10.1016/0009-2614(96)01095-0

  57. Pilgrim J.S., Yeh C.S., Berry K.R., Duncan M.A. Photodissociation spectroscopy of Mg+-rare gas complexes // J. Chem. Phys. 1994. V. 100. P. 7945. https://doi.org/10.1063/1.466840

  58. Heidecke S.A., Fu Z., Colt J.R., Morse M.D. Spectroscopy of AlAr and AlKr from 31000 cm–1 to the ionization limit // The J. Chem. Phys. 1992. V. 97. P. 1692. https://doi.org/10.1063/1.463157

  59. Cleland T.J., Meeks F.R. Statistical mechanics of the ${\text{Ar}}_{2}^{ + }$ in an inductively coupled plasma // Spectrochim. Acta B: Atom. Spectrom. 1996. V. 51. P. 1487. https://doi.org/10.1016/0584-8547(96)01530-310.1016/0584-8547(96)01530-3

  60. Gardner A.M., Withers C.D., Wright T.G., Kaplan K.I., Chivone Y.N., Chapman C.Y.N, Viehland L.A., Lee E.P.F., Breckenridge W.H. Theoretical study of the bonding in Mn+-RG complexes and the transport of Mn+ through rare gas (M = Ca, Sr, and Ra; n = 1 and 2; and RG = He–Rn) // J. Chem. Phys. 2010. V. 132. Article 054302. https://doi.org/10.1063/1.3297891

  61. Hayes T., Bellert D., Buthelezi T., Brucat P.J. The bond length of VAr+ // Chem. Phys. Lett. 1998. V. 287. P. 22. https://doi.org/10.1016/S0009-2614(98)00129-8

  62. Lessen D., Brucat P.J. Characterization of transition metal–raregas cations: VAr+ and VKr+ // J. Chem. Phys. 1989. V. 91. P. 4522. https://doi.org/10.1063/1.456790

  63. Grills D.C., George M.W. Transition metal-noble gas complexes // Adv. Inorg. Chem. 2001. V. 52. P. 113. https://doi.org/10.1016/S0898-8838(05)52002-6

  64. Hammond B.L., Lester W.A., Jr., Braga M., Taft C.A. Theoretical study of the interaction of ionized transition metals (Cr, Mn, Fe, Co, Ni, Cu) with argon // Phys. Rev B. 1990-II. V. 41. № 15. P. 10447. https://doi.org/10.1103/PhysRevB.41.10447

  65. Lessen D.E., Asher R.L., Brucat P.J. Spectroscopically determined binding energies of CrAr+ and Cr(N2)+ // Chem. Phys. Lett. 1991. V. 17. № 4–5. P. 380. https://doi.org/10.1016/0009-2614(91)85069-9

  66. Hoshino H., Yamakita Y., Okutsu K., Suzuki Y., Saito M., Koyasu K., Ohshimo K., Misaizu F. Photofragment imaging from mass-selected ions using a reflectron mass spectrometer. I. Development of an apparatus and application to Mg+–Ar complex // Chem. Phys. Lett. 2015. V. 630. P. 111. https://doi.org/10.1016/j.cplett.2015.04.033

  67. Tjelta1 B.L., Walter D., Armentrout P.B. Determination of weak Fe–L bond energies (L = Ar, Kr, Xe, N2, and CO2) by ligand exchange reactions and collision induced dissociation // Int. J. Mass Spectrom. 2001. V. 204. P. 7. https://doi.org/10.1016/S1387-3806(00)00342-0

  68. Bastug T., Sepp W.-D., Fricke B., Johnson E., Barshick C.M. All-electron relativistic Dirac-Fock-Slater self-consistent-field calculations of the singly charged diatomic transition-metal-(Fe, Co, Ni, Cu, Zn) argon molecules // Phys. Rev A. 1995. V. 52. № 4. P. 2734. https://doi.org/10.1103/PhysRevA.52.2734

  69. Barshick C.M., Smith D.H., Johnson E., King F.L., Bastug T., Fricke B. Periodic nature of metal-noble gas adduct ions in glow discharge mass spectrometry // Appl. Spectrosc. 1995. V. 49. № 7. P. 885. https://doi.org/10.1366/0003702953964840

  70. Lessen D., Brucat P.J. Resonant photodissociation of CoAr+ and CoKr+: Analysis of vibrational structure // J. Chem. Phys. 1989. V. 90. P. 6296. https://doi.org/10.1063/1.456346

  71. Asher R.L., Bellert D., Buthelezi T., Brucat P.J. The ground state of CoAr+ // Chem. Phys. Lett. 1994. V. 227. P. 277. https://doi.org/10.1016/0009-2614(94)00828-0

  72. Bauschlicher C.W., Jr., Langhoff S.R. Theoretical study of NiAr+ // Chem. Phys. Lett. 1989. V. 158. № 5. P. 409. https://doi.org/10.1016/0009-2614(89)87361-0

  73. Lessen D., Brucat P.J. On the nature of NiAr+ // Chem. Phys. Lett. 1988. V. 152. № 6. P. 473. https://doi.org/10.1016/0009-2614(88)80444-5

  74. Yousef A., Shrestha S., Viehland L.A., Lee E.P.F, Gray B.R., Ayles V.L., Wright T.G., Breckenridge W.H. Interaction potentials and transport properties of coinage metal cations in rare gases // J. Chem. Phys. 2007. V. 127. Article 154309. https://doi.org/10.1063/1.2774977

  75. Asher R.L., Bellert D., Buthelezi T., Lessen D., Brucat P.J. The bond length of ZrAr+ // Chem. Phys. Lett. 1995. V. 234. P. 119. https://doi.org/10.1016/0009-2614(95)00006-P

  76. McGuirk M.F., Viehland L.A., Lee E.P.F., Breckenridge W.H., Withers C.D, Gardner A.M., Plowright R.J., Wright T.G. Theoretical study of Ban+–RG (RG = rare gas) complexes and transport of Ban+ through RG (n = 1, 2; RG = He-Rn) // J. Chem. Phys. 2009. V. 130. Article 194305. https://doi.org/10.1063/1.3132543

  77. Музгин В.Н., Емельянова Н.И., Пупышев А.А. Масс-спектрометрия с индуктивно-связанной плазмой – новый метод в аналитической химии // Аналитика и контроль. 1998. Т. 2. № 3–4. С. 3.

  78. Niu Hongsen, Houk R.S. Fundamental aspects of ion extraction in inductively coupled plasma mass spectrometry // Spectrochim Acta B: Atom. Spectrosc. 1996. V. 51. P. 779. https://doi.org/10.1016/0584-8547(96)01506-6

  79. De Jong J., Schoemann V., Tison J.-L., Becquevort S., Masson F., Lannuzel D., Petit J., Chou L., Weis D., Mattielli N. Precise measurement of Fe isotopes in marine samples by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) // Anal. Chim. Acta. 2007. V. 589. P. 105. https://doi.org/10.1016/j.aca.2007.02.055

  80. Hill S.J., Ford M.J., Ebdon L. Investigations into the application of methane addition to the nebulizer gas in inductively coupled plasma mass spectrometry for the removal of polyatomic interferences // J. Anal. Atom. Spectrom. 1992. V. 7. P. 1157. https://doi.org/10.1039/JA9920701157

  81. Montaser A., Zhung A. Mass spectrometry with mixed gas and helium / Inductively Coupled Plasma Mass Spectrometry. New York et al.: Wiley-VCH Inc., 1998. P. 809.

  82. De Jong J., Schoemann V., Tison J.-L., Becquevort S., Masson F., Lannuzel D., Petit J., Chou L., Weis D., Mattielli N. Precise measurement of Fe isotopes in marine samples by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) // Anal. Chim. Acta. 2007. V. 589. P. 105. https://doi.org/10.1016/j.aca.2007.02.055

  83. Pons M.L., Millet M.-A., Nowell G.N., Misra S., Williams H.M. Precise measurement of selenium isotopes by HG-MC-ICPMS using a 76–78 double-spike // J. Anal. At. Spectrom. 2020. V. 35. P. 320. https://doi.org/10.1039/c9ja00331b

  84. De Jong J., Schoemann V., Lannuzel D., Tisond J.-L., Mattielli N. High-accuracy determination of iron in seawater by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for pre-concentration and matrix separation // Anal. Chim. Acta. 2008. V. 623. P. 126. https://doi.org/10.1016/j.aca.2008.06.013

  85. De Boer J.L.M. Real-time adjustment of ICP-MS elemental equations // J. Anal. Atom. Spectrom. 2000. V. 15. P. 1157. https://doi.org/10.1039/b001101k

  86. De Boer J.L.M. Possibilities and limitations of spectral fitting to reduce polyatomic ion interferences in inductively coupled plasma quadrupole mass spectrometry in the mass range 51–88 // Spectrochim. Acta B: Atom. Spectrosc. 1997. V. 52. P. 389. https://doi.org/10.1016/S0584-8547(96)01604-7

  87. Van Veen E.H, Bosch S., Loos-Vollebregt T.C. Spectral interpretation and interference correction in inductively coupled plasma mass spectrometry // Spectrochim. Acta B: Atom. Spectrosc. 1994. V. 49. P. 1347. https://doi.org/10.1016/0584-8547(94)80114-2

  88. Whiteley J.D., Murray F. Determination of platinum group elements (PGE) in environmental samples by ICP-MS: A critical assessment of matrix separation for the mitigation of interferences // Geochem.: Explor., Environ., Anal. 2005. V. 5. P. 3. https://doi.org/10.1144/1467-7873/03-0

  89. Segura M., Madrid Y., Camara C. Elimination of calcium and argon interferences in iron determination by ICP-MS using desferrioxamine chelating agent immobilized in sol–gel and cold plasma conditions // J. Anal. Atom. Spectrom. 2003. V. 18. P. 1103. https://doi.org/10.1039/b301719m

  90. Vanhaecke F., Balcaen L., Wannemacker G.D., Moens L. Capabilities of inductively coupled plasma mass spectrometry for the measurement of Fe isotope ratios // J. Anal. Atom. Spectrom. 2002. V. 17. P. 933. https://doi.org/10.1039/B202409H

  91. Gray P.J. Nanoparticle characterization, fundamental studies and computer simulations of dynamic reaction cell inductively coupled plasma mass spectrometry. Diss. … doctor of philosophy. Ohio, USA: The Ohio State University, 2011. 447 p.

  92. McShane W.J., Pappas R.S., Paschal D. Analysis of total arsenic, total selenium and total chromium in urine by inductively coupled plasma-dynamic reaction cell-mass spectrometry // J. Anal. Atom. Spectrom. 2007. V. 22. P. 630. https://doi.org/10.1039/B613884E

  93. Tanner S.D., Baranov V.I., Bandura D.R. Reaction cells and collision cells for ICP-MS: A tutorial review // Spectrochim. Acta B: Atom. Spectrosc. 2002. V. 57. P. 1361. https://doi.org/10.1016/S0584-8547(02)00069-1

  94. Yamada N., Takahashi J., Sakata K. The effects of cell-gas impurities and kinetic energy discrimination in an octopole collision cell ICP-MS under non-thermalized conditions // J. Anal. Atom. Spectrom. 2002. V. 17. P. 1213. https://doi.org/10.1039/b205416g

  95. Balaram V. Strategies to overcome interferences in elemental and isotopic geochemical analysis by quadrupole inductively coupled plasma mass spectrometry: A critical evaluation of the recent developments // Rapid Commun. Mass Spectrom. 2021. V. 35. Article e9065. https://doi.org/10.1002/rcm.9065

  96. Anicich V.G., Huntress W.T., Jr. A survey of bimolecular ion-molecule reactions for use in modeling the chemistry of planetary atmospheres, cometary comae, and interstellar clouds // The Astrophys. J. Suppl. Ser. 1986. V. 62. P. 553. https://doi.org/10.1086/191151

  97. Lias S.G., Bartmess J.E., Liebman J.F., Holmes J.L., Levin R.D., Mallard W.G. Gas-phase ion and neutral thermochemistry // J. Phys. Chem. Ref. Data. 1988. V. 17. Supplement № 1. 880 p.

  98. Anicich V.G. An Index of the Literature for Bimolecular Gas Phase Cation-Molecule Reaction Kinetics. JPL Publication 03-19. Pasadena: NASA, 2003. 1194 p.

  99. Naoki Sugiyama, Kazumi Nakano. Reaction data for 70 elements using O2, NH3 and H2 gases with the Agilent 8800 Triple Quadrupole ICP-MS. Technical note. Publication number: 5991-4585EN Agilent Technologies, Japan, 2014. 14 p.

  100. Agilent 8800 Triple Quadrupole ICP-MS: Understanding oxygen reaction mode in ICP-MS/MS. Agilent 8800 ICP-QQQ. Technical Overview. Agilent Technologies, Inc., 2012. 8 p.

  101. Yu L.L., Vocke R.D., Murphy K.E., Beck C.M. II. Determination of As, Cd, Cr, and Hg in SRM 2584 (Trace elements in indoor dust) by high-resolution inductively coupled plasma mass spectrometry // Fresenius J. Anal. Chem. 2001. V. 370. P. 834. https://doi.org/10.1007/s002160100888

  102. Galbacs G., Keri A., Kalomista I., Kovacs-Szeles E., Gornushkin I.B. Deuterium analysis by inductively coupled plasma mass spectrometry using polyatomic species: An experimental study supported by plasma chemistry modeling // Anal. Chim. Acta. 2020. V. 1104. P. 28. https://doi.org/10.1016/j.aca.2020.01.011

  103. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические функции ArO и ArO+ // Теплофизика высоких температур. 2020. Т. 58. № 2. С. 202. https://doi.org/10.31857/S0040364420020131 (Maltsev A., Morozov I.V., Osina E.L. Thermodynamic functions of ArO and ArO+ // High Temperature. 2020. V. 58. № 2. P. 184. )10.31857/S0040364420020131

  104. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические свойства димеров аргона и ${\text{Ar}}_{2}^{ + }$ // Теплофизика высоких температур. 2019. Т. 57. № 1. С. 42. https://doi.org/10.1134/S004036441901017410.1134/S0040364419010174 (Maltsev A., Morozov I.V., Osina E.L. Thermodynamic properties of ${\text{Ar}}_{2}^{ + }$ and Ar2 argon dimers // High Temperature. 2019. V. 57. № 1. P. 37. )10.1134/S0040364419010174

  105. Maltcev M.A., Aksenova S.A., Morozov I.V., Minenkov Y., Osina E.L. Ab initio calculations of the interaction potentials and thermodynamic functions for ArN and ArN+ // Comput. Chem. 2023. V. 44. № 12. P. 1189. https://doi.org/10.1002/jcc.27078

  106. Maltsev M.A., Kulikov A.N., Morozov I.V. Thermodynamic properties of vanadium and cobalt argide ions, VAr+ and CoAr+ // J. Phys.: Conf. Ser. 2016. V. 774. Article 012023. https://doi.org/10.1088/1742-6596/774/1/012023

  107. Goodner K.L., Eyler J.R., Barshick C.M., Smith D.H. Elemental quantification based on argides, dimers charged glow discharge ions // Int. J. Mass Spectrom. Ion Process. 1995. V. 146/147. P. 65. https://doi.org/10.1016/0168-1176(95)04204-X

  108. Пупышев А.А. Тлеющий разряд по Гримму. Физические основы, исследование и применение в атомно-эмиссионном спектральном анализа / Пупышев А.А., Данилова Д.А. Атомно-эмиссионный спектральный анализ с индуктивно связанной плазмой и тлеющим разрядом по Гримму. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2002. С. 3.

Дополнительные материалы отсутствуют.