Журнал аналитической химии, 2023, T. 78, № 9, стр. 771-782

Выделение наночастиц из почвы и пыли и их исследование методом масс-спектрометрии с индуктивно связанной плазмой в режиме анализа единичных частиц

М. С. Ермолин a*, П. С. Федотов a

a Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук
119991 Москва, ул. Косыгина, 19, Россия

* E-mail: ermolin@geokhi.ru

Поступила в редакцию 18.04.2023
После доработки 21.04.2023
Принята к публикации 24.04.2023

Аннотация

Исследование природных и антропогенных наночастиц пыли и почвы является актуальной задачей аналитической химии и биогеохимии, решение которой требует применения взаимодополняющих методов разделения и анализа. В настоящей работе обобщены существующие подходы к выделению наночастиц из природных полидисперсных образцов. Рассмотрены методы экстрагирования наночастиц водными растворами, возможности интенсификации процесса извлечения наночастиц ультразвуковым полем, методы экстрагирования в точке помутнения, а также методы очистки выделяемых фракций наночастиц от примесей микрочастиц. Оценены преимущества и недостатки указанных методов. Отмечено, что успех исследования наночастиц почвы и пыли зависит от грамотного выбора комплекса методов выделения наночастиц из полидисперсных образцов и их очистки от примесей микрочастиц, а также методов характеризации и элементного анализа наночастиц. Особое внимание уделено масс-спектрометрии с индуктивно связанной плазмой в режиме анализа единичных частиц как перспективному методу определения концентрации, размерного распределения и элементного состава наночастиц.

Ключевые слова: масс-спектрометрия с индуктивно связанной плазмой, анализ единичных частиц, наночастицы, пыль, почва, выделение.

Список литературы

  1. Hochella M.F., Mogk D.W., Ranville J., Allen I.C., Luther G.W., Marr L.C., McGrail B.P., Murayama M., Qafoku N.P., Rosso K.M., Sahai N., Schroeder P.A., Vikesland P., Westerhoff P., Yang Y. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system // Science. 2019. V. 363. Article eaau8299.

  2. Keller A.A., McFerran S., Lazareva A., Suh S. Global life cycle releases of engineered nanomaterials // J. Nanopart. Res. 2013. V. 15. P. 1692.

  3. Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations // Beilstein J. Nanotechnol. 2018. V. 9. P. 1050.

  4. Taylor D.A. Dust in the wind // Environ. Health Perspect. 2002. V. 110. P. A80.

  5. Sahai N., Kaddour H., Dalai P., Wang Z., Bass G., Gao M. Mineral surface chemistry and nanoparticle-aggregation control membrane self-assembly // Sci. Rep. 2017. V. 7. P. 1.

  6. Xu J., Campbell J.M., Zhang N., Hickey W.J., Sahai N. Did mineral surface chemistry and toxicity contribute to evolution of microbial extracellular polymeric substances? // Astrobiology. 2012. V. 12. P. 785.

  7. Lindenthal A., Langmann B., Pätsch J., Lorkowski I., Hort M. The ocean response to volcanic iron fertilisation after the eruption of Kasatochi volcano: A regional-scale biogeochemical ocean model study // Biogeosciences. 2013. V. 10. P. 3715.

  8. Maters E.C., Delmelle P., Bonneville S. Atmospheric processing of volcanic glass: Effects on iron solubility and redox speciation // Environ. Sci. Technol. 2016. V. 50. P. 5033.

  9. Olgun N., Duggen S., Andronico D., Kutterolf S., Croot P.L., Giammanco S., Censi P., Randazzo L. Possible impacts of volcanic ash emissions of Mount Etna on the primary productivity in the oligotrophic Mediterranean Sea: Results from nutrient-release experiments in seawater // Mar. Chem. 2013. V. 152. P. 32.

  10. Bains S., Norris R.D., Corfield R.M., Faul K.L. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback // Nature. 2000. V. 407. P. 171.

  11. Sigman D.M., Boyle E.A. Glacial/interglacial variations in atmospheric carbon dioxide // Nature. 2000. V. 407. P. 859.

  12. Cather S.M., Dunbar N.W., McDowell F.W., McIntosh W.C., Scholle P.A. Climate forcing by iron fertilization from repeated ignimbrite eruptions: The icehouse-silicic large igneous province (SLIP) hypothesis // Geosphere. 2009. V. 5. P. 315.

  13. Houghton J. Global warming // Rep. Prog. Phys. 2005. V. 68. P. 1343.

  14. Buzea C., Pacheco I.I., Robbie K. Nanomaterials and nanoparticles: Sources and toxicity // Biointerphases. 2007. V. 2. P. MR17.

  15. Ernst W.G. Overview of naturally occurring Earth materials and human health concerns // J. Asian Earth Sci. 2012. V. 59. P. 108.

  16. Trovato M.C., Andronico D., Sciacchitano S., Ruggeri R.M., Picerno I., Di Pietro A., Visalli G. Nanostructures: Between natural environment and medical practice // Rev. Environ. Health. 2018. V. 33. P. 295.

  17. Geiser M., Kreyling W.G. Deposition and biokinetics of inhaled nanoparticles // Part. Fibre Toxicol. 2010. V. 7. P. 2.

  18. Miller M.R., Raftis J.B., Langrish J.P., McLean S.G., Samutrtai P., Connell S.P., Wilson S., Vesey A.T., Fokkens P.H.B., Boere A.J.F., Krystek P., Campbell C.J., Hadoke P.W.F., Donaldson K., Cassee F.R., Newby D.E., Duffin R., Mills N.L. Inhaled nanoparticles accumulate at sites of vascular disease // ACS Nano. 2017. V. 11. P. 4542.

  19. Maher B.A., Ahmed I.A.M., Karloukovski V., MacLaren D.A., Foulds P.G., Allsop D., Mann D.M.A., Torres-Jardón R., Calderon-Garciduenas L. Magnetite pollution nanoparticles in the human brain // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 10797.

  20. Plathe K.L., von der Kammer F., Hassellöv M., Moore J., Murayama M., Hofmann T., Hochella M.F. Using FlFFF and aTEM to determine trace metal-nanoparticle associations in riverbed sediment // Environ. Chem. 2010. V. 7. P. 82.

  21. Navratilova J., Praetorius A., Gondikas A., Fabienke W., von der Kammer F., Hofmann T. Detection of engineered copper nanoparticles in soil using single particle ICP-MS // Int. J. Environ. Res. Public Health. 2015. V. 12. P. 15756.

  22. Praetorius A., Gundlach-Graham A., Goldberg E., Fabienke W., Navratilova J., Gondikas A., Kaegi R., Günther D., Hofmann T., von der Kammer F. Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils // Environ. Sci. Nano. 2017. V. 4. P. 307.

  23. Taskula S., Stetten L., von der Kammer F., Hofmann T. Platinum nanoparticle extraction, quantification, and characterization in sediments by single-particle inductively coupled plasma time-of-flight mass spectrometry // Nanomaterials. 2022. V. 12. P. 3307.

  24. Mahdi K.N.M., Peters R.J.B., Klumpp E., Bohme S., van der Ploeg M., Ritsema C., Geissen V. Silver nanoparticles in soil: Aqueous extraction combined with single-particle ICP-MS for detection and characterization // Environ. Nanotechnol. Monit. Manag. 2017. V. 7. P. 24.

  25. Ермолин М.С., Федюнина Н.Н., Карандашев В.К., Федотов П.С. Изучение подвижности наночастиц оксида церия в почвах с использованием динамического экстрагирования в микроколонке и вращающейся спиральной колонке // Журн. аналит. химии. 2019. Т. 74. С. 624. (Ermolin M.S., Fedyunina N.N., Karandashev V.K., Fedotov P.S. Study of the mobility of cerium oxide nanoparticles in soil using dynamic extraction in a microcolumn and a rotating coiled column // J. Anal. Chem. 2019. V. 74. P. 825.)

  26. Ermolin M.S., Ivaneev A.I., Fedyunina N.N., Fedotov P.S. Nanospeciation of metals and metalloids in volcanic ash using single particle inductively coupled plasma mass spectrometry // Chemosphere. 2021. V. 281. Article 130950.

  27. Ermolin M.S., Ivaneev A.I., Brzhezinskiy A.S., Fedyunina N.N., Karandashev V.K., Fedotov P.S. Distribution of platinum and palladium between dissolved, nanoparticulate, and microparticulate fractions of road dust // Molecules. 2022. V. 27. P. 6107.

  28. Yi Z., Loosli F., Wang J., Berti D., Baalousha M. How to distinguish natural versus engineered nanomaterials: insights from the analysis of TiO2 and CeO2 in soils // Environ. Chem. Lett. 2020. V. 18. P. 215.

  29. Kretzschmar R., Sticher H. Transport of humic-coated iron oxide colloids in a sandy soil: Influence of Ca2+ and trace metals // Environ. Sci. Technol. 1997. V. 31. P. 3497.

  30. Regelink I.C., Weng L., Koopmans G.F., van Riemsdijk W.H. Asymmetric flow field-flow fractionation as a new approach to analyse iron-(hydr)oxide nanoparticles in soil extracts // Geoderma. 2013. V. 202–203. P. 134.

  31. Baalousha M., Wang J., Erfani M., Goharian E. Elemental fingerprints in natural nanomaterials determined using SP-ICP-TOF-MS and clustering analysis // Sci. Total Environ. 2021. V. 792. Article 148426.

  32. Schwertfeger D.M., Velicogna J.R., Jesmer A.H., Saatcioglu S., McShane H., Scroggins R.P., Princz J.I. Extracting metallic nanoparticles from soils for quantitative analysis: Method development using engineered silver nanoparticles and SP-ICP-MS // Anal. Chem. 2017. V. 89. P. 2505.

  33. Loosli F., Yi Z., Wang J., Baalousha M. Improved extraction efficiency of natural nanomaterials in soils to facilitate their characterization using a multimethod approach // Sci. Total Environ. 2019. V. 677. P. 34.

  34. Meili-Borovinskaya O., Meier F., Drexel R., Baalousha M., Flamigni L., Hegetschweiler A., Kraus T. Analysis of complex particle mixtures by asymmetrical flow field-flow fractionation coupled to inductively coupled plasma time-of-flight mass spectrometry // J. Chromatogr. A. 2021. V. 1641. Article 461981.

  35. Liu W., Shi H., Liu K., Liu X., Sahle-Demessie E., Stephan C. A sensitive single particle-ICP-MS method for CeO2 nanoparticles analysis in soil during aging process // J. Agric. Food Chem. 2021. V. 69. P. 1115.

  36. Li L., Wang Q., Yang Y., Luo L., Ding R., Yang Z.G., Li H.P. Extraction method development for quantitative detection of silver nanoparticles in environmental soils and sediments by single particle inductively coupled plasma mass spectrometry // Anal. Chem. 2019. V. 91. P. 9442.

  37. Gao Y.P., Yang Y., Li L., Wei W.J., Xu H., Wang Q., Qiu Y.Q. Quantitative detection of gold nanoparticles in soil and sediment // Anal. Chim. Acta. 2020. V. 1110. P. 72.

  38. Tou F., Niu Z., Fu J., Wu J., Liu M., Yang Y. Simple method for the extraction and determination of Ti-, Zn-, Ag-, and Au-containing nanoparticles in sediments using single-particle inductively coupled plasma mass spectrometry // Environ. Sci. Technol. 2021. V. 55. P. 10354.

  39. Folens K., van Acker T., Bolea-Fernandez E., Cornelis G., Vanhaecke F., Du Laing G., Rauch S. Identification of platinum nanoparticles in road dust leachate by single particle inductively coupled plasma-mass spectrometry // Sci. Total Environ. 2018. V. 615. P. 849.

  40. Sánchez-Cachero A., Fariñas N.R., Jiménez-Moreno M., Martín-Doimeadios R.C.R. Quantitative analysis and characterization of PtNPs in road dust based on ultrasonic probe assisted extraction and single particle inductively coupled plasma mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 2023. V. 203. Article 106665.

  41. Hartmann G., Schuster M. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry // Anal. Chim. Acta. 2013. V. 761. P. 27.

  42. Hartmann G., Baumgartner T., Schuster M. Influence of particle coating and matrix constituents on the cloud point extraction efficiency of silver nanoparticles (Ag-NPs) and application for monitoring the formation of Ag-NPs from Ag+ // Anal. Chem. 2014. V. 86. P. 790.

  43. Li L., Hartmann G., Döblinger M., Schuster M. Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany // Environ. Sci. Technol. 2013. V. 47. P. 7317.

  44. Tsogas G.Z., Giokas D.L., Vlessidis A.G. Ultratrace determination of silver, gold, and iron oxide nanoparticles by micelle mediated preconcentration/selective back-extraction coupled with flow injection chemiluminescence detection // Anal. Chem. 2014. V. 86. P. 3484.

  45. El Hadri H., Hackley V.A. Investigation of cloud point extraction for the analysis of metallic nanoparticles in a soil matrix // Environ. Sci. Nano. 2017. V. 4. V. 105.

  46. Torrent L., Laborda F., Marguí E., Hidalgo M., Iglesias M. Combination of cloud point extraction with single particle inductively coupled plasma mass spectrometry to characterize silver nanoparticles in soil leachates // Anal. Bioanal. Chem. 2019. V. 411. P. 5317.

  47. Torrent L., Iglesias M., Hidalgo M., Marguí E. Determination of silver nanoparticles in complex aqueous matrices by total reflection X-ray fluorescence spectrometry combined with cloud point extraction // J. Anal. At. Spectrom. 2018. V. 33. P. 383.

  48. Baur S., Reemtsma T., Stärk H.J., Wagner S. Surfactant assisted extraction of incidental nanoparticles from road runoff sediment and their characterization by single particle-ICP-MS // Chemosphere. 2020. V. 246. Article 125765.

  49. Ding K., Liang S., Xie C., Wan Q., Jin C., Wang S., Tang Y.T., Zhang M., Qiu R. Discrimination and quantification of soil nanoparticles by dual-analyte single particle ICP-QMS // Anal. Chem. 2022. V. 94. P. 10745.

  50. Иванеев А.И., Ермолин М.С., Федотов П.С. Разделение, характеризация и анализ нано- и микрочастиц окружающей среды: современные методы и подходы // Журн. аналит. химии. 2021. Т. 76. С. 291. (Ivaneev A.I., Ermolin M.S., Fedotov P.S. Separation, characterization, and analysis of environmental nano- and microparticles: state-of-the-art methods and approaches // J. Anal. Chem. 2021. V. 76. P. 413.)

  51. Ivaneev A.I., Ermolin M.S., Fedotov P S., Faucher S., Lespes G. Sedimentation field-flow fractionation in thin channels and rotating coiled columns: From analytical to preparative scale separations // Sep. Purif. Rev. 2020. P. 363.

  52. Ермолин М.С., Федотов П.С., Карандашев В.К., Шкинев В.М. Методология выделения и элементного анализа наночастиц вулканического пепла // Журн. аналит. химии. 2017. Т. 72. С. 462. (Ermolin M.S., Fedotov P.S., Karandashev V.K., Shkinev V.M. Methodology for separation and elemental analysis of volcanic ash nanoparticles // J. Anal. Chem. 2017. V. 72. P. 533.)

  53. Ермолин М.С., Федотов П.С., Иванеев А.И., Карандашев В.К., Федюнина Н.Н., Еськина В.В. Выделение и количественный анализ наночастиц дорожной пыли // Журн. аналит. химии. 2017. Т. 72. С. 448. (Ermolin M.S., Fedotov P.S., Ivaneev A.I., Karandashev V.K., Fedyunina N.N., Eskina V.V. Isolation and quantitative analysis of road dust nanoparticles // J. Anal. Chem. 2017. V. 72. P. 520.)

  54. Ivaneev A. I., Faucher S., Ermolin M.S., Karandashev V.K., Fedotov P.S., Lespes G. Separation of nanoparticles from polydisperse environmental samples: comparative study of filtration, sedimentation, and coiled tube field-flow fractionation // Anal. Bioanal. Chem. 2019. V. 411. P. 8011.

  55. Nomizu T., Kaneco S., Tanaka T., Yamamoto T., Kawaguchi H. Determination of femto-gram amounts of zinc and lead in individual airborne particles by inductively coupled plasma mass spectrometry with direct air-sample introduction // Anal. Sci. 1993. V. 9. P. 843.

  56. Degueldre C., Favarger P.Y. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: A feasibility study // Colloids Surf. A. 2003. V. 217. P. 137.

  57. Degueldre C., Favarger P.Y. Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry // Talanta. 2004. V. 62. P. 1051.

  58. Degueldre C., Favarger P.Y., Wold S. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode // Anal. Chim. Acta. 2006. V. 555. P. 263.

  59. Degueldre C., Favarger P.Y., Bitea C. Zirconia colloid analysis by single particle inductively coupled plasma-mass spectrometry // Anal. Chim. Acta. 2004. V. 518. P. 137.

  60. Degueldre C., Favarger P.Y., Rossé R., Wold S. Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry // Talanta. 2006. V. 68. P 623.

  61. Laborda F., Bolea E., Jiménez-Lamana J. Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples // Trends Environ. Anal. Chem. 2016. V. 9. P. 15.

  62. Laborda F., Bolea E., Jiménez-Lamana J. Single particle inductively coupled plasma mass spectrometry: A powerful tool for nanoanalysis // Anal. Chem. 2014. V. 86. P. 2270.

  63. Tian X., Jiang H., Hu L., Wang M., Cui W., Shi J., Liu G., Yin Y., Cai Y., Jiang G. Simultaneous multi-element and multi-isotope detection in single-particle ICP-MS analysis: Principles and applications // Trends Anal. Chem. 2022. V. 157. Article116746.

  64. Chun K.H., Lum J.T.S., Leung K.S.Y. Dual-elemental analysis of single particles using quadrupole-based inductively coupled plasma-mass spectrometry // Anal. Chim. Acta. 2022. V. 1192. Article 339389.

  65. Tuoriniemi J., Holbrook T.R., Cornelis G., Schmitt M., Stärk H.J., Wagner, S. Measurement of number concentrations and sizes of Au nanoparticles spiked into soil by laser ablation single particle ICPMS // J. Anal. At. Spectrom. 2020. V. 35. P. 1678.

  66. Gundlach-Graham A. Multiplexed and multi-metal single-particle characterization with ICP-TOFMS // Compr. Anal. Chem. 2021. V. 93. P. 69.

  67. Goodman A.J., Gundlach-Graham A., Bevers S.G., Ranville J.F. Characterization of nano-scale mineral dust aerosols in snow by single particle inductively coupled plasma mass spectrometry // Environ. Sci. Nano. 2022. V. 9. P. 2638.

  68. Yamashita S., Ishida M., Suzuki T., Nakazato M., Hirata T. Isotopic analysis of platinum from single nanoparticles using a high-time resolution multiple collector inductively coupled plasma – mass spectroscopy // Spectrochim. Acta B: At. Spectrosc. 2020. V. 169. Article 105881.

  69. Yamashita S., Yamamoto K., Takahashi H., Hirata T. Size and isotopic ratio measurements of individual nanoparticles by a continuous ion-monitoring method using Faraday detectors equipped on a multi-collector-ICP-mass spectrometer // J. Anal. At. Spectrom. 2022. V. 37. P. 178.

Дополнительные материалы отсутствуют.