Журнал аналитической химии, 2023, T. 78, № 9, стр. 848-855

Влияние сопутствующих заболеваний на профиль летучих органических соединений, входящих в состав выдыхаемого воздуха пациентов с раком легких

Э. М. Гашимова a*, А. З. Темердашев a, В. А. Порханов b, И. С. Поляков b, Д. В. Перунов b

a Кубанский государственный университет
350040 Краснодар, ул. Ставропольская, 149, Россия

b Научно-исследовательский институт – Краевая клиническая больница № 1 им. С.В. Очаповского
350086 Краснодар, ул. 1 Мая, 167, Россия

* E-mail: elina.gashimova@yandex.ru

Поступила в редакцию 11.03.2023
После доработки 30.03.2023
Принята к публикации 30.03.2023

Аннотация

Диагностика рака легких по выдыхаемому воздуху – перспективное направление развития медицины, однако многие пациенты помимо рака легких имеют и другие сопутствующие заболевания, что может сказываться на качестве создаваемых диагностических методов. Настоящая работа посвящена изучению возможного влияния наиболее распространенных сопутствующих заболеваний: хронической сердечной недостаточности, гипертонии, ожирения, сахарного диабета и атеросклероза на состав летучих органических соединений из выдыхаемого воздуха пациентов с раком легких с использованием метода газовой хромато-масс-спектрометрии. Найдены некоторые компоненты и их соотношения, отличающиеся в группах пациентов с раком легких с различными сопутствующими заболеваниями.

Ключевые слова: ГХ-МС, выдыхаемый воздух, летучие органические соединения, рак легких, сопутствующие заболевания.

Список литературы

  1. Sharma A., Kumar R., Varadwaj P. Smelling the disease: Diagnostic potential of breath analysis // Mol. Diagn. Ther. 2023. https://doi.org/10.1007/s40291-023-00640-7

  2. Yan H., Zhou Y.-G. Electrical sensing of volatile organic compounds in exhaled breath for disease diagnosis // Curr. Opin. Electrochem. 2022. V. 33. Article 100922.

  3. Kaloumenou M., Skotadis E., Lagopati N., Efstathopoulos E. Tsoukalas D. Breath analysis: A promising tool for disease diagnosis — the role of sensors // Sensors. 2022. V. 22. Article 1238.

  4. Antoniou S.X., Gaude E., Ruparel M., Schee M.P., Janes S.M., Rintoul R.C. The potential of breath analysis to improve outcome for patients with lung cancer // J. Breath Res. 2019. V. 13. № 3. Article 034002.

  5. Keogh R.J., Riches J.C. the use of breath analysis in the management of lung cancer: Is it ready for primetime? // Curr. Oncol. 2022. V. 29. P. 7355.

  6. Peled N., Fuchs V., Kestenbaum E.H., Oscar E., Bitran R. An update on the use of exhaled breath analysis for the early detection of lung cancer // Lung Cancer (Auckl). 2021. V. 12. P. 81.

  7. Nidheesh V.R., Mohapatra A. K., Nayak R., Unnikrishnan V.K., Kartha V. B., Chidangil S. UV laser-based photoacoustic breath analysis for the diagnosis of respiratory diseases: Detection of asthma // Sens. Actuators B: Chem. 2022. V. 370. Article 132367.

  8. Velzen P., Brinkman P., Knobel H.H., Berg J.W.K., Jonkers R.E., Loijmans R.J., Prins J.M., Sterk P.J. Exhaled breath profiles before, during and after exacerbation of COPD: A prospective follow-up study // J. Chronic Obstr. Pulm. Dis. 2019. V. 5–6. P. 330.

  9. Cazzola M., Segreti A., Capuano R., Bergamini A., Martinelli E., Calzetta L., Rogliani P., Ciaprini C., Ora J., Paolesse R., Natale C.D., D’Amico A. Analysis of exhaled breath fingerprints and volatile organic compounds in COPD // COPD Res. Pract. 2015. V. 1. № 7. Article 32.

  10. Dijak F., Woollam M., Angarita-Rivera P., Siegel A., Agarwal M., Davis M., Chmiel J.F., Sanders D.B. Volatile organic compounds in exhaled breath as biomarkers of pulmonary exacerbations in children with cystic fibrosis // J. Clin. Med. 2021. V. 10. № 1. P. 330.

  11. Zamora-Mendoza B.N., Martinez L.D.L., Rodríguez-Aguilar M., Mizaikoff B., Flores-Ramireze R. Chemometric analysis of the global pattern of volatile organic compounds in the exhaled breath of patients with COVID-19, post-COVID and healthy subjects. Proof of concept for post-COVID assessment // Talanta. 2022. V. 236. Article 122832.

  12. Ibrahim W., Cordell R.L., Wilde M.J., Richardson M., Carr L., Dasi A.S.D., 1,2, Hargadon B., Free R.C., Monks P.S., Brightling C.E., Greening N.J., Siddiqui S. Diagnosis of COVID-19 by exhaled breath analysis using gas chromatography–mass spectrometry // ERJ Open Res. 2021. V. 7. Article 00139.

  13. Zetola N.M., Modongo C., Matsiri O., Tamuhla T., Mbongwe B., Matlhagela K., Sepako E., Catini A., Sirugo G., Martinelli E., Paolesse R., Natale C.D. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples // J. Infect. 2017. V. 74. № 4. P. 367.

  14. Berna A.Z., John O.A.R. Breath metabolites to diagnose infection // Clin. Chem. 2021. V. 68. № 1. P. 43.

  15. Xiang L., Wu S., Hua Q., Bao C., Liu H. Volatile organic compounds in human exhaled breath to diagnose gastrointestinal cancer: A meta-analysis // Front. Oncol. 2021. V. 11. Article 606915.

  16. Leon-Martínez L.D., Rodriguez-Aguilar M., Gorocica-Rosete P., Dominguez-Reyes C.A., Martinez-Bustos V., Tenorio-Torres J.A., Ornelas-Rebolledo O., Cruz-Ramos J.A., Balderas-Segura B., Flores-Ramirez R. Identification of profiles of volatile organic compounds in exhaled breath by means of an electronic nose as a proposal for a screening method for breast cancer: A case-control study // J. Breath Res. 2020. V. 14. № 4. Article 046009.

  17. Chung J., Akter S., Han S., Shin Y. Choi T.G., Kang I., Kim S.S. Diagnosis by volatile organic compounds in exhaled breath from patients with gastric and colorectal cancers // Int. J. Mol. Sci. 2023. V. 24. № 1. Article 129.

  18. Waltman C.G., Marcelissen T.A.T., Roermund J.G.H. Exhaled-breath testing for prostate cancer based on volatile organic compound profiling using an electronic nose device (Aeonose™): A preliminary report // Eur. Urol. Focus. 2020. V. 6. № 6. Article 1220.

  19. Paleczek A., Grochala D., Rydosz A. Artificial breath classification using XGBoost algorithm for diabetes detection // Sens. 2021. V. 21. Article 4187.

  20. Kalidoss R., Umapath S. A comparison of online and offline measurement of exhaled breath for diabetes pre-screening by graphene-based sensor; from powder processing to clinical monitoring prototype // J. Breath Res. 2019. V. 13. Article 036008.

  21. Stavropoulos G., Munster K., Ferrandino G., Sauca M., Ponsioen C., Schooten F.-J., Smolinska A. Liver impairment – the potential application of volatile organic compounds in hepatology // Metabolites. 2021. V. 11. Article 618.

  22. Hintzen K.F.H., Grote J., Wintjens A.G.W.E., Lubbers T., Eussen M.M.M., Schooten F.J., Bouvy N.D., Peeters A. Breath analysis for the detection of digestive tract malignancies: Systematic review // BJS Open. 2021. V. 5. № 2. Article zrab013.

  23. Scheepers M.H.M.C., Al-Difaie Z., Brandts L., Peeters A., Grinsven B., Bouvy N.D. Diagnostic performance of electronic noses in cancer diagnoses using exhaled breath: A systematic review and meta-analysis // BJS Open. J-AMA. Netw. Open. 2022. V. 5. № 6. Article e2219372.

  24. Westphal K., Dudzik D., Waszczuk-Jankowska M., Graff B., Narkiewicz K., Markuszewski M.J. Common strategies and factors affecting off-line breath sampling and volatile organic compounds analysis using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) // Metabolites. 2023. V. 13. Article 8.

  25. Pesesse R., Stefanuto P.H., Schleich F., Louis R., Focant J.F. Multimodal chemometric approach for the analysis of human exhaled breath in lung cancer patients by TD-GC × GC-TOFMS // J. Chromatogr. B. 2019. V. 1114–1115. P. 146.

  26. Oort P.M., Brinkman P., Slingers G., Koppen G., Maas A., Roelofs J.J., Schnabel R., Bergmans D. C., Raes M., Goodacre R., Fowler S.J., Schultz M.J., Bos L.D. Exhaled breath metabolomics reveals a pathogen-specific response in a rat pneumonia model for two human pathogenic bacteria: A proof-of-concept study // Am. J. Physiol. Lung. Cell. Mol. Physiol. 2019. V. 316. № 5. P. L751.

  27. Filipiak W., Filipiak A., Sponring A., Schmid T., Zelger B., Ager C., Klodzinska E., Denz H., Pizzini A., Lucciarini P., Jamnig H., Troppmair J., Amann A. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers // J. Breath Res. 2014. V. 8. № 2. https://doi.org/10.1088/1752-7155/8/2/027111

  28. Mendel J., Frank K., Edlin L., Hall K., D. Webb, Mills J., Holness H.K., Furton K.G., Mills D. Preliminary accuracy of COVID-19 odor detection by canines and HS-SPME-GC-MS using exhaled breath samples // Forensic Sci. Int.: Synergy. 2021. V.3. Article 100155.

  29. Lamote K., Vynck M., Thas O., Cleemput J., Nackaerts, K., Meerbeeck J.P. Exhaled breath to screen for malignant pleural mesothelioma: A validation study // Eur. Respir. J. 2017. V. 50. № 6. Article 1700919.

  30. Smith D., Spanel P., Demarais N., Langford V.S., McEwan M.J. Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS) // Mass Spectrom. Rev. 2023. Article e21835.

  31. Tsou P.H., Lin Z.L., Pan Y.C., Yang H.C., Chang C.J., Liang S.K., Wen Y.F., Chang C.H., Chang L.Y., Yu K.L., Liu C.J., Keng L.T., Lee M. R., Ko J.C., Huang G.H., Li Y.K. Exploring volatile organic compounds in breath for high-accuracy prediction of lung cancer // Cancers. 2021. V. 13. № 6. Article 1431.

  32. Pleil J.D., Hansel A., Beauchamp J. Advances in proton transfer reaction mass spectrometry (PTR-MS): Applications in exhaled breath analysis, food science, and atmospheric chemistry // J. Breath Res. 2019. V. 13. № 3. Article 039002.

  33. Jung Y.J., Seo H.S., Kim J.H., Song K.Y., Park C.H., Lee H.H. Advanced diagnostic technology of volatile organic compounds real time analysis analysis from exhaled breath of gastric cancer patients using proton-transfer-reaction time-of-flight mass spectrometry // Front. Oncol. 2021. V. 11. Article 560591.

  34. Kort S., Brusse-Keizer M., Gerritsen J. W., Schouwink H., Citgez E., Jongh F. Maten J., Samii S., Bogart M., Palen J. Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters // ERJ Open Res. 2020. V. 6. № 1. Article 00221.

  35. Dragonieri S., Quaranta V.N., Carratu P., Ranieri T., Resta O. Exhaled breath profiling by electronic nose enabled discrimination of allergic rhinitis and extrinsic asthma // Biomarkers. 2019. V. 1. P. 70.

  36. Saidi T., Moufid M., Beleño-Saenz K.J., Welearegay T.G., Bari N.E., Jaimes-Mogollon A.L., Ionescu R., Bourkadi J.E., Benamor J., Ftouh M. E., Bouchikhi B. Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS // Sens. Actuators B: Chem. 2020. V. 311. Article 127932.

  37. Cai Y., Huang L., Sun W., Xu C., Ren X., Ye Y., Zhu Y., Sun L., Jiang D., Zhang Q., Wang Y. Noninvasive analysis of exhaled breath for gastric cancer diagnosis using paper-based smartphone nano-optoelectronic noses // Sens. Actuators B: Chem. 2023. V. 381. Article 133411.

  38. Платонов И.А., Колесниченко И.Н., Павлова Л.В., Муханова И.М., Платонов В.И. Мобильный диагностический комплекс для экспрессного количественного определения ацетона в выдыхаемом воздухе // Сорбционные и хроматографические процессы. 2022. Т. 22. № 4. С. 365.

  39. Corradi M., Poli D., Banda I., Bonini S., Mozzoni P., Pinelli S., Alinovi R., Andreoli R., Ampollini L., Casalini A., Carbognani P., Goldoni M., Mutti A. Exhaled breath analysis in suspected cases of non-small-cell lung cancer: A cross-sectional study // J. Breath Res. 2015. V. 9. № 2. Article 027101.

  40. Hubers A.J., Brinkman P., Boksem R.J., Rhodius R.J., Witte B.I., Zwinderman A.H., Heideman D.A.M., Duin S., Koning R., Steenbergen R.D.M., Snijders P.J.F., Smit E.F., Sterk P.J., Thunnissen E. Combined sputum hypermethylation and enose analysis for lung cancer diagnosis // J. Clin. Pathol. 2014. V. 67. № 8. P. 707.

  41. Hashoul D., Haick H. Sensors for detecting pulmonary diseases from exhaled breath // Eur. Respir. Rev. 2019. V. 28. № 152. Article 190011.

  42. Гашимова Э.М., Темердашев А.З., Порханов В.А., Поляков И.С., Перунов Д.В., Азарян А.А., Дмитриева Е.В. Оценка возможности газохроматографического определения летучих органических соединений в выдыхаемом воздухе для неинвазивной диагностики рака легких // Журн. аналит. химии. 2019. Т. 74. № 5. С. 365.

  43. Chen Y., Xia R., Feng Y. The research of chronic gastritis diagnosis with electronic noses // J. Sens. 2021. V. 2021. Article 5592614.

  44. Tong H., Wang Y., Li Y., Liu S., Chi C., Liu D., Guo L., Li E., Wang C. Volatile organic metabolites identify patients with gastric carcinoma, gastric ulcer, or gastritis and control patients // Cancer Cell Int. 2017. V. 17. Article 108.

  45. Oyerinde A.S., Selvaraju V., Babu J.R., Geetha T. Potential role of oxidative stress in the production of volatile organic compounds in obesity // Antioxidants. 2023. V. 12. № 1. Article 129.

  46. Blanchet L., Smolinska A., Baranska A., Tigchelaar E., Swertz M., Zhernakova A., Dallinga J. W., Wijmenga C., Schooten F.J. Factors that influence the volatile organic compound content in human breath // J. Breath Res. 2017. V. 11. № 1. Article 016013.

  47. Temerdashev A.Z., Gashimova E.M., Porkhanov V.A., Polyakov I.S., Perunov D.V., Dmitrieva E.V. Non-Invasive lung cancer diagnostics through metabolites in exhaled breath: Influence of the disease variability and comorbidities // Metabolites. 2023. V. 13. Article 203.

  48. Dixit K., Fardindoost S., Ravishankara A., Tasnim N., Hoorfar M. Exhaled breath analysis for diabetes diagnosis and monitoring: Relevance, challenges and possibilities // Biosensors. 2021. V. 11. Article 476.

  49. Das S., Pal M. Non-invasive monitoring of human health by exhaled breath analysis: A comprehensive review // J. Electrochem. Soc. 2020. V. 167. Article 037562.

  50. Gashimova E., Osipova A., Temerdashev A., Porkhanov V., Polyakov I., Perunov D., Dmitrieva E. Study of confounding factors influence on lung cancer diagnostics effectiveness using gas chromatography–mass spectrometry analysis of exhaled breath // Biomark. Med. 2021. V. 15. № 11. P. 821.

Дополнительные материалы отсутствуют.