Теплоэнергетика, 2023, № 8, стр. 27-51

Охлаждение металлических поверхностей распылением: прогресс в механизмах его реализации (обзор)

M. Jena a, P. C. Mishra a*, S. S. Sahoo b

a Лаборатория тепловых исследований, Институт промышленных технологий Калинга
751024 Бхубанешвар, Индия

b Технологический и исследовательский университет Одиша
751003 Бхубанешвар, Индия

* E-mail: pcmishrafme@kiit.ac.in

Поступила в редакцию 04.06.2022
После доработки 25.08.2022
Принята к публикации 30.08.2022

Аннотация

Представлены последние достижения в области теплоотдачи струйным способом (распылением). Рассмотрено влияние различных параметров на эффективность распылительного охлаждения. Исследование посвящено разработкам в области такого охлаждения, влиянию изменений параметров процесса на его эффективность. Обзор доступной литературы показывает, что изучение охлаждения распылением ведется с позиций его практического применения, но оно не способствует пониманию того, каким образом его можно усовершенствовать. Существует множество способов улучшить характеристики распылительного охлаждения, например чередованием видов применяемой жидкости, изменением схемы потока и управлением такими параметрами, как давление воздуха и воды, расстояние между соплом и поверхностью. В некоторых более ранних работах для повышения эффективности теплоотдачи при охлаждении поверхности металла был использов-ан также струйно-инжекционный метод. Однако такая технология все еще нуждается в дальнейшем изучении, что и обсуждается в рамках настоящей статьи.

Ключевые слова: охлаждение распылением (струйное), давление, оборудование, импульсный метод, технические приложения, экономические факторы, теплоотдача, рабочая жидкость, хладагент

Список литературы

  1. Kim J. Spray cooling heat transfer: The state of the art // Int. J. Heat Fluid Flow. 2007. V. 28. Is. 4. P. 753–767. https://doi.org/10.1016/j.ijheatfluidflow.2006.09.003

  2. Mudawar I. Recent advances in high-flux, two-phase thermal management // J. Therm. Sci. Eng. Appl. 2013. V. 5. Is. 2. P. 021012. https://doi.org/10.1115/HT2013-17046

  3. Wendelstorf J., Spitzer K.-H., Wendelstorf R. Spray water cooling heat transfer at high temperatures and liquid mass fluxes // Int. J. Heat Mass Transfer. 2008. V. 51. Is. 19–20. P. 4902–4910. https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.032

  4. Spray сooling / Z. Yan, R. Zhao, F. Duan, T.N. Wong, K.C. Toh, K.F. Choo, P.K. Chan, Y.S. Chua // Two phase flow, Phase Change Numer. Modell, 2011. P. 285–310.https://doi.org/10.5772/21076

  5. Chin T.-C. Generation and evaporation of microsprays // Adv. Microfluidics – New Appl. Biology, Energy, Mater. Sci. / Ed. by Y. Xiao-Ying. IntechOpen, 2016. P. 315–334. https://doi.org/10.5772/64756

  6. Gao X., Li R. Spray impingement cooling: The state of the art // Adv. Cooling Technol. Appl. / Ed. by S.M. Sohel Murshed. IntechOpen, 2018. https://doi.org/10.5772/intechopen.80256

  7. Aamir M.A., Watkins A.P. Modelling of spray impingement heat transfer // ILASS-Europe. 2000. V. 7. P. 1–6.

  8. Heinlein J., Fritsching U. Droplet clustering in sprays // Exp. Fluids. 2006. V. 40. Is. 3. P. 464–472. https://doi.org/10.1007/s00348-005-0087-4

  9. Simulation of spray cooling systems with phase change / S.W. Tan, K.C. Lin, L. Chow, R.H. Chen, A. Griffin, D. Rini // Summer Computer Simulation Conf. 2001. P. 428–433. Society for Computer Simulation International, 1998.

  10. Shedd T.A., Pautsch A.G. Spray impingement cooling with single- and multiple-nozzle arrays. Part II: Visualization and empirical models // Int. J. Heat Mass Transfer. 2005. V. 48. Is. 15. P. 3176–3184.https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.013

  11. Impingement cooling of hot metal strips in runout table − A review / P.C. Mishra, S.K. Nayak, P. Pradhan, D.P. Ghosh // Interfacial Phenom. Heat Transfer. 2015. V. 3. Is. P. 117–137. https://doi.org/10.1615/InterfacPhenomHeatTransfer. 2014010574

  12. Karwa N., Stephan P. Experimental investigation of free-surface jet impingement quenching process // Int. J. Heat Mass Transfer. 2013. V. 64. Is. 1118–1126. https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.014

  13. Silk E.A., Golliher E.L., Selvam R.P. Spray cooling heat transfer: technology overview and assessment of future challenges for micro-gravity application // Energy Convers. Manage. 2008. V. 49. Is. 3. P. 453–468. https://doi.org/10.1016/j.enconman.2007.07.046

  14. Liu R., Zhang L., Zhang X. Applications of spray cooling technology in aerospace field // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 470. No. 1. P. 012020. https://doi.org/10.1088/1757-899X/470/1/012020

  15. The research and application of spray cooling technology in Shanghai / C. Huang, D. Ye, H. Zhao, T. Liang, Z. Lin, H. Yin, Y. Yang // Appl. Therm. Eng. 2011. V. 31. Is. 17–18. P. 3726–3735. https://doi.org/10.1016/j.applthermaleng.2011.03.039

  16. Two-phase spray cooling of hybrid vehicle electronics / I. Mudawar, D. Bharathan, K. Kelly, S. Narumanchi // IEEE Transactions on Components and Packaging Technol. 2009. V. 32. Is. 2. P. 501–512. https://doi.org/10.1109/TCAPT.2008.2006907

  17. Bharathan D., Hassani V. Spray cooling: An assessment for use with automotive power electronics applications. Milestone Report for Freedom CAR, 2005.

  18. Trávnı́ček Z., Tesař V. Annular synthetic jet used for impinging flow mass-transfer // Int. J. Heat Mass Transfer. 2003. V. 46. Is. 17. P. 3291–3297. https://doi.org/10.1016/S0017-9310(03)00119-4

  19. Zhou Z.-F., Chen B. The fundamental and application of transient flashing spray cooling in laser dermatology // Adv. Cooling Technol. Appl. / Ed. by S.M. Sohel Murshed. IntechOpen, 2018. https://doi.org/10.5772/intechopen.79462

  20. Effects of droplet velocity, diameter, and film height on heat removal during cryogen spray cooling / B.M. Pikkula, J.W. Tunnell, D.W. Chang, B. Anvari // Ann. Biomed. Eng. 2004. V. 32. Is. 8. P. 1133–1142. https://doi.org/10.1114/B:ABME.0000036649.80421.60

  21. Numerical investigation of multi-pulsed cryogen spray cooling for skin cold protection in laser lipolysis / H. Xin, B. Chen, Z. Zhou, D. Li, J. Tian // Numer. Heat Transfer. Part A: Appl. 2020. V. 77. Is. 7. P. 730–742. https://doi.org/10.1080/10407782.2020.1714354

  22. Effect of the spray cone angle in the spray cooling with R134a / E. Martínez-Galván, R. Antón, J.C. Ramos, R. Khodabandeh // Exp. Therm. Fluid Sci. 2013. V. 50. Is. 127–138. https://doi.org/10.1016/j.expthermflusci.2013.05.012

  23. Nayak S.K., Mishra P.C., Parashar S.K.S. Influence of spray characteristics on heat flux in dual phase spray impingement cooling of hot surface // Alexandria Eng. J. 2016. V. 55. Is. 3. P. 1995–2004. https://doi.org/10.1016/j.aej.2016.07.015

  24. Mzad H., Khelif R. Effect of spraying pressure on spray cooling enhancement of beryllium-copper alloy plate // Proc. Eng. 2016. V. 157. P. 106–113. https://doi.org/10.1016/j.proeng.2016.08.344

  25. Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime / Y. Wang, M. Liu, D. Liu, K. Xu, Y. Chen // Exp. Therm. Fluid Sci. 2010. V. 34. Is. 7. P. 933–942. https://doi.org/10.1016/j.expthermflusci.2010.02.010

  26. Chen R.H., Chow L.C., Navedo J.E. Effects of spray characteristics on critical heat flux in subcooled water spray cooling // Int. J. Heat Mass Transfer. 2002. V. 45. Is. 19. P. 4033–4043. https://doi.org/10.1016/S0017-9310(02)00113-8

  27. Kendall C.M., Holman J.P. Spray cooling heat-transfer with subcooled trichlorotrifluoroethane (freon-113) for vertical constant heat flux surfaces // Proc. of the Intern. Mechanical Engineerig Congress and Exposition. Atlanta, Georgia, 18–20 Nov. 1996.

  28. Ultra fast spray cooling and critical droplet daimeter estimation from cooling rate / M. Aamir, L. Qiang, Z. Xun, W. Hong, M. Zubair // J. Power Energy Eng. 2014. V. 2. No. 4. P. 259–270. https://doi.org/10.4236/jpee.2014.24037

  29. Zhao Y. The cooling of a hot steel plate by an impinging water jet. School of Mechanical, Materials and Mechatronics ‒ Faculty of Engineering, 2005.

  30. Experimental study on spray cooling under reduced pressures / C. Peng, X. Xu, Y. Li, Y. Li, X. Liang // Sci. China Technol. Sci. 2019. V. 62. Is. 2. P. 349–355. https://doi.org/10.1007/s11431-018-9370-y

  31. Experimental investigation of the influences of fluid properties on heat transfer for spray cooling / J. Kansy, T. Kalmbach, A. Loges, T. Wetzel, A. Wiebelt // Proc. of the 5th World Congress on Momentum, Heat and Mass Transfer (MHMT'20). Lisbon, Portugal Virtual Congress, Oct. 2020. No. ENFHT 122. https://doi.org/10.11159/enfht20.122

  32. Chen H.-T., Lee H.-C. Estimation of spray cooling characteristics on a hot surface using the hybrid inverse scheme // Int. J. Heat Mass Transfer. 2007. V. 50. Is. 13–14. P. 2503–2513. https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.021

  33. Modeling and experimental research on spray cooling / J.-Y. Jia, Y.-X. Guo, W.-D. Wang, S.-R. Zhou // Proc. of the 24th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, CA, USA, 16–20 March 2008. P. 118–123. https://doi.org/10.1109/STHERM.2008.4509377

  34. Tran C. Experimental study of water droplets impinging upon a hot surface: Thesis // Dissertation Collection. Rochester Institute of Technology, 2000.

  35. Kandlikar S.G., Bapat A.V. Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal // Heat Transfer Eng. 2007. V. 28. Is. 11. P. 911–923. https://doi.org/10.1080/01457630701421703

  36. Orlande H.R., Colaço M.J., Malta A.A. Estimation of the heat transfer coefficient in the spray cooling of continuously cast slabs // ASME-PUBLICATIONS-HTD. 1997. V. 340. P. 109–116.

  37. Landero J.C., Watkins A.P. Modelling of spray impingement heat transfer for spray cooling. 2000. https:// www.researchgate.net/profile/A-Watkins/publication/ 268363486_Modelling_of_Spray_Impingement_Heat_Transfer_for_Spray_Cooling/links/54fed5320cf2741b69 f175db/Modelling-of-Spray-Impingement-Heat-Transfer- for-Spray-Cooling.pdf

  38. Experimental study on phase change spray cooling / Y. Hou, X. Liu, J. Liu, M. Li, L. Pu // Exp. Therm. Fluid Sci. 2013. V. 46. P. 84–88. https://doi.org/10.1016/j.expthermflusci.2012.11.023

  39. Experimental result on heat transfer during quenching of hot steel plate by spray impingement / S.K. Nayak, P.C., Mishra, M. Ukamanal, R. Chaini // Heat Transfer Eng. 2018. V. 39. Is. 9. P. 739–749. https://doi.org/10.1080/01457632.2017.1341193

  40. Bhattacharya P., Samanta A.N., Chakraborty S. Spray evaporative cooling to achieve ultra fast cooling in runout table // Int. J. Therm. Sci. 2009. V. 48. Is. 9. P. 1741–1747. https://doi.org/10.1016/j.ijthermalsci.2009.01.015

  41. Zhang Z., Li J., Jiang P.-X. Experimental investigation of spray cooling on flat and enhanced surfaces // Appl. Therm. Eng. 2013. V. 51. Is. 1–2. P. 102–111. https://doi.org/10.1016/j.applthermaleng.2012.08.057

  42. Suebsomran A., Butdee S. Cooling process on a run-out table by the simulation method // Case Stud. Therm. Eng. 2013. V. 1. Is. 1. P. 51–56. https://doi.org/10.1016/j.csite.2013.07.002

  43. Pavlova A.A., Otani K., Amitay M. Active performance enhancement of spray cooling // Int. J. Heat Fluid Flow. 2008. V. 29. Is. 4. P. 985–1000. https://doi.org/10.1016/j.ijheatfluidflow.2008.02.006

  44. Bal S., Mishra P.C., Satapathy A.K. Optimization of spray parameters for effective microchannel cooling using surface response methodology // Int. J. Heat Technol. 2018. V. 36. Is. 3. P. 973–980. https://doi.org/10.18280/ijht.360325

  45. Influence of position and orientation of water spraying on the efficiency of a heat exchanger / S. Lacour, P.‑E. Vende, F. Trinquet, A. Delahaye, L. Fournaison // Proc. of the 4th Intern. Conf. on Contemporary Problems of Thermal Engineering (CPOTE). Katowice, Poland, Sept. 2016.V. 1.

  46. Spray cooling with ammonia on microstructured surfaces: performance enhancement and hysteresis effect / H. Bostanci, D.P. Rini, J.P. Kizito, L.C. Chow // J. Heat Transfer. 2009. V. 131. Is. 7. P. 071401. https://doi.org/10.1115/1.3089553

  47. Experimental investigation of parameters effect on heat transfer of spray cooling / W.-L. Cheng, Q.-N. Liu, R. Zhao, H.-L. Fan // Heat Mass Transfer. 2010. V. 46. Is. 8. P. 911– 921. https://doi.org/10.1007/s00231-010-0631-5

  48. Wang Y.Q., Liu N., Xu X.J. Research developments on improvement of spray cooling performance // Adv. Mater. Res. 2012. V. 588. P. 1735–1739. https://doi.org/10.4028/www.scientific.net/AMR.588-589.1735

  49. Measuring heat transfer during spray cooling using controlled induction-heating experiments and computational models / X. Zhou, B.G. Thomas, C.A.B. Hernández, A.H.E. Castillejos, F.A.G. Acosta // Appl. Math. Modell. 2013. V. 37. Is. 5. P. 3181–3192. https://doi.org/10.1016/j.apm.2012.07.039

  50. Study of heat transfer enhancement for structured surfaces in spray cooling / J.L. Xie, Y.B. Tan, F. Duan, K. Ranjith, T.N. Wong, K.C. Toh, K.F. Choo, P.K. Chan // Appl. Therm. Eng. 2013. V. 59. Is. 1–2. P. 464–472. https://doi.org/10.1016/j.applthermaleng.2013.05.047

  51. Horacek B., Kiger K.T., Kim J. Single nozzle spray cooling heat transfer mechanisms // Int. J. Heat Mass Transfer. 2005. V. 48. Is. 8. P. 1425–1438. https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.026

  52. Labergue A., Gradeck M., Lemoine F. Comparative study of the cooling of a hot temperature surface using sprays and liquid jets // Int. J. Heat Mass Transfer. 2015. V. 81. P. 889– 900. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.018

  53. McDonald A., Moreau C., Chandra S. Thermal contact resistance between plasma-sprayed particles and flat surfaces // Int. J. Heat Mass Transfer. 2007. V. 50. Is. 9–10. P. 1737–1749. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.022

  54. Moreira A.L., Carvalho J., Panao M.R. An experimental methodology to quantify the spray cooling event at intermittent spray impact // Int. J. Heat Fluid Flow. 2007. V. 28. Is. 2. P. 191–202. https://doi.org/10.1016/j.ijheatfluidflow.2006.03.004

  55. Experimental characterization of heat transfer in non-boiling spray cooling with two nozzles / Y. Tao, X. Huai, L. Wang, Z. Guo // Appl. Therm. Eng. 2011. V. 31. Is. 10. P. 1790– 1797. https://doi.org/10.1016/j.applthermaleng.2011.02.025

  56. Lin L., Ponnappan R. Heat transfer characteristics of spray cooling in a closed loop // Int. J. Heat Mass Transfer. 2003. V. 46. Is. 20. P. 3737–3746. https://doi.org/10.1016/S0017-9310(03)00217-5

  57. Lin C. Droplet impact and evaporation on nanotextured surface for high efficient spray cooling // An Overview of Heat Transfer Phenomena / Ed. by Salim N. Kazi. IntechOpen, 2012. https://doi.org/10.5772/51826

  58. Horacek B., Kim J., Kiger K.T. Spray cooling using multiple nozzles: visualization and wall heat transfer measurements // IEEE Transactions on Device and Materials Reliability. 2004. V. 4. No. 4. P. 614–625.

  59. Chabičovský M., Raudensky M. Experimental investigation of spray cooling of horizontally and vertically oriented surfaces // Metal. 2013. P. 198–204.

  60. A novel spray cooling device based on a dual synthetic jet actuator integrated with a piezoelectric atomizer / W. He, Z. Luo, X. Deng, Z. Xia // Heat Mass Transfer. 2020. V. 56. No. 5. P. 1551‒1563. https://doi.org/10.1007/s00231-019-02804-w

  61. Ochoterena R., Andersson S. Flow in nozzles and its influence on spray behaviour. Institute for Liqued Atomization and Spray Systems, 2004.

  62. Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants / Y. Sun, Z. Guan, H. Gurgenci, J. Wang, P. Dong, K. Hooman // Energy. 2019. V. 168. P. 273–284. https://doi.org/10.1016/j.energy.2018.11.111

  63. Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives / S.V. Ravikumar, J.M. Jha, I. Sarkar, S.S. Mohapatra, S.K. Pal, S. Chakraborty // Exp. Therm. Fluid Sci. 2013. V. 50. P. 79–89. https://doi.org/10.1016/j.expthermflusci.2013.05.007

  64. Fernandes P., Prabhu K.N. Effect of section size and agitation on heat transfer during quenching of AISI 1040 steel // J. Mater. Processing Technol. 2007. V. 183. Is. 1. P. 1–5. https://doi.org/10.1016/j.jmatprotec.2006.08.028

  65. Jia W., Qiu H.-H. Experimental investigation of droplet dynamics and heat transfer in spray cooling // Exp. Therm. Fluid Sci. 2003. V. 27. Is. 7. P. 829–838. https://doi.org/10.1016/S0894-1777(03)00015-3

  66. Experimental investigation on spray cooling with low-alcohol additives / H. Liu, C. Cai, M. Jia, J. Gao, H. Yin, H. Chen // Appl. Therm. Eng. 2019. V. 146. P. 921–930. https://doi.org/10.1016/j.applthermaleng.2018.10.054

  67. Qiao Y.M., Chandra S. Spray cooling enhancement by addition of a surfactant // J. Heat Transfer. 1998. V. 120. Is. 1. P. 92–98. https://doi.org/10.1115/1.2830070

  68. Horacek B., Kim J., Kiger K.T. Effects of noncondensable gas and subcooling on the spray cooling of an isothermal surface // ASME Intern Mechanical and Engineering Congress and Exposition. Washington, DC, USA. 15–21 Nov. 2003. P. 69‒77. https://doi.org/10.1115/IMECE2003-41680

  69. Coursey J.S. Enhancement of spray cooling heat transfer using extended surfaces and nanofluids. University of Maryland, College Park, 2007.

  70. Effects of mixed surfactants on heat transfer performance of pulsed spray cooling / N. Liu, Z. Yu, Y. Liang, H. Zhang // Int. J. Heat Mass Transfer. 2019. V. 144. P. 118593. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118593

  71. Panão M.R.O., Moreira A.L.N. Thermo- and fluid dynamics characterization of spray cooling with pulsed sprays // Exp. Therm. Fluid Sci. 2005. V. 30. Is. 2. P. 79–96. https://doi.org/10.1016/j.expthermflusci.2005.03.020

  72. Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures / Z.F. Zhou, R. Wang, B. Chen, T. Yang, G.X. Wang // Appl. Therm. Eng. 2016. V. 102. P. 813–821. https://doi.org/10.1016/j.applthermaleng.2016.04.004

  73. An experimental study on pulsed spray cooling with refrigerant R-404a in laser surgery / Z. Zhou, B. Chen, Y. Wang, L. Guo, G Wang // Appl. Therm. Eng. 2012. V. 39. P. 29–36.https://doi.org/10.1016/j.applthermaleng.2012.01.028

  74. Surface heat transfer characteristics of R404A pulsed spray cooling with an expansion-chambered nozzle for laser dermatology / R. Wang, Z. Zhou, B. Chen, F. Bai, G. Wang // Int. J. Refrig. 2015. V. 60. P. 206–216. https://doi.org/10.1016/j.ijrefrig.2015.08.016

  75. Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture / P.N. Karpov, A.D. Nazarov, A.F. Serov, V.I. Terekhov // Tech. Phys. Lett. 2015. V. 41. Is. 7. P. 668‒671. https://doi.org/10.1134/S1063785015070238

  76. Javurek M., Hauser K. Secondary cooling with pulsed sprays: enhanced cooling range and lower operating costs // Proc. of the 9th European Continuous Casting Conf. (ECCC). Vienna, Austria. 26‒29 June 2017. P. 12–18.

  77. Han F., Dong H., Ma F. Research on simulation of heat transfer characteristics of intermittent spray cooling // IOP Conf. Ser.: Earth Environ. Sci. 2021. V. 647. No. 1. P. 012060. https://doi.org/10.1088/1755-1315/647/1/012060

  78. Heat and mass transfer are in the interaction of multi-pulsed spray with vertical surfaces in the regime of evaporative cooling / P.N. Karpov, A.D. Nazarov, A.F. Serov, V.I. Terekhov // J. Phys.: Conf. Ser. 2017. V. 891. No. 1. P. 012031. https://doi.org/10.1088/1742- 6596/891/1/012031

  79. Barrow H., Pope C.W. Droplet evaporation with reference to the effectiveness of water-mist cooling // Appl. Energy. 2007. V. 84. Is. 4. P. 404–412. https://doi.org/10.1016/j.apenergy.2006.09.007

  80. Somasundaram S., Tay A.A.O. Intermittent spray cooling – Solution to optimize spray cooling // Proc. of the 14th Electronics Packaging Technological Conf. (EPTC). Singapore. 5–7 Dec. 2012. P. 588–593. https://doi.org/10.1109/EPTC.2012.6507150

Дополнительные материалы отсутствуют.