Теплоэнергетика, 2023, № 8, стр. 3-26

Перспективы использования двумерных наноматериалов в энергетических технологиях (обзор)

А. С. Дмитриев ab*, А. В. Клименко c**

a Национальный исследовательский университет “Московский энергетический институт”
111250 Москва, Красноказарменная ул., д. 14, стр. 1, Россия

b Институт графена
119019 Москва, Никитский бульв., д. 12, Россия

c Национальный исследовательский технологический университет “Московский институт стали и сплавов” (МИСиС)
119049 Москва, Ленинский просп., д. 4, Россия

* E-mail: asdmitriev@mail.ru
** E-mail: klimenkoav@bk.ru

Поступила в редакцию 23.01.2023
После доработки 15.02.2023
Принята к публикации 01.03.2023

Аннотация

Рассмотрены перспективы применения новых двумерных наноматериалов (2D-материалов) для интенсификации процессов тепломассообмена в энергетическом оборудовании. Представлены основные типы 2D-материалов, описаны их физико-технологические свойства и уникальные характеристики. Изучены отдельные технологические приемы изготовления двумерных материалов и создаваемых пленок, композитов, наножидкостей для различных энергетических приложений. Отдельное внимание уделено материалам на основе однослойного и многослойного графена, характеристикам материалов на базе графеновых компонентов, их физико-химическим и другим параметрам. Описаны эффекты, которые наблюдаются при использовании наножидкостей в качестве теплоносителей и при нанесении покрытий на основе 2D-материалов на теплопередающие поверхности при различных процессах теплообмена: однофазной конвекции, испарении, кипении, конденсации. Показано, что во всех случаях существенно повышается эффективность теплопереноса. Приведены конкретные примеры применения 2D-материалов в тепловых трубах и термосифонах, описаны способы улучшения характеристик этих устройств. Рассмотрены некоторые математические и физические модели функционирования двумерных материалов в энергетике. Особое внимание уделено особенностям механизмов теплопереноса, испарения, кипения и конденсации в энергетических системах. Однако указано, что имеются определенные трудности при выборе двумерных материалов для использования их в энергетике. Сделан вывод, что благодаря дополнительным исследованиям и активному применению 2D-материалов открываются беспрецедентные возможности для развития перспективных энергетических, строительных, электронных и других технологий, а также создания материалов следующего поколения с уникальными механическими, оптическими, электромагнитными и тепловыми свойствами.

Ключевые слова: тепломассообмен, теплоносители, наножидкости, двумерные наноматериалы, графен, пленочные покрытия тепловая труба, капельная и пленочная конденсация, коэффициент теплоотдачи

Список литературы

  1. Advanced materials for our energy future: Booklet / Materials Research Society, 2010.

  2. Advanced materials for clean and sustainable energy and mobility / M. Ierides, R. de Valle, D. Fernandez, L. Bax, P. Jacques, F. Stassin, M. Meeus. EMIRI, 2019.

  3. Total material requirement for the global energy transition to 2050: A focus on transport and electricity / T. Watari, B.C. McLellan, D. Giurco, E. Dominish, E. Yamasue, K. Nansai // Resour., Conserv. Recycl. 2019. V. 148. P. 91–103. https://doi.org/10.1016/j.resconrec.2019.05.015

  4. Materials challenges for nuclear systems / T. Allen, J. Busby, M. Meyer, D. Petti // Mater. Today. 2010. V. 13. Is. 12. P. 14–23. https://doi.org/10.1016/S1369-7021(10)70220-0

  5. Дмитриев А.С., Клименко А.В. Преобразование солнечного излучения в пар – новые возможности на основе наноматериалов (обзор) // Теплоэнергетика. 2020. № 2. С. 3–19. https://doi.org/10.1134/S0040363620020010

  6. Дмитриев А.С., Михайлова И.А. Введение в наноэнергетику: учеб. пособие. М.: Издательский дом МЭИ, 2011.

  7. Дмитриев А.С., Михайлова И.А. Физико-химия наноструктур. М.: Издательский дом МЭИ, 2013.

  8. Дмитриев А.С. Теплофизические проблемы наноэнергетики. Часть 1, 2 // Теплоэнергетика. 2010. № 12. С. 13 –22; 2011. № 4. С. 29–36.

  9. Дмитриев А.С. Введение в нанотеплофизику. М.: БИНОМ, 2015.

  10. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications / F. Fan, R. Wang, H. Zhang, W. Wu // Chem. Soc. Rev. 2021. V. 50. Is. 19. P. 10983–11031. https://doi.org/10.1039/C9CS00821G

  11. Vishnoi P., Pramoda K., Rao C.N.R. 2D elemental nanomaterials beyond graphene // ChemNanoMat. 2019. V. 5. Is. 9. P. 1062–1091. https://doi.org/10.1002/cnma.201900176

  12. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 / M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. Barsoum // Adv. Mater. 2011. V. 23. Is. 37. P. 4248–4253. https://doi.org/10.1002/adma.201102306

  13. Najafabadi A.T. Emerging applications of graphene and its derivatives in carbon capture and conversion: current status and future prospects // Renewable Sustainable Energy Rev. 2015. V. 41. P. 1515–1545. https://doi.org/10.1016/j.rser.2014.09.022

  14. Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes / L. Martini, Z. Chen, N. Mishra, N. Mishra, G.B. Barin, P. Fantuzzi, P. Ruffieux, R. Fasel, X. Feng, A. Narita, C. Coletti, K. Müllen, A. Candini // Carbon. 2019. V. 146. P. 36–43. https://doi.org/10.1016/j.carbon.2019.01.071

  15. Iwan A., Malinowski M., Pasciak G. Polymer fuel cell components modified by graphene: electrodes, electrolytes and bipolar plates // Renewable Sustainable Energy Rev. 2015. V. 49. P. 954–967. https://doi.org/10.1016/j.rser.2015.04.093

  16. 2D materials as an emerging platform for nanopore- based power generation / M. Macha, S. Marion, V.V.R. Nandigana, A. Radenovic // Nat. Rev. Mater. 2019. V. 4. P. 588–605. https://doi.org/10.1038/s41578-019-0126-z

  17. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage / F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini // Sci. 2015. V. 347. Is. 6217. P. 1246501. https://doi.org/10.1126/science.1246501

  18. Graphene and graphene-like materials for hydrogen energy / O.K. Alekseeva, I.V. Pushkareva, A.S. Pushkarev, V.N. Fateev // Nanotechnol. in Russia. 2020. V. 15. Is. 3. P. 273–300. https://doi.org/10.1134/S1995078020030027

  19. Deng S., Berry V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications // Mater. Today. 2016. V. 19. Is. P. 197–212. https://doi.org/10.1016/j.mattod.2015.10.002

  20. Larcher D., Tarascon J.-M. Towards greener and more sustainable batteries for electrical energy storage // Nat. Chem. 2015. V. 7. P. 19–29. https://doi.org/10.1038/nchem.2085

  21. Lee S., Cho J. Critical requirements for rapid charging of rechargeable Al- and Li-ion batteries // Angew. Chem. 2015. V. 54. Is. 33. P. 9452–9455. https://doi.org/10.1002/anie.201504466

  22. Whittingham M.S. Lithium batteries and cathode materials // Chem. Rev. 2004. V. 104. Is. 10. P. 4271–4302. https://doi.org/10.1021/cr020731c

  23. Visualization and quantification of electrochemical and mechanical degradation in Li-ion batteries / M. Ebner, F. Marone, M. Stampanoni, V. Wood // Sci. 2013. V. 342. Is. 6159. P. 716–720. https://doi.org/10.1126/science.1241882

  24. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets / M. Chhowalla, H. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang // Nat. Chem. 2013. V. 5. P. 263–275. https://doi.org/10.1038/nchem.1589

  25. Pumera M., Sofer Z., Ambrosi A. Layered transition metal dichalcogenides for electrochemical energy generation and storage // J. Mater. Chem. A. 2014. V. 2. Is. 24. P. 8981–8987. https://doi.org/10.1039/C4TA00652F

  26. 25th anniversary article: MXenes: a new family of two-dimensional materials / M. Naguib, V. Mochalin, M. Barsoum, Y. Gogotsi // Adv. Mater. 2014. V. 26. Is. 7. 992–1005. https://doi.org/10.1002/adma.201304138

  27. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries / P. He, H. Yu, D. Li, H. Zhou // J. Mater. Chem. 2012. V. 22. Is. 9. P. 3680–3695. https://doi.org/10.1039/C2JM14305D

  28. Layered oxides as positive electrode materials for N-a‑ion batteries / K. Kubota, N. Yabuuchi, H. Yoshida, M. Dahbi, S. Komaba // MRS Bull. 2014. V. 39. P. 416–422. https://doi.org/10.1557/mrs.2014.85

  29. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes / D. Kim, S.-H. Kang, M. Slater, S. Rood, J.T. Vaughey, N. Karan, M. Balasubramanian, C.S. Johnson // Adv. Energy Mater. 2011. V. 1. Is. 3. P. 333–336. https://doi.org/10.1002/aenm.201000061

  30. Hynek D., Pondick J., Cha J. The development of 2D materials for electrochemical energy applications: A mechanistic approach // APL Mater. 2019. V. 7. Is. 3. P. 030902. https://doi.org/10.1063/1.5085187

  31. Ni W., Shi L. Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene: a review article // J. Vacuum Sci. Technol. A. 2019. V. 37. Is. 4. P. 040803. https://doi.org/10.1116/1.5095413

  32. Two-dimensional material-based heterostructures for rechargeable batteries / Z. Hu, Q. Liu, S.-L. Chou, S.-X. Dou // Cell Rep. Phys. Sci. 2021. V. 2. Is. 1. P. 100286. https://doi.org/10.1016/j.xcrp.2020.100286

  33. Lu Y., Yu L., Lou X. Nanostructured conversion-type anode materials for advanced lithium-ion batteries // Chem. 2018. V. 4. Is. 5. P. 972–996. https://doi.org/10.1016/j.chempr.2018.01.003

  34. Two-dimensional material separation membranes for renewable energy purification, storage, and conversion / L. Dai, K. Huang, Y. Xia, Z. Xu // Green Energy Environ. 2021. V. 6. Is. 2. P. 193–211. https://doi.org/10.1016/j.gee.2020.09.015

  35. Materials for future nuclear energy systems / G.S. Was, D. Petti, S. Ukai, S. Zinkle // J. Nucl. Mater. 2019. V. 527. P. 151837.https://doi.org/10.1016/j.jnucmat.2019.151837

  36. Torii S. Enhancement of heat transfer performance in pipe flow using graphene-oxide-nanofluid and its application // Mater. Today: Proc. 2021. V. 35. Part 3. P. 506–511. https://doi.org/10.1016/j.matpr.2020.04.078

  37. Dmitriev A.S. Hybrid graphene nanocomposites: thermal interface materials and functional energy materials in: graphene production and application // Graphene Production and Application / Ed. by S. Ameen, M.S. Akhtar, H.-S. Shin. IntechOpen, 2019. https://doi.org/10.5772/intechopen.89631

  38. Role of graphene nanofluids on heat transfer enhancement in thermosiphon / S. Das, A. Giri, S. Samanta, S. Kanagaraj // J. Sci.: Adv. Mater. Devices. 2019. V. 4. Is.1. P. 163–169. https://doi.org/10.1016/j.jsamd.2019.01.005

  39. Graphene-water nanofluid in heat exchanger: Mathematical modelling, simulation and economic evaluation / D. Purbia, A. Khandelwal, A. Kumar, A. Sharma // Int. Commun. Heat Mass Transfer. 2019. V. 108. P. 104327. https://doi.org/10.1016/j.icheatmasstransfer.2019.104327

  40. Keklikcioglu O., Dagdevir T., Ozceyhan V. Heat transfer and pressure drop investigation of graphene nanoplatelet-water and titanium dioxide-water nanofluids in a horizontal tube // Appl. Therm. Eng. 2019. V. 162. Is. 5. P. 114256. https://doi.org/10.1016/j.applthermaleng.2019.114256

  41. Vishnuprasad S., Haribabu K., Perarasu V.T. Experimental study on the convective heat transfer performance and pressure drop of functionalized graphene nanofluids in electronics cooling system // Heat Mass Transfer. 2019. V. 55. Is. 8. P. 2221–2234. https://doi.org/10.1007/s00231-019-02581-6

  42. An optimized graphene oxide self-assembly surface for significantly enhanced boiling heat transfer / W. Zhou, L. Mao, X. Hu, Y. He // Carbon. 2019. V. 50. P. 168–178. https://doi.org/10.1016/j.carbon.2019.04.119

  43. A lightweight and high thermal performance graphene heat pipe / Y. Liu, S. Chen, Y. Fu, N. Wang, D. Mencarelli, L. Pierantoni, H. Lu, J. Liu // Nano Sel. 2020. V. 2. Is. 2. P. 364–372. https://doi.org/10.1002/nano.202000195

  44. Thermal performance of miniature loop heat pipe with graphene–water nanofluid / T. Tharayil, L. Asirvatham, V. Ravindran, S. Wongwises // Int. J. Heat Mass Transfer. 2016. V. 93. P. 957–968. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.011

  45. Solution-processed graphene oxide coatings for enhanced heat transfer during dropwise condensation of steam / E. Colusso, M. Tancon, L. Cazzola, R. Parin, S. Agnoli, F. De Boni, M.G. Pelizzo, E.D. Gaspera, D. Del Col, A. Martucci // Nano Sel. 2021. V. 2. Is. 1. P. 61–71. https://doi.org/10.1002/nano.202000105

  46. Investigation of structure-property-boiling enhancement mechanisms of copper/graphene nanoplatelets coatings / A.M. Rishi, S.A. Rozati, C. Trybus, S.G. Kandlikar, A. Gupta // Front. Mech. Eng. 2021. V. 2. P. 642214. https://doi.org/10.3389/fmech.2021.642214

  47. Scalable graphene coatings for enhanced condensation heat transfer / D.J. Preston, D.L. Mafra, N. Miljkovic, J. Kong, E.N. Wang // Nano Lett. 2015. V. 15. Is. 5. P. 2902–2909. https://doi.org/10.1021/nl504628s

  48. Jaikumar A., Kandlikar S., Gupta A. Pool boiling enhancement through graphene and graphene oxide coatings // Heat Transfer Eng. 2017. V. 38. Is. 14–15. [Selected papers from the 13th Intern. Conf. on Nanochannels, Microchannels and Minichanles. San Francisco, California, USA, 6–9 July 2015.] P. 1274–1284. https://doi.org/10.1080/01457632.2016.1242959

  49. Lee M., Heo H., Bang I. Effect of thermal activity on critical heat flux enhancement in downward-hemispherical surface using graphene oxide coating // Int. J. Heat Mass Transfer. 2018. V. 127. Part B. P. 1102–1111. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.151

  50. Kim T., Park H., Chang S. CHF experiments using a 2-D curved test section with additives for IVR-ERVC strategy // Nucl. Eng. Des. 2021. V. 243. P. 272–278. https://doi.org/10.1016/j.nucengdes.2011.11.031

  51. Comparison between nucleate pool boiling heat transfer of graphene nanoplatelet- and carbon nanotube-based aqueous nanofluids / A. Akbari, E. Mohammadian, S.A.A. Fazel, M. Shanbedi, M. Bahreini, M. Heidari, G. Ahmadi // ACS Omega. 2019. V. 4. Is. 21. P. 19183–19192. https://doi.org/10.1021/acsomega.9b02474

  52. Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow // Int. Chem. Eng. 1979. V. 16. Is. 2. P. 359–368.

  53. Experimental investigation on thermophysical properties of Therminol® 55 based hybrid nanofluids with alumina and graphene nanoplatelets for medium temperature applications / S. Shajan, V. Baiju, T.S. Krishnakumar, A. Godwin, T. Linia, A. Manu, M.B. Safeer // Therm. Sci. Eng. Prog. 2021. V. 26. P. 101116. https://doi.org/10.1016/j.tsep.2021.101116

  54. Graphene-water nanofluid in heat exchanger: Mathematical modelling, simulation and economic evaluation / D. Purbia, A. Khandelwal, A. Kumar, A. Sharma // Int. Commun. Heat Mass Transfer. 2019. V. 108. P. 104327. https://doi.org/10.1016/j.icheatmasstransfer.2019.104327

  55. Effect of thermal conductivity on enhanced evaporation of water droplets from heated graphene – PDMS composite surfaces / P. Goel, M. Choudhury, A. Aqeel, X. Li, L.-H. Shao, H. Duan // Langmuir. 2019. V. 35. Is. 21. P. 6916–6921. https://doi.org/10.1021/acs.langmuir.9b00799

  56. Heat transfer enhancement of a multilayer graphene coating surface / C.-H. Wu, Y.A. Lee, Y.J. Lai, J. Shieh, C.R. Yang, C.-C. Hsu // Exp. Therm. Fluid Sci. 2020. V. 118. P. 110175. https://doi.org/10.1016/j.expthermflusci.2020.110175

  57. Nucleate pool boiling enhancement by ultrafast water permeation in graphene-nanostructure / K.K. Lay, J.S. Ong, K.Y. Yong, M.K. Tan, Y.M. Hung // Int. Commun. Heat Mass Transfer. 2019. V. 101. P. 26–34. https://doi.org/10.1016/j.icheatmasstransfer.2018.12.015

  58. Sezer N., Khan S., Koç M. Boiling heat transfer enhancement by self-assembled graphene/silver hybrid film for the thermal management of concentrated photovoltaics // Energy Technol. 2020. V. 8. Is. 11. P. 2000532. https://doi.org/10.1002/ente.202000532

  59. Thermal performance enhancement and optimization of two-phase closed thermosyphon with graphene-nanoplatelets coatings / V.O. Ng, H. Yu, H.A. Wu, Y.M. Hung // Energy Convers. Manage. 2021. V. 236. P. 114039. https://doi.org/10.1016/j.enconman.2021.114039

  60. Thermohydraulic analysis of covalent and noncovalent functionalized graphene nanoplatelets in circular tube fitted with turbulators / H. Tao, O.A. Alawi, O.A. Hussein, W. Ahmed, A.H. Abdelrazek, R.Z. Homod, M. Eltaweel, M.W. Falah, N. Al-Ansari, Z.M. Yaseen // Sci. Rep. 2022. V. 12. P. 17710. https://doi.org/10.1038/s41598-022-22315-9

  61. Thermal performance of hybrid thermal interface graphene nanocomposites / D.D. Babenko, A.A. Dmitriev, A.S. Dmitriev, I.A. Mikhailova // J. Phys.: Conf. Ser. 2020. V. 1683. Is. 3. P. 032041 https://doi.org/10.1088/1742-6596/1683/3/032041

  62. Babenko D.D., Dmitriev A.S., Mikhailova I.A. Thermohydrodynamic processes of droplet evaporation and boiling on functional nanomaterials surfaces // J. Phys.: Conf. Ser. 2020. V. 1565. [All-Russian scientific conf. with international participation “Thermophysics and Power Engineering in Academic Centers” (TPEAC-2019). St. Petersburg, Russia, 21–23 Oct. 2019.] P. 012010. https://doi.org/10.1088/1742-6596/1565/1/012010

  63. Physical features of Leidenfrost effect on the surface of a graphene nanocomposite for the problems of thermal and nuclear energy / D.D. Babenko, A.S. Dmitriev, V.V. Mikhailov, I.A. Mikhailova // IOP Conf. Series: Mater. Sci. Eng. 2018. V. 447. P. 012044. https://doi.org/10.1088/1757-899X/447/1/012044

  64. Dmitriev A.A., Dmitriev A.S., Mikhailova I. New nanocomposite thermal interface materials based on graphene flakes, mesoscopic microspheres and polymers // MATEC Web Conf. 2018. V. 207. Is. 2. P. 04002. https://doi.org/10.1051/matecconf/201820704002

  65. Dmitriev A.S., Valeev A.R. Graphene nanocomposites as thermal interface materials for cooling energy devices // J. Phys.: Conf. Ser. 2017. V. 891. [The Intern. Conf. “Problems of Thermal Physics and Power Engineering” (PTPPE-2017). Moscow, Russia, 9–11 Oct. 2017.] P. 012359. https://doi.org/10.1088/1742-6596/891/1/012359

  66. Dmitriev A.S. Non-trivial capillary hydrodynamics and strong evaporative cooling in multilayer two-dimensional materials: application in thermal management systems of electronic and energy devices // J. Phys.: Conf. Ser. 2021. V. 2039. [XXIII School-Seminar of young scientists and specialists under the leadership of the academician, professor A.I. Leontiev “Problems of Heat and Mass Transfer and Gas Dynamics in Power Plants” (XXIII SSYSS 2021). Yekaterinburg, Russia, 24–28 May 2021.] P. 012008. https://doi.org/10.1088/1742-6596/2039/1/012008.A.S

  67. Goh J.Y.H., Hung Y.M., Tan M.K. Extraordinarily enhanced evaporation of water droplets on graphene-nanostructured coated surfaces // Int. J. Heat Mass Transfer. 2020. V. 163. P. 120396. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120396

  68. Graphene-based devices for thermal energy conversion and utilization / Y.-T. Li, Y. Tian, M.-X. Sun, T. Tu, Z.-Y. Ju, G.-Y. Gou, Y.-F. Zhao, Z.-Y. Yan, F. Wu, D. Xie, H. Tian, Y. Yang, T.-L. Ren // Adv. Funct. Mater. 2019. V. 30. Is. 8. P. 1903888. https://doi.org/10.1002/adfm.201903888

  69. Recent developments, challenges, and pathways to stable dropwise condensation: A perspective / J. Ma, S. Sett, H. Cha, X. Yan, N. Miljkovic // Appl. Phys. Lett. 2020. V. 116. Is. 8. P. 260501. https://doi.org/10.1063/5.0011642

  70. Sustaining dropwise condensation on nickel-plated copper surfaces with as-grown graphene coatings / W. Chang, K. Luo, P. Wang, C. Li // Appl. Therm. Eng. 2022. V. 209. P. 118319. https://doi.org/10.1016/j.applthermaleng.2022.118319

  71. Few-layer graphene on nickel enabled sustainable dropwise condensation / W. Chang, B. Peng, K. Egab, Y. Zhang, Y. Cheng, X. Li, X. Ma, C. Li // Sci. Bull. 2021. V. 66. Is. 18. P. 1877–1884. https://doi.org/10.1016/j.scib.2021.06.006

  72. Haque M.R., Das S.R., Betz A.R. Experimental investigation of condensation and freezing phenomena on hydrophilic and hydrophobic graphene coating // Appl. Therm. Eng. 2019. V. 160. P. 113987. https://doi.org/10.1016/j.applthermaleng.2019.113987

  73. Grain size effects on the wettability of as-grown graphene and dropwise condensation / W. Chang, B. Peng, A.S. Khan, M. Alwazzan, Y. Zhang, X. Li, Y. Tong, C. Li // Carbon. 2021. V. 171. P. 507–513. https://doi.org/10.1016/j.carbon.2020.09.025

  74. Enhanced heat transport behavior of micro channel heat sink with graphene based nanofluids / T. Balaji, C. Selvam, D.M. Lal, S. Harish // Int. Commun. Heat Mass Transfer. 2020. V. 117. P. 104716. https://doi.org/10.1016/j.icheatmasstransfer.2020.104716

  75. A review on graphene based nanofluids: Preparation, characterization and applications / A. Arshad, M. Jabbal, Y. Yan, D. Reay // J. Mol. Liq. 2019. V. 279. P. 444–484. https://doi.org/10.1016/j.molliq.2019.01.153

  76. Thermophysical performance of graphene based aqueous nanofluids / Y. Wang, H.A.I. Al-Saaidi, M. Kong, J.L. Alvarado // Int. J. Heat Mass Transfer. 2018. V. 119. P. 408–417. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.019

  77. Review on the recent progress in the preparation and stability of graphene‑based nanofluids / T.L. Ba, O. Mahian, S. Wongwises, I.M. Szilagyi // J. Therm. Anal. Calorimetry. 2020. V. 142. P. 1145–1172. https://doi.org/10.1007/s10973-020-09365-9

  78. Enhanced boiling heat transfer by nucleation patterning with self-assembly of reduced graphene oxide coating / G. Choi, M. Yun, W.-T. Hsu, D. Shim, D. Lee, B.S. Kim, H.H. Cho // Int. J. Heat Mass Transfer. 2022. V. 197. P. 123329. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123329

  79. Performance enhancement of graphene-coated micro heat pipes for light-emitting diode cooling / J.S. Gan, H. Yu, M.K. Tan, A.K. Soh, H.A. Wu, Y.M. Hung // Int. J. Heat Mass Transfer. 2020. V. 154. P. 119687. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119687

  80. Dmitriev A.S., Klimenko A.V. On thermal problems of the solar thermal multigeneration: new nanomaterials and working fluids // J. Phys.: Conf. Ser. 2022. V. 2150. [XII All Russian conf. “Thermophysics and Power Engineering in Academic Centers” (TPEAC 2021). Sochi, Russia, 25–27 Oct. 2021.] P. 012006. https://doi.org/10.1088/1742-6596/2150/1/012006

  81. On the dynamic effects of evaporation and boiling of drops on inhomogeneous graphene substrates for effective thermal management of energy devices / D.D. Babenko, A.S. Dmitriev, V.V. Mikhailov, I.A. Mikhailova // J. Phys.: Conf. Ser. 2021. V. 2039. [XXIII School-seminar of young scientists and specialists under the leadership of the academician, professor A.I. Leontiev “Problems of Heat and Mass Transfer and Gas Dynamics in Power Plants” (XXIII SSYSS 2021). Yekaterinburg, Russia, 24–28 May 2021.] P. 012002. https://doi.org/10.1088/1742-6596/2039/1/012002

  82. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion / K.-T. Lin, H. Lin, T. Yang, B. Jia // Nat. Commun. 2020. V. 11. P. 1389. https://doi.org//10.1038/s41467-020-15116-z

  83. Recent progress in two dimensional Mxenes for photocatalysis: A critical review / T. Haneef, K. Rasoo, J. Iqba, R. Nawaz, M.R.U. Mustafa, K.A. Mahmoud, T. Sarkar, A. Shahzad // 2D Mater. 2022. V. 10. Is. 1. P. 012001. https://doi.org/10.1088/2053-1583/ac9e66

  84. 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes) / P. Urbankowski, B. Anasori, K. Hantanasirisakul, L. Yang, L. Zhang, B. Haines, S.J. May, S.J.L. Billinge, Y. Gogotsi // Nanoscale. 2017. V. 9. Is. 45. P. 17722–17730. https://doi.org/10.1039/C7NR06721F

  85. Application of graphene in energy storage device – A review / A. Olabi, M. Abdelkareem, T. Wilberforce, E. Sayed // Renewable Sustainable Energy Rev. 2021. V. 135. P. 110026. https://doi.org/10.1016/j.rser.2020.110026

  86. An advanced electrocatalyst with exceptional eletrocatalytic activity via ultrafine Pt-based trimetallic nanoparticles on pristine graphene / J. Zhao, H. Li, Z. Liu, W. Hu, C. Zhao, D. Shi // Carbon. 2015. V. 87. P. 116–127. https://doi.org/10.1016/j.carbon.2015.01.038

Дополнительные материалы отсутствуют.