Прикладная биохимия и микробиология, 2023, T. 59, № 3, стр. 309-317

Разработка кинетического микропланшетного иммуноферментного определения дибутилфталата

А. Н. Берлина 1, К. В. Серебренникова 1, Н. С. Комова 1, А. В. Жердев 1, Б. Б. Дзантиев 1*

1 Институт биохимии им. А.Н. Баха, Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
119071 Москва, Россия

* E-mail: dzantiev@inbi.ras.ru

Поступила в редакцию 15.12.2022
После доработки 30.12.2022
Принята к публикации 09.01.2023

Аннотация

В работе предложена методика быстрого иммуноферментного анализа (ИФА) для определения дибутилфталата (ДБФ) в фруктовых соках, основанная на конкурентном взаимодействии между свободным и связанным антигеном за центры связывания специфических антител. Изучены аналитические характеристики метода в различных кинетических режимах проведения стадии конкуренции. Установлены оптимальные условия, обеспечивающие минимальный предел обнаружения и высокую точность измерений. Выбрана продолжительность конкурентной стадии ИФА – 30 мин. Диапазон определяемых концентраций ДБФ составил от 0.37 до 68.34 нг/мл; предел обнаружения – 0.08 нг/мл. Выбран режим экстрагирования ДБФ, для которого показана эффективность предложенного ИФА при тестировании фруктовых соков.

Ключевые слова: иммуноферментный анализ, кинетика иммунных взаимодействий, дибутилфталат, безопасность пищевых продуктов, фруктовый сок, экстракция, экотоксикант

Список литературы

  1. Chen Y., He Q., Shen D., Jiang Zh., Eremin S.A., Zhao S. // Food Control. 2019. V. 105. P. 38–44. https://doi.org/10.1016/j.foodcont.2018.11.052

  2. Huang Zh., Tu Ch., Liu H., Wang L., Zhu Z., Watanabe I. // J. Chromatogr. A. 2020. V. 1619. Article 460953. https://doi.org/10.1016/j.chroma.2020.460953

  3. Yan Y., Lu Y., Wang B., Gao Y., Zhao L., Liang H., Wu D. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 31. P. 26539–26545. https://doi.org/10.1021/acsami.8b08934

  4. Tang M., Wu Y., Deng D., Wei J., Zhang J., Yang D., Li G. // Sens. Actuators B Chem. 2018. V. 258. P. 304–312. https://doi.org/10.1016/j.snb.2017.11.120

  5. Giuliani A., Zuccarini M., Cichelli A., Khan H., Reale M. // Int. J. Environ. Health Res. 2020. V. 17. № 16. Article 5655. https://doi.org/10.3390/ijerph17165655

  6. Zhou Y., Li J., Zhang L., Ge Z., Wang X., Hu X., Xu T., Li P. // Anal. Bioanal. Chem. 2019. V. 411. № 22. P. 5691–5701. https://doi.org/10.1007/s00216-019-01947-3

  7. Luo H., Liu C., He D., Sun J., Li J., Pan X. // Sci. Total Environ. 2022. V. 849. Article 157951. https://doi.org/10.1016/j.scitotenv.2022.157951

  8. Guo W., Li J., Luo M., Mao Y., Yu X., Elskens M., Baeyens W., Gao Y. // Water Res. 2022. V. 214. Article 118189. https://doi.org/10.1016/j.watres.2022.118189

  9. Zhu N., Zou Y., Huang M., Dong S., Wu X., Liang G., Han Z., Zhang Z. // Talanta. 2018. V. 186. P. 104–109. https://doi.org/10.1016/j.talanta.2018.04.023

  10. Baranovskaya V.S., Berlina A.N., Eremin S.A. // J. Anal. Chem. 2022. V. 77. № 4. P. 466–472. https://doi.org/10.1134/S1061934822040037

  11. Montuori P., Jover E., Morgantini M., Bayona J.M., Triassi M. // Food Addit. Contam. – Chem. Anal. Control Expo. Risk Assess. 2008. V. 25. № 4. P. 511–518. https://doi.org/10.1080/02652030701551800

  12. Adeniyi A.A., Okedeyi O.O., Yusuf K.A. // Environ. Monit. Assess. 2011. V. 172. № 1. P. 561–569. https://doi.org/10.1007/s10661-010-1354-2

  13. Luís C., Algarra M., Câmara J.S., Perestrelo R. // Toxics. 2021. V. 9. № 7. Article 157. https://doi.org/10.3390/toxics9070157

  14. Otero P., Saha S.K., Moane S., Barron J., Clancy G., Murray P. // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2015. V. 997. P. 229–235. https://doi.org/10.1016/j.jchromb.2015.05.036

  15. Barciela-Alonso M.C., Otero-Lavandeira N., Bermejo-Barrera P. // Microchem. J. 2017. V. 132. P. 233–237. https://doi.org/10.1016/j.microc.2017.02.007

  16. Sakaki J.R., Melough M.M., Provatas A.A., Perkins Ch., Chun O.K. // Toxicol. Rep. 2020. V. 7. P. 1020–1024. https://doi.org/10.1016/j.toxrep.2020.08.015

  17. Wang X., Chen Ch., Chen Y., Kong F., Xu Zh. // Food Agric. Immunol. 2020. V. 31. № 1. P. 811–836. https://doi.org/10.1080/09540105.2020.1774746

  18. Liu S., Cheng R., Chen Y., Shi H., Zhao G. // Sens. Actuators B Chem. 2018. V. 254. P. 1157–1164. https://doi.org/10.1016/j.snb.2017.08.003

  19. Zhang Z., Zeng K., Liu J. // Trends Anal. Chem. 2017. V. 87. P. 49–57. https://doi.org/10.1016/j.trac.2016.12.002

  20. Li J., Jin H., Wei M., Ren W., Wang J., Zhang Y., Wu L., He B. // Sens. Actuators B Chem. 2021. V. 331. Article 129401. https://doi.org/10.1016/j.snb.2020.129401

  21. Berlina A.N., Ragozina M.Y., Komova N.S., Serebrennikova K.V., Zherdev A.V., Dzantiev B.B. // Biosensors. 2022. V. 12. № 11. Article 1002. https://doi.org/10.3390/bios12111002

  22. Xu F., Ren K., Yang Y.-Z., Guo J.-P., Ma G.-P., Liu Y.-M., Lu Y.-Q., Li X.-B. // J. Integr. Agric. 2015. V. 14. № 11. P. 2282–2295. https://doi.org/10.1016/S2095-3119(15)61121-2

  23. Sanchis A., Salvador J.P., Marco M.P. // Trends Anal. Chem. 2018. V. 106. P. 1–10. https://doi.org/10.1016/j.trac.2018.06.015

  24. Sun R., Zhuang H. // Food Anal. Methods. 2015. V. 8. № 8. P. 1990–1999. https://doi.org/10.1007/s12161-014-0085-3

  25. Jaria G., Calisto V., Otero M., Esteves V.I. // Anal. Bioanal. Chem. 2020. V. 412. № 17. P. 3983–4008. https://doi.org/10.1007/s00216-020-02509-8

  26. Dou L., Zhang Y., Bai Y., Li Y., Liu M., Shao Sh., Li Q., Yu W., Shen J., Wang Zh. // J. Agric. Food Chem. 2022. V. 70. № 4. P. 976–991. https://doi.org/10.1021/acs.jafc.1c06750

  27. Huebner M., Weber E., Niessner R., Boujday S., Knopp D. // Anal. Bioanal. Chem. 2015. V. 407. № 29. P. 8873–8882. https://doi.org/10.1007/s00216-015-9048-9

  28. Chen Y., Li J., Lu P., Hu D., Xue W., Ding X. // Food Agric. Immunol. 2017. V. 28. № 5. P. 904–915. https://doi.org/10.1080/09540105.2017.1320356

  29. Liu Z., Zhang Z., Zhu G., Sun J., Zou B., Li M., Wang J. // Sci. Total Environ. 2016. V. 551–552. P. 484–488. https://doi.org/10.1016/j.scitotenv.2016.02.017

  30. Xiong Y., Leng Y., Li X., Huang X., Xiong Y. // TrAC Trends Analyt. Chem. 2020. V. 126. Article 115861. https://doi.org/10.1016/j.trac.2020.115861

  31. Zhang Zh., Zhu N., Zou Y., Wu X., Qu G., Shi J. // Talanta. 2018. V. 179. P. 64–69. https://doi.org/10.1016/j.talanta.2017.10.051

  32. Zhou L., Lei Y., Zhang D., Ahmed S., Chen S. // Sci. Total Environ. 2016. V. 541. P. 570–578. https://doi.org/10.1016/j.scitotenv.2015.09.110

  33. Yanagisawa N., Dutta D. // Biosensors. 2011. V. 1. № 2. P. 58–69. https://doi.org/10.3390/bios1020058

  34. Urusov A.E., Zherdev A.V., Petrakova A.V., Sadykhov E.G., Koroleva O.V., Dzantiev B.B. // Toxins. 2015. V. 7. №. 2. P. 238–254. https://doi.org/10.3390/toxins7020238

  35. Sotnikov D.V., Zherdev A.V., Zvereva E.A., Eremin S.A., Dzantiev B.B. // Appl. Sci. 2021. V. 11. № 14. Article 6581. https://doi.org/10.3390/app11146581

  36. Wang Y., He C.H., Zheng H., Zhang H.B. // Int/ J. Mol. Sci. 2012. V. 13. № 1. P. 84–96. https://doi.org/10.3390/ijms13010084

  37. Campanella B., Palleschi V., Legnaioli S. // ChemTexts. 2021. V. 7. № 1. P. 1–21. https://doi.org/10.1007/s40828-020-00129-4

  38. Kong J., Yu S. // Acta Biochim. Biophys. Sin. 2007. V. 39. № 8. P. 549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x

  39. Ramesh S., Yin T.S., Liew C.-W. // Ionics. 2011. V. 17. № 8. P. 705–713. https://doi.org/10.1007/s11581-011-0568-9

  40. Rajamanikyam M., Vadlapudi V., Parvathaneni S.P., Koude D., Sripadi P., Misra S., Amanchy R., Upadhyayula S.M. // EXCLI J. 2017. V. 16. P. 375–387. https://doi.org/10.17179/excli2017-145

  41. Ye X., Wang P., Wu Y., Zhou Y., Sheng Y., Lao K. // Environ. Sci. Pollut. Res. 2020. V. 27. № 33. P. 42082–42091. https://doi.org/10.1007/s11356-020-10136-0

  42. Xu Zh., Xiong X., Zhao Y., Xiang W., Wu Ch. // J. Hazard. Mater. 2020. V. 384. Article 121282. https://doi.org/10.1016/j.jhazmat.2019.121282

  43. Rastkari N., Jeddi M.Z., Yunesian M., Ahmadkhaniha R. // J. Environ. Health Sci. Eng. 2018. V. 16. № 1. P. 27–33. https://doi.org/10.1007/s40201-018-0292-8

  44. Zhu F., Zhang H., Qiu M., Wu N., Zeng K., Du D. // Sci. Total Environ. 2019. V. 695. Article 133793. https://doi.org/10.1016/j.scitotenv.2019.133793

  45. Xiong D., Zhu N., Zhu F., Yakubu S., Lv J., Liu J., Zhang Z. // J. Hazard. Mater. 2022. V. 425. Article 127991. https://doi.org/10.1016/j.jhazmat.2021.127991

  46. Kuang H., Liu L., Xu L., Ma W., Guo L., Wang L., Xu C. // Sensors. 2013. V. 13. № 7. P. 8331–8339. https://doi.org/10.3390/s130708331

  47. Wei C., Ding S., You H., Zhang Y., Wang Y., Yang X., Yuan J. // PLoS One. 2011. V. 6. № 12. Article e29196. https://doi.org/10.1371/journal.pone.0029196

Дополнительные материалы отсутствуют.