Журнал общей биологии, 2023, T. 84, № 4, стр. 263-278

Филлоплана как местообитание грибов

А. А. Царелунга 1*, Е. Ю. Благовещенская 1**

1 Московский государственный университет им. М.В. Ломоносова, биологический факультет
119234 Москва, Ленинские горы, 1, стр. 12, Россия

* E-mail: alexcar333@mail.ru
** E-mail: kathryn@yandex.ru

Поступила в редакцию 24.11.2022
После доработки 18.04.2023
Принята к публикации 24.07.2023

Аннотация

Как показано в настоящее время, филлоплана растений активно заселяется различными дрожжевыми и мицелиальными грибами разных таксономических групп. Особенностями листа как микроместообитания являются низкая влажность, подверженность механическим воздействиям дождя и ветра, бедность питательных веществ на поверхности и высокая инсоляция, что обуславливает выделение грибов-эпифитов как отдельной экологической группы. Несмотря на то, что данные по разным растениям отличаются, в целом можно сказать, что на поверхности растений наиболее часто встречаются дрожжи базидиального аффинитета и такие мицелиальные грибы, как Alternaria, Epicoccum, Cladosporium, Phoma и Trichoderma. Биологический цикл эпифитных грибов в настоящее время не исследован, но предполагается, что он начинается со специфического закрепления споры на поверхности, далее следует формирование биопленок или так называемых агрегатов, объединяющих бактерии, дрожжи и мицелиальные грибы, и завершается формированием спор либо на поверхности живого растения, либо на отмерших и разлагающихся листьях.

Список литературы

  1. Багирова С.Ф., Джавахия В.Г., Дьяков Ю.Т., Озерецковская О.Л., Проворов Н.А. и др., 2012. Фундаментальная фитопатология. М.: КРАСАНД. 508 с.

  2. Берестецкий А.О., Гасич Е.Л., Полуэктова Е.В., Николаева Е.В., Сокорнова С.В., Хлопунова Л.Б., 2014. Биологическая активность грибов филлосферы сорных и дикорастущих травянистых растений // Микробиология. Т. 83. № 5. С. 534–542. https://doi.org/10.7868/S002636561405005X

  3. Благовещенская Е.Ю., 2015. Методы выявления грибов филлопланы // Мат-лы VII Всеросс. микологической шк.-конф. с междунар. участием “Биотические связи грибов: мосты между царствами”. Сб. докл. и тез. М.: МГУ. С. 5–9.

  4. Благовещенская Е.Ю., 2017. Влияние повторностей разных типов на выявление эпифитных микромицетов // Современная микология в России. Т. 6. М.: Национальная академия микологии. С. 361–363.

  5. Возняковская Ю.М., 1969. Микрофлора растений и урожай. Л.: Колос. 240 с.

  6. Воронин Л.В., 2010. Грибы филлопланы Nuphar lutea (L.) Smith в малых реках бассейна рыбинского водохранилища // Ярославский пед. вестн. Т. 3. С. 91–95.

  7. Глазунова Н.Н., Романенко Е.С., Шипуля А.Н., 2011. Видовой состав микромицетов надземной части растений озимой пшеницы в разные фазы ее онтогенеза на Ставрополье // Науч. журн. КубГАУ. № 68. С. 1–13.

  8. Ерина Н.В., Коптева Т.С., 2015a. Видовой состав эпифитной микрофлоры некоторый растений семейства Grossulariaceae и различные типы их взаимодействий // Науч. журн. КубГАУ. № 114. С. 1–9.

  9. Ерина Н.В., Коптева Т.С., 2015б. Микробные сообщества некоторых растений семейства Grossulariaceae // Науч. журн. КубГАУ. № 110. С. 1–12.

  10. Лотова Л.И., 2001. Ботаника. Морфология и анатомия высших растений. М.: УРСС. 528 с.

  11. Abdel-Hafez S.I.I., 1984. Rhizosphere and phyllosphere fungi of four fern plants growing in Saudi Arabia // Mycopathologia. V. 85. № 1–2. P. 45–52. https://doi.org/10.1007/BF00436701

  12. Agrios G.N., 2005. Plant Pathology. 5th eds. Amsterdam: Elsevier Academic Press. 952 p.

  13. Albuquerque P., Casadevall A., 2012. Quorum sensing in fungi – a review // Med. Mycol. V. 50. P. 337–345. https://doi.org/10.3109/13693786.2011.652201

  14. Andrews J.H., Harris R.F., 2000. The ecology and biogeography of microorganisms on plant surfaces // Annu. Rev. Phytopathol. V. 38. P. 145–180. https://doi.org/10.1146/annurev.phyto.38.1.145

  15. Bacon C.W., White J.F., 2016. Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants // Symbiosis. V. 68. № 1–3. P. 87–98. https://doi.org/10.1007/s13199-015-0350-2

  16. Barbosa M.A.G., Rehn K.G., Menezes M., Mariano R.L.R., 2001. Antagonism of Trichoderma species on Cladosporium herbarum and their enzimatic characterization // Braz. J. Microbiol. V. 32. P. 98–104. https://doi.org/10.1590/S1517-83822001000200005

  17. Barthlott W., Neinhuis C., Cutler D., Ditsch F., Meusel I. et al., 1998. Classification and terminology of plant epicuticular waxes // Bot. J. Linn. Soc. V. 126. P. 237–260. https://doi.org/10.1111/j.1095-8339.1998.tb02529.x

  18. Benítez T., Villa T.G., García Acha I., 1976. Some chemical and structural features of the conidial wall of Trichoderma viride // Can. J. Microbiol. V. 22. P. 318–321. https://doi.org/10.1139/m76-046

  19. Bills G.F., Polishook J.D., 1991. Microfungi from Carpinus caroliniana // Can. J. Bot. V. 69. P. 1477–1482. https://doi.org/10.1139/b91-191

  20. Blackwell M., 2011. The Fungi: 1, 2, 3… 5.1 million species? // Am. J. Bot. V. 98. № 3. P. 426–438. https://doi.org/10.3732/ajb.1000298

  21. Bopaih B.M., Wani S.P., Rai P.V., 1978. Phyllosphere microflora of some common plants // Mysore J. Agric. Sci. V. 12. P. 398–403.

  22. Braun E.J., Howard R.J., 1994. Adhesion of fungal spores and germlings to host plant surfaces // Protoplasma. V. 181. P. 202–212. https://doi.org/10.1007/BF01666396

  23. Burton Z., Bhushan B., 2006. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces // Ultramicroscopy. V. 106. P. 709–719. https://doi.org/10.1016/j.ultramic.2005.10.007

  24. Cabral D., 1985. Phyllosphere of Eucalyptus viminalis: Dynamics of fungal populations // Trans. Br. Mycol. Soc. V. 85. P. 501–511. https://doi.org/10.1016/S0007-1536(85)80047-4

  25. Camargo J.Z., Nascimento V.M., Stefanello I., Andrade Silva C.A., de, Gonçalves F.A. et al., 2018. Biochemical evaluation, molecular characterization and identification of novel yeast strains isolated from Brazilian savannah fruits, chicken litter and a sugar and alcohol mill with biotechnological potential for biofuel and food industries // Biocatal. Agric. Biotechnol. V. 16. P. 390–399. https://doi.org/10.1016/j.bcab.2018.09.006

  26. Castro J., Costa D., Tavares R.M., Baptista P., Lino-Neto T., 2022. Olive fungal epiphytic communities are affected by their maturation stage // Microorganisms. V. 10. Art. 376. https://doi.org/10.3390/microorganisms10020376

  27. Chaibub A.A., Sousa T.P., de, Araújo L.G., de, Filippi M.C.C., de, 2020. Molecular and morphological characterization of rice phylloplane fungi and determination of the antagonistic activity against rice pathogens // Microbiol. Res. V. 231. Art. 126353. https://doi.org/10.1016/j.micres.2019.126353

  28. Chauhan R., Gautam S.S., 2019. Potential antagonistic phylloplane fungi from Stevia rebaudiana Bert. as bio-control of aerial blight disease caused by Rhizoctonia solani // Indian Phytopathol. V. 72. № 1. P. 177–180. https://doi.org/10.1007/s42360-019-00116-x

  29. Chomnunti P., Hongsanan S., Aguirre-Hudson B. et al., 2014. The sooty moulds // Fungal Divers. V. 66. P. 1–36. https://doi.org/10.1007/s13225-014-0278-5

  30. Copeland J.K., Yuan L., Layeghifard M., Wang P.W., Guttman D.S., 2015. Seasonal community succession of the phyllosphere microbiome // Mol. Plant Microbe Interact. V. 28. № 3. P. 274–285. https://doi.org/10.1094/MPMI-10-14-0331-FI

  31. Dabrowska A., 2012. Morpho-anatomical structure of the leaves of Festuca trachyphylla (Hack.) Krajina in the ecological aspect // Modern Phytomorphol. V. 1. P. 19–22. https://doi.org/10.5281/zenodo.162713

  32. Dickinson C.H., 1973. Effects of ethirimol and zineb on phylloplane microflora of barley // Trans. Br. Mycol. Soc. V. 60. P. 423–431. https://doi.org/10.1016/S0007-1536(73)80027-0

  33. Dickinson C.H., Watson J., Wallace B., 1974. An impression method for examining epiphytic micro-organisms and its application to phylloplane studies // Trans. Br. Mycol. Soc. V. 63. P. 616–619. https://doi.org/10.1016/S0007-1536(74)80118-X

  34. Dickison W.C., 2000. Integrative Plant Anatomy. San Diego: Academic Press. 533 p.

  35. Diem H.G., 1974. Micro-organisms of the leaf surface: Estimation of the mycoflora of the barley phyllosphere // Microbiology. V. 80. P. 77–83. https://doi.org/10.1099/00221287-80-1-77

  36. Dixon A.F.G., 1971. The role of aphids in wood formation. II. The effect of the lime aphid, Eucallipterus tiliae L. (Aphididae), on the growth of lime, Tilia x vulgaris Hayne // J. Appl. Ecol. V. 8. P. 393–399. https://doi.org/10.2307/2402878

  37. Dong C., Wang L., Li Q., Shang Q., 2021. Epiphytic and endophytic fungal communities of tomato plants // Hortic. Plant J. V. 7. № 1. P. 38–48. https://doi.org/10.1016/j.hpj.2020.09.002

  38. Duarte L.L., Santos F.M.C., Barreto R.W., 2016. Mycobiota of the weed Conyza canadensis (Asteraceae) in Brazil // Fungal Biol. V. 120. P. 1118–1134. https://doi.org/10.1016/j.funbio.2016.05.015

  39. Epstein L., Nicholson R.L., 1997. Adhesion of spores and hyphae to plant surfaces // Plant Relationships. The Mycota. V. 5 / Eds Carroll G.C., Tudzynski P. Berlin; Heidelberg: Springer. P. 11–25. https://doi.org/10.1007/978-3-662-10370-8_2

  40. Epstein L., Nicholson R., 2016. Adhesion and adhesives of fungi and oomycetes // Biological Adhesives / Eds Smith A.M., Callow J.A. Berlin; Heidelberg: Springer. P. 25–55. https://doi.org/10.1007/978-3-540-31049-5_3

  41. Falconi C.J., Mendgen K., 1994. Epiphytic fungi on apple leaves and their value for control of the postharvest pathogens Botrytis cinerea, Monilinia fructigena and Penicillium expansum // J. Plant Dis. Prot. V. 101. P. 38–47.

  42. Fernández V., Guzmán-Delgado P., Graça J., Santos S., Gil L., 2016. Cuticle structure in relation to chemical composition: Re-assessing the prevailing model // Front. Plant Sci. V. 7. Art. 427. https://doi.org/10.3389/fpls.2016.00427

  43. Fiss M., Kucheryava N., Schönherr J., Kollar A., Arnold G., Auling G., 2000. Isolation and characterization of epiphytic fungi from the phyllosphere of apple as potential biocontrol agents against apple scab (Venturia inaequalis) // J. Plant Dis. Prot. V. 107. № 1. P. 1–11.

  44. Fuqua W.C., Winans S.C., Greenberg E.P., 1994. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators // J. Bacteriol. V. 176. P. 269–275. https://doi.org/10.1128/jb.176.2.269-275.1994

  45. Glenn D.M., Bassett C., Dowd S.E., 2015. Effect of pest management system on ‘Empire’ apple leaf phyllosphere populations // Sci. Hortic. V. 183. P. 58–65. https://doi.org/10.1016/j.scienta.2014.12.009

  46. Glushakova A.M., Chernov I.Y., 2007. Seasonal dynamic of the numbers of epiphytic yeasts // Microbiology. V. 76. № 5. P. 590–595. https://doi.org/10.1134/S0026261707050128

  47. Glushakova A.M., Chernov I.Y., 2010. Seasonal dynamics of the structure of epiphytic yeast communities // Microbiology. V. 79. № 6. P. 830–839. https://doi.org/10.1134/S0026261710060160

  48. Gobbi A., Kyrkou I., Filippi E., Ellegaard-Jensen L., Hansen L.H., 2020. Seasonal epiphytic microbial dynamics on grapevine leaves under biocontrol and copper fungicide treatments // Sci. Rep. V. 10. Art. 681. https://doi.org/10.1038/s41598-019-56741-z

  49. González-Montiel G.A., Kaweesa E.N., Feau N., Hamelin R.C., Stone J.K., Loesgen S., 2020. Chemical, bioactivity, and biosynthetic screening of epiphytic fungus Zasmidium pseudotsugae // Molecules. V. 25. № 10. Art. 2358. https://doi.org/10.3390/molecules25102358

  50. Goswami S., Paul P.K., Sharma P.D., 2019. Aspergillus niger, a dominant phylloplane coloniser, influences the activity of defense enzymes in Solanum lycopersicum // J. Plant Prot. Res. V. 59. P. 512–518. https://doi.org/10.24425/jppr.2019.131265

  51. Hallett I.C., Boyd-Wilson K.S.H., Everett K.R., 2010. Microscope methods for observation of the phylloplane flora // N. Z. Plant Prot. V. 63. P. 15–23. https://doi.org/10.30843/nzpp.2010.63.6608

  52. Hamer J.E., Howard R.J., Chumley F.G., Valent B., 1988. A mechanism for surface attachment in spores of a plant pathogenic fungus // Science. V. 239. № 4837. P. 288–290. https://doi.org/10.1126/science.239.4837.288

  53. Hawksworth D.L., 2004. Fungal diversity and its implications for genetic resource collections // Stud. Mycol. V. 50. № 1. P. 9–18.

  54. Helfrich E.J.N., Vogel C.M., Ueoka R., Schäfer M., Ryffel F. et al., 2018. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome // Nat. Microbiol. V. 3. № 8. P. 909–919. https://doi.org/10.1038/s41564-018-0200-0

  55. Hongsanan S., Sánchez-Ramírez S., Crous P.W., Ariyawansa H.A., Zhao R.L., Hyde K.D., 2016. The evolution of fungal epiphytes // Mycosphere. V. 7. № 11. P. 1690–1712. https://doi.org/10.5943/mycosphere/7/11/6

  56. Hübers M., Bomfleur B., Krings M., Kerp H., 2011. An early carboniferous leaf-colonizing fungus // N. Jb. Geol. Paläont. Abh. V. 261. № 1. P. 77–82. https://doi.org/10.1127/0077-7749/2011/0150

  57. Indratmi D., 2018. Biological control of chili anthracnose disease with Rhodotorula spp. // 4th International Conference on Food, Agriculture and Natural Resources (FANRes 2018). Atlantis Press. P. 112–116. https://doi.org/10.2991/fanres-18.2018.22

  58. Into P., Khunnamwong P., Jindamoragot S., Am-in S., Intanoo W., Limtong S., 2020. Yeast associated with rice phylloplane and their contribution to control of rice sheath blight disease // Microorganisms. V. 8. № 3. Art. 362. https://doi.org/10.3390/microorganisms8030362

  59. Janakiev T., Dimkić I., Unković N., Ljaljević Grbić M., Opsenica D. et al., 2019. Phyllosphere fungal communities of plum and antifungal activity of indigenous phenazine-producing Pseudomonas synxantha against Monilinia laxa // Front. Microbiol. V. 10. Art. 2287. https://doi.org/10.3389/fmicb.2019.02287

  60. Jouraeva V.A., Johnson D.L., Hassett J.P., Nowak D.J., Shipunova N.A., Barbarossa D., 2006. Role of sooty mold fungi in accumulation of fine-particle-associated PAHs and metals on deciduous leaves // Environ. Res. V. 102. № 3. P. 272–282. https://doi.org/10.1016/j.envres.2006.06.004

  61. Jumpponen A., Jones K.L., 2010. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments // New Phytol. V. 186. P. 496–513. https://doi.org/10.1111/j.1469-8137.2010.03197.x

  62. Kemler M., Witfeld F., Begerow D., Yurkov A., 2017. Phylloplane yeasts in temperate climates // Yeasts in Natural Ecosystems: Diversity / Eds Buzzini P., Lachance M.A., Yurkov A. Cham: Springer. P. 171–197. https://doi.org/10.1007/978-3-319-62683-3_6

  63. Kharwar R.N., Gond S.K., Kumar A., Mishra A., 2010. A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity // World J. Microbiol. Biotechnol. V. 26. P. 1941–1948. https://doi.org/10.1007/s11274-010-0374-y

  64. Kirschner R., 2015. Fungi on the leaf – a contribution towards a review of phyllosphere microbiology from the mycological perspective // Biodiversity and Ecology of Fungi, Lichens, and Mosses. Kerner von Marilaun Workshop 2015 in memory of Josef Poelt. Wien: Austrian Academy of Sciences Press. P. 433–448.

  65. Kiss L., Russell J.C., Szentiványi O., Xu X., Jeffries P., 2004. Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi // Biocontrol Sci. Technol. V. 14. № 7. P. 635–651. https://doi.org/10.1080/09583150410001683600

  66. Kitamoto H., 2019. The phylloplane yeast Pseudozyma: A rich potential for biotechnology // FEMS Yeast Res. V. 19. № 5. Art. foz053. https://doi.org/10.1093/femsyr/foz053

  67. Kolyva F., Stratakis E., Rhizopoulou S., Chimona C., Fotakis C., 2012. Leaf surface characteristics and wetting in Ceratonia siliqua L. // Flora Morphol. Distrib. Funct. Ecol. Plants. V. 207. P. 551–556. https://doi.org/10.1016/j.flora.2012.06.001

  68. Kuo K., Hoch H.C., 1996. Germination of Phyllosticta ampelicida pycnidiospores: Prerequisite of adhesion to the substratum and the relationship of substratum wettability // Fungal Genet. Biol. V. 20. P. 18–29. https://doi.org/10.1006/fgbi.1996.0005

  69. Kwon Y.H., Epstein L., 1993. A 90-kDa glycoprotein associated with adhesion of Nectria haematococca macroconidia to substrata // Mol. Plant Microbe Interact. V. 6. № 4. P. 481–487.

  70. Lamb R.J., Brown J.F., 1970. Non-parasitic microflora on leaf surfaces of Paspalum dilatatum, Salix babylonica and Eucalyptus stellulata // Trans. Br. Mycol. Soc. V. 55. P. 383–390. https://doi.org/10.1016/S0007-1536(70)80059-6

  71. Last F.T., Deighton F.C., 1965. The non-parasitic microflora on the surfaces of living leaves // Trans. Br. Mycol. Soc. V. 48. P. 83–99. https://doi.org/10.1016/S0007-1536(65)80011-0

  72. Lazarević J., Menkis A., 2020. Fungal diversity in the phyllosphere of Pinus heldreichii H. Christ – an endemic and high-altitude pine of the Mediterranean Region // Diversity. V. 12. № 5. Art. 172. https://doi.org/10.3390/d12050172

  73. Lee O.H.K., Hyde K.D., 2002. Phylloplane fungi in Hong Kong mangroves: Evaluation of study methods // Mycologia. V. 94. № 4. P. 596–606.

  74. Legault D., Dessureault M., Laflamme G., 1989. Mycoflora of Pinus banksiana and Pinus resinosa needles. II. Epiphytic fungi // Can. J. Bot. V. 67. P. 2061–2065. https://doi.org/10.1139/b89-260

  75. Limtong S., Kaewwichian R., 2015. The diversity of culturable yeasts in the phylloplane of rice in Thailand // Ann. Microbiol. V. 65. P. 667–675. https://doi.org/10.1007/s13213-014-0905-0

  76. Limtong S., Nasanit R., 2017. Phylloplane yeasts in tropical climates // Yeasts in Natural Ecosystems: Diversity / Eds Buzzini P., Lachance M.A., Yurkov A. Cham: Springer. P. 199–223. https://doi.org/10.1007/978-3-319-62683-3_7

  77. Liu F., Zhang J., Zhang L., Diao M., Ling P., Wang F., 2021.Correlation between the synthesis of pullulan and melanin in Aureobasidium pullulans // Int. J. Biol. Macromol. V. 177. P. 252–260. https://doi.org/10.1016/j.ijbiomac.2021.02.108

  78. Mardani A., Hadiwiyono, 2018. Antagonism of rice phylloplane fungi against Cercospora oryzae // IOP Conf. Ser. Earth Environ. Sci. V. 142. Art. 012064. https://doi.org/10.1088/1755-1315/142/1/012064

  79. Mechaber W.L., Marshall D.B., Mechaber R.A., Jobe R.T., Chew F.S., 1996. Mapping leaf surface landscapes // Proc. Natl. Acad. Sci. V. 93. P. 4600–4603. https://doi.org/10.1073/pnas.93.10.4600

  80. Mehmood A., Liu G., Wang X., Meng G., Wang C., Liu Y., 2019. Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: A review // Molecules. V. 24. № 10. Art. 1950. https://doi.org/10.3390/molecules24101950

  81. Mitra J., Sharma P.D., Paul P.K., 2019. Do phylloplane microfungi influence activity of Rubisco and Carbonic anhydrase? // S. Afr. J. Bot. V. 124. P. 118–126. https://doi.org/10.1016/j.sajb.2019.04.033

  82. Muhibuddin A., Fadhilah S., Sektiono A.W., Qomariyah U.K.N., Faizah M. et al., 2018. Yeast from epiphyte of avocadoes to control Colletotrichum gloesporioides causing antrachnose disease // SAINTEKBU. V. 10. № 2. P. 52–60. https://doi.org/10.32764/saintekbu.v10i2.208

  83. Mukhtar I., Mushtaq S., Ali A., Khokhar I., 2010. Epiphytic and endophytic phyllosphere microflora of Cassytha filiformis L. and its hosts // Ecoprint: Int. J. Ecol. V. 17. P. 1–8. https://doi.org/10.3126/eco.v17i0.4096

  84. Mukhtar I., Mushtaq S., Ali A., Khokhar I., 2012. Phyllospheric microflora of Cuscuta pedicillata Ledeb and its host Trifolium alexandrium L. // Sarhad J. Agric. V. 28. P. 437–441.

  85. Mulka N., Begum S.R., Surekha M., 2019. Succession of phylloplane mycoflora of transgenic bt cotton (JKCH 8836 BG II) // J. Pharmacogn. Phytochem. V. 8. P. 436–438.

  86. Nealson K.H., Platt T., Hastings J.W., 1970. Cellular control of the synthesis and activity of the bacterial luminescent system // J. Bacteriol. V. 104. P. 313–322. https://doi.org/10.1128/jb.104.1.313-322.1970

  87. Neinhuis C., Barthlott W., 1997. Characterization and distribution of water-repellent, self-cleaning plant surfaces // Ann. Bot. V. 79. P. 667–677. https://doi.org/10.1006/anbo.1997.0400

  88. Nilsson R.H., Ryberg M., Kristiansson E., Abarenkov K., Larsson K.H., Kõljalg U., 2006. Taxonomic reliability of DNA sequences in public sequence databases: A fungal perspective // PloS One. V. 1. № 1. Art. e59. https://doi.org/10.1371/journal.pone.0000059

  89. Norms R.F., Bukovac M.J., 1968. Structure of the pear leaf cuticle with special reference to cuticular penetration // Am. J. Bot. V. 55. P. 975–983. https://doi.org/10.1002/j.1537-2197.1968.tb07457.x

  90. Osono T., 2006. Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter // Can. J. Microbiol. V. 52. P. 701–716. https://doi.org/10.1139/w06-023

  91. Osono T., 2008. Endophytic and epiphytic phyllosphere fungi of Camellia japonica: Seasonal and leaf age-dependent variations // Mycologia. V. 100. P. 387–391. https://doi.org/10.3852/07-110R1

  92. Osono T., Mori A., 2005. Seasonal and leaf age-dependent changes in occurrence of phyllosphere fungi of giant dogwood // Mycoscience. V. 46. P. 273–279. https://doi.org/10.1007/S10267-005-0246-8

  93. Pajares-Murgó M., Garrido J.L., Perea A.J., López-García Á., Alcántara J.M., 2022. Biotic filters driving the differentiation of decomposer, epiphytic and pathogenic phyllosphere fungi across plant species // Oikos. V. 2023. № 5. Art. e09624. https://doi.org/10.1111/oik.09624

  94. Pennycook S.R., Newhook F.J., 1978. Spore fall as a quantitative method in phylloplane studies // Trans. Br. Mycol. Soc. V. 71. P. 453–456. https://doi.org/10.1016/S0007-1536(78)80072-2

  95. Pinokiyo A., Singh K.P., Singh J.S., 2006. Leaf-colonizing lichens: Their diversity, ecology and future prospects // Curr. Sci. V. 90. P. 509–518.

  96. Pirog T.P., Iutynska G.O., Leonova N.O., Beregova K.A., Shevchuk T.A., 2018. Microbial synthesis of phytohormones // Biotechnol. Acta. V. 11. № 1. P. 5–24.

  97. Płachecka A., 2005. Microscopical observations of Sphaerellopsis filum, a parasite of Puccinia recondita // Acta Agrobot. V. 58. № 1. P. 67–71. https://doi.org/10.5586/aa.2005.010

  98. Popp C., Burghardt M., Friedmann A., Riederer M., 2005. Characterization of hydrophilic and lipophilic pathways of Hedera helix L. cuticular membranes: Permeation of water and uncharged organic compounds // J. Exp. Bot. V. 56. P. 2797–2806. https://doi.org/10.1093/jxb/eri272

  99. Ruscoe Q.W., 1971. Mycoflora of living and dead leaves of Nothofagus truncata // Trans. Br. Mycol. Soc. V. 56. P. 463–474. https://doi.org/10.1016/S0007-1536(71)80138-9

  100. Santamaría J., Bayman P., 2005. Fungal epiphytes and endophytes of coffee leaves (Coffea arabica) // Microb. Ecol. V. 50. P. 1–8. https://doi.org/10.1007/s00248-004-0002-1

  101. Saunier A., Mpamah P., Biasi C., Blande J.D., 2020. Microorganisms in the phylloplane modulate the BVOC emissions of Brassica nigra leaves // Plant Signal. Behav. V. 15. Art. 1728468. https://doi.org/10.1080/15592324.2020.1728468

  102. Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L. et al., 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi // Proc. Natl. Acad. Sci. V. 109. № 16. P. 6241–6246. https://doi.org/10.1073/pnas.1117018109

  103. Schreiber L., Krimm U., Knoll D., 2008. Interactions between epiphyllic microorganisms and leaf cuticles // Plant Surface Microbiology. Berlin; Heidelberg: Springer. P. 145–156. https://doi.org/10.1007/978-3-540-74051-3_9

  104. Schumacher C.F.A., Steiner U., Dehne H.W., Oerke E.C., 2008. Localized adhesion of nongerminated Venturia inaequalis conidia to leaves and artificial surfaces // Phytopathology. V. 98. P. 760–768. https://doi.org/10.1094/PHYTO-98-7-0760

  105. Shara M., Basyuni M., Hasanuddin, 2023. Potential of phylloplane fungi from mangrove plant (Rhizophora apiculata Blume) as biological control agents against Fusarium oxysporum f. sp. cubense in Banana plant (Musa acuminata L.) // Forests. V. 14. Art. 167. https://doi.org/10.3390/f14020167

  106. Sivakumar N., Sathishkumar R., Selvakumar G., Shyamkumar R., Arjunekumar K., 2020. Phyllospheric microbiomes: Diversity, ecological significance, and biotechnological applications // Plant Microbiomes for Sustainable Agriculture / Eds Yadav A., Singh J., Rastegari A., Yadav N. Cham: Springer. P. 113–172. https://doi.org/10.1007/978-3-030-38453-1_5

  107. Srisuk N., Nutaratat P., Surussawadee J., Limtong S., 2019. Yeast communities in sugarcane phylloplane // Microbiology. V. 88. P. 353–369. https://doi.org/10.1134/S0026261719030135

  108. Srivastava A.K., 1993. Evidence of fungal parasitism in the Glossopteris flora of India // Comptes Rendu XII ICC-P Buenos Aires. V. 2. P. 141–146.

  109. Stanley M.S., Callow M.E., Perry R., Alberte R.S., Smith R., Callow J.A., 2002. Inhibition of fungal spore adhesion by zosteric acid as the basis for a novel, nontoxic crop protection technology // Phytopathology. V. 92. P. 378–383. https://doi.org/10.1094/PHYTO.2002.92.4.378

  110. Streletskii R.A., Kachalkin A.V., Glushakova A.M., Yurkov A.M., Demin V.V., 2019. Yeasts producing zeatin // PeerJ. V. 7. Art. e6474. https://doi.org/10.7717/peerj.6474

  111. Sukmawati D., Andrianto M.H., Arman Z., Ratnaningtyas N.I., Al Husna S.N. et al., 2020. Antagonistic activity of phylloplane yeasts from Moringa oleifera Lam. leaves against Aspergillus flavus UNJCC F-30 from chicken feed // Indian Phytopathol. V. 73. № 1. P. 79–88. https://doi.org/10.1007/s42360-020-00194-2

  112. Sukmawati D., Oetari A., Hendrayanti D., Atria M., Sjamsuridzal W., 2015. Identification of phylloplane yeasts from paper mulberry (Broussonetia papyrifera (L.) L'Hér. ex Vent.) in Java, Indonesia // Malays. J. Microbiol. V. 11. № 4. P. 324–340. https://doi.org/10.21161/mjm.68114

  113. Taylor T.N., Krings M., Taylor E.L., 2014. Fossil Fungi. San Diego: Academic Press. 398 p. https://doi.org/10.1016/C2010-0-68335-0

  114. Thakur S., Harsh N.S.K., 2014. Efficacy of volatile metabolites of phylloplane fungi of Rauwolfia serpentina against Alternaria alternata // Curr. Res. Environ. Appl. Mycol. V. 4. № 2. P. 152–156. https://doi.org/10.5943/cream/4/2/2

  115. Tomasi P., Dyer J.M., Jenks M.A., Abdel-Haleem H., 2018. Characterization of leaf cuticular wax classes and constituents in a spring Camelina sativa diversity panel // Ind. Crops Prod. V. 112. P. 247–251. https://doi.org/10.1016/j.indcrop.2017.11.054

  116. Tucker S.L., Talbot N.J., 2001. Surface attachment and pre-penetration stage development by plant pathogenic fungi // Ann. Rev. Phytopathol. V. 39. P. 385–417. https://doi.org/10.1146/annurev.phyto.39.1.385

  117. Waill A.E., Ghoson M.D., 2018. Where to find? A report for some terrestrial fungal isolates, and selected applications using fungal secondary metabolites // Biomed. J. Sci. Tech. Res. V. 4. № 4. https://doi.org/10.26717/BJSTR.2018.04.001070

  118. Wittig H.P.P., Johnson K.B., Pscheidt J.W., 1997. Effect of epiphytic fungi on brown rot blossom blight and latent infections in sweet cherry // Plant Dis. V. 81. № 4. P. 383–387. https://doi.org/10.1094/PDIS.1997.81.4.383

  119. Xu H., Zhu M., Li S., Ruan W., Xie C., 2020. Epiphytic fungi induced pathogen resistance of invasive plant Ipomoea cairica against Colletotrichum gloeosporioides // PeerJ. V. 8. Art. e8889. https://doi.org/10.7717/peerj.8889

  120. Yao H., Sun X., He C., Maitra P., Li X.C., Guo L.D., 2019. Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem // Microbiome. V. 7. № 1. P. 1–15. https://doi.org/10.1186/s40168-019-0671-0

  121. Yusifova A.A., Rzayeva A.A., Muradova S.M., Jabrailzadeh S.M., Ghahramanova F.X., Keyseruxskaya F.Sh., 2017. Diversity of micromycetes which found in phyllosphere and rhizosphere of leguminous plants // J. Basic. Appl. Sci. Res. V. 7. P. 13–17.

  122. Zhu F., Chen G., Chen X., Huang M., Wan X., 2011. Aspergicin, a new antibacterial alkaloid produced by mixed fermentation of two marine-derived mangrove epiphytic fungi // Chem. Nat. Compd. V. 47. P. 767–769. https://doi.org/10.1007/s10600-011-0053-8

Дополнительные материалы отсутствуют.