Журнал высшей нервной деятельности им. И.П. Павлова, 2023, T. 73, № 6, стр. 809-818

Increase in histone acetylation rescues a weak remote fear memory in rats

A. Kh. Vinarskaya a, P. M. Balaban a, A. B. Zuzina a*

a Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science
Moscow, Russia

* E-mail: lucky-a89@mail.ru

Поступила в редакцию 11.08.2023
После доработки 24.08.2023
Принята к публикации 31.08.2023

Аннотация

There is a growing body of evidence of memory-enhancing effects of histone deacetylase (HDAC) inhibitors in different species and models. Less clearly is understood whether the increased histone acetylation is able to facilitate the remote fear memory. Thus, the aim of the current study was to examine the ability of HDAC inhibitor sodium butyrate (SB) to ameliorate weakening of the remote fear memory in rats. To assess the ability of HDAC inhibitor SB to improve remote fear memory we compared the performance of two laboratory strains of rats, Wistar and Long-Evans, in context fear conditioning task six months after training before and after the SB administration. We found that the rats showed a strong fear response to the context 24 h after the end of conditioned fear training, full absence of fear after 6 months, and high fear response after the SB administration without additional learning. In control experiments, we found that time-dependent decrease in conditioned fear response to the context was similar in rats under vehicle administration. Moreover, the data obtained showed that both rats’ strains showed a similar decrease in freezing response over time, and HDAC inhibition improved the weak remote fear memory in both of them. In addition, the decrease in freezing and memory reinstatement by males matched completely to the female rats’ performance. These results indicate that HDAC inhibition appears to have the same “rescue” effects on remote fear memory reinstatement regardless of the strain and gender of rats.

Keywords: sodium butyrate, histone acetylation, epigenetics, remote memory, memory reinstatement, reconsolidation

Список литературы

  1. Alarcon J.M., Malleret G., Touzani K., Vronskaya S., Ishii S., Kandel E.R., Barco A. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron. 2004. 42 (6): 947–959.

  2. Albo Z., Gräff J. The mysteries of remote memory. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2018. 373 (1742): 20170029.

  3. Ameneiro L., Zalcman G., Robles A., Romano A. Characteristics of the reminder that triggers object recognition memory reconsolidation in mice. Neurosci. 2022. 497: 206–214.

  4. An X., Zhang F., Liu Y., Yang P., Yu D. Remote fear memory is sensitive to reconditioning. Behav. Brain. Res. 2019. 359: 723–730.

  5. Beatty W.W. Hormonal organization of sex differences in play fighting and spatial behavior. Prog. Brain. Res. 1984. 60: 320–324.

  6. Besnard A., Caboche J., Laroche S. Reconsolidation of memory: a decade of debate. Prog. Neurobiol. 2012. 99 (1): 61–80.

  7. Besnard A., Caboche J., Laroche S. Recall and reconsolidation of contextual fear memory: differential control by ERK and Zif268 expression dosage. PLoS One. 2013. 8 (8): e72006.

  8. Blank M., Werenicz A., Velho L.A., Pinto D.F., Fedi A.C., Lopes M.W., Peres T.V., Leal R.B., Dornelles A.S., Roesler R. Enhancement of memory consolidation by the histone deacetylase inhibitor sodium butyrate in aged rats. Neurosci. Lett. 2015. 594: 76–81.

  9. Bredy T.W., Barad M. The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learn. Mem. 2008. 15 (1): 39–45.

  10. Brownell J.E., Allis C.D. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev. 1996. 6 (2): 176–184.

  11. Bustos S.G., Maldonado H., Molina V.A. Disruptive effect of midazolam on fear memory reconsolidation: decisive influence of reactivation time span and memory age. Neuropsychopharmacology. 2009. 34 (2): 446–457.

  12. Chen S., Cai D., Pearce K., Sun P.Y., Roberts A.C., Glanzman D.L. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. ELife. 2014. 3: e03896.

  13. Chen Y., Barsegyan A., Nadif Kasri N., Roozendaal B. Basolateral amygdala noradrenergic activity is required for enhancement of object recognition memory by histone deacetylase inhibition in the anterior insular cortex. Neuropharmacology. 2018. 141: 32–41.

  14. Choi J.H., Sim S.E., Kim J.I., Choi D.I., Oh J., Ye S., Lee J., Kim T., Ko H.G., Lim C.S., Kaang B.K. Interregional synaptic maps among engram cells underlie memory formation. Science. 2018. 360 (6387): 430–435.

  15. Colon L.M., Poulos A.M. Contextual processing elicits sex differences in dorsal hippocampus activation following footshock and context fear retrieval. Behav. Brain. Res. 2020. 393: 112771.

  16. Costanzi M., Cannas S., Saraulli D., Rossi-Arnaud C., Cestari V. Extinction after retrieval: effects on the associative and nonassociative components of remote contextual fear memory. Learn. Mem. 2011. 18 (8): 508–518.

  17. Davenport J., Harquist W., Rankin G. Symmetrical maze: an automated closed field test series for rats. Behav. Res. Methods Instrum. 1970. 2: 112–118.

  18. Federman N., Fustiñana M., Romano A. Histone acetylation is recruited in consolidation as a molecular feature of stronger memories. Learn. Mem. 2009. 16 (10): 600–606.

  19. Frankland P.W., Bontempi B., Talton L.E., Kaczmarek L., Silva A.J. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science. 2004. 304 (5672): 881–883.

  20. Frankland P.W., Bontempi B. The organization of recent and remote memories. Nat. Rev. Neurosci. 2005. 6 (2): 119–130.

  21. Gökçek-Saraç Ç., Wesierska M., Jakubowska-Doğru E. Comparison of spatial learning in the partially baited radial-arm maze task between commonly used rat strains: Wistar, Spargue-Dawley, Long-Evans, and outcrossed Wistar/Sprague-Dawley. Learn. Behav. 2015. 43 (1): 83–94.

  22. Gräff J., Joseph N.F., Horn M.E., Samiei A., Meng J., Seo J., Rei D., Bero A.W., Phan T.X., Wagner F., Holson E., Xu J., Sun J., Neve R.L., Mach R.H., Haggarty S.J., Tsai L.H. Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell. 2014. 156 (1–2): 261–276.

  23. Guan J.S., Haggarty S.J., Giacometti E., Dannenberg J.H., Joseph N., Gao J., Nieland T.J., Zhou Y., Wang X., Mazitschek R., Bradner J.E., DePinho R.A., Jaenisch R., Tsai L.H. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009. 459 (7243): 55–60.

  24. Harker K.T., Whishaw I.Q. Place and matching-to-place spatial learning affected by rat inbreeding (Dark-Agouti, Fischer 344) and albinism (Wistar, Sprague-Dawley) but not domestication (wild rat vs. Long-Evans, Fischer-Norway). Behav. Brain Res. 2002. 34 (1–2): 467–477.

  25. Hawk J.D., Florian C., Abel T. Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term location memory. Learn. Mem. 2011. 18 (6): 367–370.

  26. Kim W.B., Cho J.H. Encoding of contextual fear memory in hippocampal-amygdala circuit. Nat. Commun. 2020. 11 (1): 1382.

  27. Kim J.J., Fanselow M.S. Modality-specific retrograde amnesia of fear. Science. 1992. 256 (5057): 675–677.

  28. Ko H.G., Kim J.I., Sim S.E., Kim T., Yoo J., Choi S.L., Baek S.H., Yu W.J., Yoon J.B., Sacktor T.C., Kaang B.K. The role of nuclear PKMζ in memory maintenance. Neurobiol. Learn. Mem. 2016. 135: 50–56.

  29. Lee J.H., Kim W.B., Park E.H., Cho J.H. Neocortical synaptic engrams for remote contextual memories. Nat. Neurosci. 2023. 26 (2): 259–273.

  30. Levenson J.M., O’Riordan K.J., Brown K.D., Trinh M.A., Molfese D.L., Sweatt J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 2004. 279 (39): 40 545–40 559.

  31. Levenson J.M., Sweatt J.D. Epigenetic mechanisms in memory formation. Nat. Rev. Neurosci. 2005. 6 (2): 108–118.

  32. Marks P.A., Richon V.M., Miller T., Kelly W.K. Histone deacetylase inhibitors. Adv. Cancer Res. 2004. 91: 137–168.

  33. Marks P.A., Dokmanovic M. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert. Opin. Investig. Drugs. 2005. 14 (12): 1497–1511.

  34. Marmonstein R., Zhou M.M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 2014. 6 (7): a018762.

  35. McQuown S.C., Barrett R.M., Matheos D.P., Post R.J., Rogge G.A., Alenghat T., Mullican S.E., Jones S., Rusche J.R., Lazar M.A., Wood M.A. HDAC3 is a critical negative regulator of long-term memory formation. J. Neurosci. 2011. 31 (2): 764–774.

  36. Misanin J.R., Miller R.R., Lewis D.J. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science. 1968. 160 (3827): 554–555.

  37. Monsey M.S., Ruiz S.G., Taylor J.R. Regulation of garcinol on histone acetylation in the amygdala and on the reconsolidation of a cocaine-associated Memory. Front. Behav. Neurosci. 2020. 13: 281.

  38. Nader K., Schafe G.E., Le Doux J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000. 406 (6797): 722–726.

  39. Parvez K., Stewart O., Sangha S., Lukowiak K. Boosting intermediate-term into long-term memory. J. Exp. Biol. 2005. 208 (Pt 8): 1525–1536.

  40. Parvez K., Moisseev V., Lukowiak K. A context-specific single contingent-reinforcing stimulus boosts intermediate-term memory into long-term memory. Eur. J. Neurosci. 2006. 24 (2): 606–616.

  41. Pearce K., Cai D., Roberts A.C., Glanzman D.L. Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. Elife. 2017. 6: e18299.

  42. Peixoto L., Abel T. The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology. 2013. 38 (1): 62–76.

  43. Penney J., Tsai L.H. Histone deacetylases in memory and cognition. Sci. Signal. 2014. 7 (355): re12.

  44. Ramirez-Mejia G., Gil-Lievana E., Urrego-Morales O., Soto-Reyes E., Bermúdez-Rattoni F. Class I HDAC inhibition improves object recognition memory consolidation through BDNF/TrkB pathway in a time-dependent manner. Neuropharmacology. 2021. 187: 108493.

  45. Roof R.L., Havens M.D. Testosterone improves maze performance and induces development of a male hippocampus in females. Brain. Res. 1992. 572 (1–2): 310–313.

  46. Roof R.L., Havens M.D. Neonatal exogenous testosterone modifies sex difference in radial arm maze and Morris water maze performance in prepubescent and adult rats. Behav. Brain. Res. 1993. 53 (1–2): 1–10.

  47. Roof R.L., Stein D.G. Gender differences in Morris water maze performance depend on task parameters. Physiol. Behav. 1999. 68 (1–2): 81–86.

  48. Roozendaal B., Hernandez A., Cabrera S.M., Hagewoud R., Malvaez M., Stefanko D.P., Haettig J., Wood M. Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification. J. Neurosci. 2010. 30 (14): 5037–5046.

  49. Sartor G.C., Malvezzi A.M., Kumar A., Andrade N.S., Wiedner H.J., Vilca S.J., Janczura K.J., Bagheri A., Al-Ali H., Powell S.K., Brown P.T., Volmar C.H., Foster T.C., Zeier Z., Wahlestedt C. Enhancement of BDNF expression and memory by HDAC inhibition requires BET bromodomain reader proteins. J. Neurosci. 2019. 39 (4): 612–626.

  50. Seto E., Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 2014. 6 (4): a018713.

  51. Stefanko D.P., Barrett R.M., Ly A.R., Reolon G.K., Wood M.A. Modulation of long-term memory for object recognition via HDAC inhibition. Proc. Natl. Acad. Sci. USA. 2009. 106 (23): 9447–9452.

  52. Terranova J.I., Yokose J., Osanai H., Ogawa S.K., Kitamura T. Systems consolidation induces multiple memory engrams for a flexible recall strategy in observational fear memory in male mice. Nat. Commun. 2023. 14 (1): 3976.

  53. Trott J.M., Krasne F.B., Fanselow M.S. Sex differences in contextual fear learning and generalization: a behavioral and computational analysis of hippocampal functioning. Learn. Mem. 2022. 29 (9): 283–296.

  54. Vecsey C.G., Hawk J.D., Lattal K.M., Stein J.M., Fabian S.A., Attner M.A., Cabrera S.M., Mc Donough C.B., Brindle P.K., Abel T., Wood M.A. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 2007. 27 (23): 6128–6140.

  55. Villain H., Florian C., Roullet P. HDAC inhibition promotes both initial consolidation and reconsolidation of spatial memory in mice. Sci. Rep. 2016. 6: 27015.

  56. Vinarskaya A.K., Balaban P.M., Roshchin M.V., Zuzina A.B. Sodium butyrate as a selective cognitive enhancer for weak or impaired memory. Neurobiol. Learn. Mem. 2021. 180: 107414.

  57. Williams C.L., Barnett A.M., Meck W.H. Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behav. Neurosci. 1990. 104 (1): 84–97.

  58. Williams C.L., Meck W.H. The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendoerinology. 1991. 16 (1–3): 155–176.

  59. Zola-Morgan S.M., Squire L.R. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science. 1990. 250 (4978): 288–290.

  60. Zuzina A.B., Vinarskaya A.K., Balaban P.M. Increase in serotonin precursor levels reinstates the context memory during reconsolidation. Invert. Neurosci. 2019. 19 (3): 8.

  61. Zuzina A.B., Vinarskaya A.Kh., Balaban P.M. Histone deacetylase inhibitors rescue the impaired memory in terrestrial snails. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2020. 206 (4): 639–649.

Дополнительные материалы отсутствуют.