Журнал высшей нервной деятельности им. И.П. Павлова, 2023, T. 73, № 6, стр. 819-832

Нарушения двигательной активности на модели расстройств аутистического спектра

А. Е. Хайруллин 12*, Д. В. Ефимова 1, Д. В. Иванова 1, Т. В. Балтина 2, М. Э. Балтин 2, С. Н. Гришин 1, А. У. Зиганшин 1

1 Казанский государственный медицинский университет
Казань, Россия

2 Казанский Федеральный Университет
Казань, Россия

* E-mail: khajrulli@yandex.ru

Поступила в редакцию 13.07.2023
После доработки 27.08.2023
Принята к публикации 31.08.2023

Аннотация

Аутизм, или расстройство аутистического спектра (РАС), является многофакторным заболеванием, которое характеризуется не только нарушениями психоэмоционального состояния и социального взаимодействия, но и соматическими дисфункциями. В ряде исследований также сообщалось об изменениях со стороны опорно-двигательной системы у пациентов с РАС. В данной работе методом видеоанализа движений мы продемонстрировали снижение горизонтальной и вертикальной двигательной активности, кроме этого, были зарегистрированы девиантные движения, что говорит о нарушении в локомоторной активности и повышенной тревожности крыс с вальпроатной моделью аутизма. Однако механо-миографическое исследование не выявило достоверных изменений в параметрах сократимости изолированных скелетных мышц крыс с моделью РАС. Таким образом, можно заключить, что общие различия в движении могут быть независимым фактором диагностики аутизма. Более тщательное исследование с использованием большей выборки и подробного кинематического анализа может помочь в дальнейшей оценке вариабельности двигательных функций, как потенциального диагностического и прогностического маркера РАС.

Ключевые слова: аутизм, расстройства аутистического спектра, АТФ, Р2-рецепторы, скелетные мышцы, нервно-мышечный синапс, нейротрансмиссия

Список литературы

  1. Архипов А.Ю., Самигуллин Д.В., Семина И.И., Маломуж А.И. Функциональная оценка периферической холинергической нейротрансмиссии у крыс с фетальным вальпроатным синдромом. Российский физиологический журнал им. И.М. Сеченова, 2021. 107 (4–5): 605–615.

  2. Гедзун В.Р., Свинов М.М., Сарычева Н.Ю., Шлапакова П.С., Довбнюк К.О., Дубынин В.А. Влияние пренатального и раннего постнатального введения вальпроата на поведение и цитологические характеристики крыс линии Wistar. Журн. высш. нерв. деят. им. И.П. Павлова. 2020. 70 (5): 682–695.

  3. Зиганшин А.У., Иванова Д.В. Вызванные карбахолном сокращения изолированной тонкой кишки возрастают у крыс с экспериментальным аутизмом, вызванным вальпроевой кислотой. Экспериментальная и клиническая фармакология, 2021. 84 (2): 99–103.

  4. Козловский В.Л., Кенунен О.Г. Структура двигательного поведения лабораторных животных – новые возможности методики “открытого поля”. Физиологический журн. им. И.М. Сеченова, 1992. 78 (1): 120–123.

  5. Патент на полезную модель № 216564 U1 Российская Федерация, МПК A61N 1/04, G09B 23/28. Всасывающий культю нерва электрод для электрической стимуляции: № 2022131919: заявл. 07.12.2022: опубл. 14.02.2023 / С.Н. Гришин, А.Е. Хайруллин, А.У. Зиганшин, Д.В. Ефимова; заявитель Федеральное государственное бюджетное образовательное учреждение высшего образования “Казанский государственный медицинский университет” Министерства здравоохранения Российской Федерации. – EDN GPHYYZ.

  6. Abbracchio M.P., Ceruti S. Roles of P2 receptors in glial cells: Focus on astrocytes. Purinergic Signal, 2006. 2: 595–604. https://doi.org/10.1007/s11302-006-9016-0

  7. Amiet C., Gourfinkel-An I., Bouzamondo A., Tordjman S., Baulac M., Lechat P., Mottron L., Cohen D. Epilepsy in autism is associated with intellectual disability and gender: evidence from a meta-analysis. Biol Psychiatry, 2008. 64: 577–582.

  8. Arutiunian V., Davydova E., Pereverzeva D., Sorokin A., Tyushkevich S., Mamokhina U., Danilina K., Dragoy O. Reduced grey matter volume of amygdala and hippocampus is associated with the severity of autistic symptoms and language abilities in school-aged children with Autism Spectrum Disorder: an exploratory study. Brain structure & function. 2023. 228 (6): 1573–1579.

  9. Bachevalier J., Loveland K.A. The orbitofrontal-amygdala circuit and self-regulation of social-emotional behavior in autism. Neuroscience and biobehavioral reviews. 2006. 30 (1): 97–117.

  10. Banerjee A., García-Oscos F., Roychowdhury S., Galindo L.C., Hall S., Kilgard M.P., Atzori M. Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. The international journal of neuropsychopharmacology. 2013. 16 (6): 1309–1318.

  11. Besag F.M. Epilepsy in patients with autism: links, risks and treatment challenges. Neuropsychiatr Dis. Treat., 2018. 14: 1–10.

  12. Bhat A.N. Motor impairment increases in children with autism spectrum disorder as a function of social communication, cognitive and functional impairment, repetitive behavior severity, and comorbid diagnoses: a SPARK study report. Autism Res. 2021. 14: 202–219.

  13. Blume S.R., Nam H., Luz S., Bangasser D.A., Bhatnagar S. Sex- and Age-dependent Effects of Orexin 1 Receptor Blockade on Open-Field Behavior and Neuronal Activity. Neuroscience, 2018. 381: 11–21. https://doi.org/10.1016/j.neuroscience.2018.04.005

  14. Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci., 2007 64 (12):1471–83. https://doi.org/10.1007/s00018-007-6497-0

  15. Burnstock G., Krugel U., Abbracchio M.P., Illes P. Purinergic signalling: From normal behaviour to pathological brain function. Prog. Neurobiol., 2011. 95: 229–274. https://doi.org/10.1016/j.pneurobio.2011.08.006

  16. Cartocci V., Catallo M., Tempestilli M., Segatto M., Pfrieger F.W., Bronzuoli M.R., Scuderi C., Servadio M., Trezza V., Pallottini V. Altered brain cholesterol/isoprenoid metabolism in a rat model of autism spectrum disorders. Neuroscience. 2018. 372: 27–37.

  17. Chaliha D., Albrecht M., Vaccarezza M., Takechi R., Lam V., Al-Salami H., Mamo J. A Systematic Review of the Valproic-Acid-Induced Rodent Model of Autism. Developmental neuroscience. 2020. 42 (1): 12–48.

  18. Cheffer A., Castillo A., Corrêa-Velloso J., Gonçal-ves M.C.B., Naaldijk Y., Nascimento I.C., Burnstock G., Ulrich H. Purinergic system in psychiatric diseases. Mol. Psychiatry, 2018. 23: 94–106.

  19. Christensen J., Pedersen L., Sun Y., Dreier J.W., Brikell I., Dalsgaard S. Association of Prenatal Exposure to Valproate and Other Antiepileptic Drugs With Risk for Attention-Deficit/Hyperactivity Disorder in Offspring. JAMA network open. 2019. 2 (1): e186606. https://doi.org/10.1001/jamanetworkopen.2018. 6606

  20. Cieslak M., Czarnecka J., Roszek K. The roles of purinergic signaling in psychiatric disorders. Acta Biochim. Pol., 2016. 63 (1): 1–9.

  21. Citrigno L., Muglia M., Qualtieri A., Spadafora P., Cavalcanti F., Pioggia G., Cerasa A. The mitochondrial dysfunction hypothesis in autism spectrum disorders: Current status and future perspectives. Int. J. Mol. Sci., 21: 5785. https://doi.org/10.3390/ijms21165785

  22. Courchesne E., Pramparo T., Gazestani V.H., Lombardo M.V., Pierce K., Lewis N.E. The ASD living Biology: from cell proliferation to clinical phenotype. Mol. Psychiatry, 2019. 24 (1): 88–107. https://doi.org/10.1038/s41380-018-0056-y

  23. Doi M., Li M., Usui N., Shimada S. Genomic Strategies for Understanding the Pathophysiology of Autism Spectrum Disorder. Frontiers in molecular neuroscience. 2022. 15: 930941. https://doi.org/10.3389/fnmol.2022.930941

  24. Elandaloussi Y., Floris D.L., Coupé P., Duchesnay E., Mihailov A., Grigis A., Bègue I., Victor J., Frouin V., Leboyer M., Houenou J., Laidi C. Understanding the relationship between cerebellar structure and social abilities. Molecular autism. 2023. 14 (1): 18. https://doi.org/10.1186/s13229-023-00551-8

  25. Esposito G., Venuti P. Analysis of toddlers' gait after six months of independent walking to identify autism: a preliminary study. Perceptual and motor skills. 2008. 106 (1): 259–269.

  26. Fatemi S.H., Aldinger K.A., Ashwood P., Bauman M.L., Blaha C.D., Blatt G.J., Chauhan A., Chauhan V., Dager S.R., Dickson P.E., Estes A.M., Goldowitz D., Heck D.H., Kemper T.L., King B.H., Martin L.A., Millen K.J., Mittleman G., Mosconi M.W., Persico A.M., Welsh J.P. Consensus paper: pathological role of the cerebellum in autism. Cerebellum (London, England). 2012. 11 (3): 777–807.

  27. Fournier K.A., Hass C.J., Naik S.K., Lodha N., Cauraugh J.H. Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. Journal of autism and developmental disorders 2010. 40 (10): 1227–1240.

  28. Fumagalli M., Lecca D., Abbracchio M.P., Ceruti S. Pathophysiological role of purines and pyrimidines in neurodevelopment: unveiling new pharmacological approaches to congenital brain diseases. Front. Pharmacol., 2017. 8: 941.

  29. Gandhi T., Lee C.C. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Frontiers in cellular neuroscience. 2021. 14: 592710. https://doi.org/10.3389/fncel.2020.592710

  30. Ghaziuddin M., Butler E. Clumsiness in autism and Asperger syndrome: A further report. J. Intellect Disabil. Res., 1988. 42: 43–48.

  31. Gillberg C., Schaumann H., Gillberg I.C. Autism in immigrants: children born in Sweden to mothers born in Uganda. J Intellect Disabil Res., 1995. 39 (2): 141–144. https://doi.org/10.1111/j.1365-2788.1995.tb00482.x

  32. Green D., Charman T., Pickles A., Chandler S., Loucas T., Simonoff E., Baird G. Impairment in movement skills of children with autistic spectrum disorders. Developmental Medicine & Child Neurology, 2009. 51: 311–316.

  33. Hardan A.Y., Kilpatrick M., Keshavan M.S., Minshew N.J. Motor performance and anatomic magnetic resonance imaging (MRI) of the basal ganglia in autism. Journal of Child Neurology, 2003. 18: 317–324.

  34. Hirsch M.M., Deckmann I., Santos-Terra J., Staevie G.Z., Fontes-Dutra M., Carello-Collar G., Körbes-Rockenbach M., Brum Schwingel G., Bauer-Negrini G., Rabelo B., Gonçalves M.C.B., Corrêa-Velloso J., Naaldijk Y., Castillo A.R.G., Schneider T., Bambini-Junior V., Ulrich H., Gottfried C. Effects of single-dose antipurinergic therapy on behavioral and molecular alterations in the valproic acid-induced animal model of autism. Neuropharmacology. 2020 167: 107930. https://doi.org/10.1016/j.neuropharm.2019.107930

  35. Huang L., Otrokocsi L., Sperlagh B. Role of P2 receptors in normal brain development and in neurodevelopmental psychiatric disorders. Brain Res. Bull., 2019. 151: 55–64. https://doi.org/10.1016/j.brainresbull.2019.01.030

  36. Inoue K. Purinergic systems in microglia. Cell. Mol. Life Sci., 2008. 65: 3074–3080. https://doi.org/10.1007/s00018-008-8210-3

  37. Jiang S., He M., Xiao L., Sun Y., Ding J., Li W., Guo B., Wang L., Wang Y., Gao C., Sun T., Wang F. Prenatal GABAB Receptor Agonist Administration Corrects the Inheritance of Autism-Like Core Behaviors in Offspring of Mice Prenatally Exposed to Valproic Acid. Frontiers in psychiatry. 2022. 13: 835993. https://doi.org/10.3389/fpsyt.2022.835993

  38. Kataoka S., Takuma K., Hara Y., Maeda Y., Ago Y., Matsuda T. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. The international journal of neuropsychopharmacology. 2013. 16 (1): 91–103.

  39. Kern J.K., Trivedi M.H., Garver C.R., Grannemann B.D., Andrews A.A., Savla J.S., Johnson D.G., Mehta J.A., Schroeder J.L. The pattern of sensory processing abnormalities in autism. Autism, 2006. 10: 480–494.

  40. Khairullin A.E., Grishin S.N., Ziganshin A.U. P2 Receptor Signaling in Motor Units in Muscular Dystrophy. International Journal of Molecular Sciences. 2023b. 24 (2): 1587.

  41. Khairullin A.E., Mukhamedyarov M.A., Grishin S.N., Teplov A.Yu., Nagiev K.K., Ziganshin A.U. Synaptic Aspects of the Pathogenesis of Autism, Amyotrophic Lateral Sclerosis, and Alzheimer’s Disease. Biophysics, 2023a. 68 (1): 137–145.

  42. Kingsley R.E. Motor systems, in Kingsley RE (ed): Concise Text of Neuroscience. Baltimore, Lippincott Williams & Wilkins, 2000. 209–336.

  43. Lamb G.V., Green R.J., Olorunju S. Tracking epilepsy and autism. Egypt J. Neurol. Psychiatry Neurosurg., 2019. 55: 55. https://doi.org/10.1186/s41983-019-0103-x

  44. Lee B.H., Smith T., Paciorkowski A.R. Autism spectrum disorder and epilepsy: Disorders with a shared biology. Epilepsy Behav., 2015. 47: 191–201.

  45. Lee E., Lee J., Kim E. Excitation/Inhibition Imbalance in Animal Models of Autism Spectrum Disorders. Biological psychiatry. 2017. 81 (10): 838–847.

  46. Lister M.F., Sharkey J., Sawatzky D.A., Hodgkiss J.P., Davidson D.J., Rossi A.G., Finlayson K. The role of the purinergic P2X7 receptor in inflammation. J. Inflamm. (Lond), 2007. 4: 5. https://doi.org/10.1186/1476-9255-4-5

  47. Mabunga D.F., Gonzales E.L., Kim J.W., Kim K.C., Shin C.Y. Exploring the Validity of Valproic Acid Animal Model of Autism. Experimental neurobiology. 2015. 24 (4): 285–300.

  48. Maenner M.J., Warren Z., Williams A.R., Amoakohene E., Bakian A.V., Bilder D.A., Durkin M.S., Fitzgerald R.T., Furnier S.M., Hughes M.M., Ladd-Acosta C.M., McArthur D., Pas E.T., Salinas A., Vehorn A., Williams S., Esler A., Grzybowski A., Hall-Lande J., Nguyen R.H.N., Pierce K., Zahorodny W., Hudson A., Hallas L., Mancilla K.C., Patrick M., Shenouda J., Sidwell K., DiRienzo M., Gutierrez J., Spivey M.H., Lopez M., Pettygrove S., Schwenk Y.D., Washington A., Shaw K.A. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years – Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. Morbidity and mortality weekly report. Surveillance summaries (Washington, D.C: 2002), 2023. 72 (2): 1–14.

  49. Main S.L., Kulesza R.J. Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia. Neuroscience. 2017. 6 (340): 34–47.

  50. Ming X., Brimacombe M., Wagner G.C. Prevalence of motor impairment in autism spectrum disorders. Brain & Development, 2007. 29: 565–570.

  51. Minshew N.J., Sung K., Jones B.L., Furman J.M. Underdevelopment of the postural control system in autism. Neurology, 2004. 63: 2056–2061.

  52. Mitchell R., Barton S., Harvey A.S., Williams K. Risk factors for the development of autism spectrum disorder in children with tuberous sclerosis complex: protocol for a systematic review. Systematic reviews. 2017. 6: 49. https://doi.org/10.1186/s13643-017-0448-0

  53. Naviaux R.K., Zolkipli Z., Wang L., Nakayama T., Naviaux J.C., Le T.P., Schuchbauer M.A., Rogac M., Tang Q., Dugan L.L., Powell S.B. Antipurinergic therapy corrects the autism-like features in the poly (IC) mouse model. PLoS One, 2013. 8: 57380. https://doi.org/10.1371/journal.pone.0057380

  54. Nimmo-Smith V., Heuvelman H., Dalman C., Lundberg M., Idring S., Carpenter P., Magnusson C., Rai D. Anxiety Disorders in Adults with Autism Spectrum Disorder: A Population-Based Study. Journal of autism and developmental disorders. 2020. 50 (1): 308–318.

  55. Oliveira Á., Illes P., Ulrich H. Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology, 2016. 104: 272–281.

  56. Ozonoff S., Young G.S., Goldring S., Greiss-Hess L., Herrera A.M., Steele J., Macari S., Hepburn S., Rogers S.J. Gross motor development, movement abnormalities, and early identification of autism. Journal of autism and developmental disorders. 2008. 38 (4): 644–656.

  57. Pan P.Y., Bölte S., Kaur P., Jamil S., Jonsson U. Neurological disorders in autism: A systematic review and meta-analysis. Autism. 2021. 25 (3): 812–830.

  58. Pardo C.A., Meffert M.K. Animal models in autism research: The legacy of Paul H. Patterson. Experimental neurology. 2018. 299 (Pt A): 197–198.

  59. Piek J.P., Dyck M.J. Sensory-motor deficits in children with developmental coordination disorder, attention deficit hyperactivity disorder and autistic disorder. Hum. Mov. Sci., 2004. 23 (3–4): 475–488.

  60. Pierce K., Courchesne E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biological psychiatry. 2001. 49 (8): 655–664.

  61. Provost B., Heimerl S., Lopez B.R. Levels of gross and fine motor development in young children with autism spectrum disorder. Physical & Occupational Therapy in Pediatrics, 2007. 27: 21–36.

  62. Qi Z., Lyu M., Yang L., Yuan H., Cao Y., Zhai L., Dang W., Liu J., Yang F., Li Y. A Novel and Reliable Rat Model of Autism. Front Psychiatry. 2021. 12: 549810. https://doi.org/10.3389/fpsyt.2021.549810

  63. Rodier P.M., Ingram J.L., Tisdale B., Nelson S., Romano J. Embryological origin for autism: Developmental anomalies of the cranial nerve motor nuclei. Journal of Comparative Neurology. 1996. 370 (2): 247–261.

  64. Ren J., Zhao T., Xu Y., Ye H. Interaction between DISC1 and CHL1 in regulation of neurite outgrowth. Brain Res., 2016. 1648 (Pt A): 290–297.

  65. Saffari A., Arno M., Nasser E., Ronald A., Wong C.C.Y., Schalkwyk L.C., Mill J., Dudbridge F., Meaburn E.L. RNA sequencing of identical twins discordant for autismreveals blood-based signatures implicating immune and transcriptional dysregulation. Mol. Autism, 2019. 10: 38. https://doi.org/10.1186/s13229-019-0285-1

  66. Schneider T., Przewłocki R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 2005. 30 (1): 80–89.

  67. Servadio M., Manduca A., Melancia F., Leboffe L., Schiavi S., Campolongo P., Palmery M., Ascenzi P., di Masi A., Trezza V. Impaired repair of DNA damage is associated with autistic-like traits in rats prenatally exposed to valproic acid. European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology. 2018. 28 (1): 85–96.

  68. Singh R., Kisku A., Kungumaraj H., Nagaraj V., Pal A., Kuma S., Sulakhiya K. Autism Spectrum Disorders: A Recent Update on Targeting Inflammatory Pathways with Natural Anti-Inflammatory Agents. Biomedicines. 2023. 11 (1): 115. https://doi.org/10.3390/biomedicines11010115

  69. Smirnova V., Yaikova E., Baltin M., Kharin N., Baltina T., Sachenkov O. Movement estimation methods based on the motion capture system. 2022 Fourth International Conference Neurotechnologies and Neurointerfaces (CNN), 2022. 158–161. https://doi.org/10.1109/CNN56452.2022.9912543

  70. Smith S.E.P., Li J., Garbett K., Mirnics K., Patterson P.H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 2007. 27 (40): 10695–10702.

  71. Sui L., Chen M. Prenatal exposure to valproic acid enhances synaptic plasticity in the medial prefrontal cortex and fear memories. Brain research bulletin. 2012. 87 (6): 556–563.

  72. Talos D.M., Sun H., Zhou X., Fitzgerald E.C., Jackson M.C., Klein P.M., Lan V.J., Joseph A., Jensen F.E. The interaction between early life epilepsy and autistic-like behavioral consequences: a role for the mammalian target of rapamycin (mtor) pathway. Plos One, 2012. 7: 35885.

  73. Taylor M.J., Rosenqvist M.A., Larsson H., Gillberg C., D’Onofrio B.M., Lichtenstein P., Lundström S. Etiology of autism spectrum disorders and autistic traits over time. JAMA Psychiatry, 2020. 77: 936–943. https://doi.org/10.1001/jamapsychiatry.2020.0680

  74. Watson L.R., Baranek G.T., DiLavore P.C. Toddlers with autism: Developmental perspectives. Infants and Young Children, 2003. 16: 201–214.

  75. Widiger T.A., Hines A. The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition alternative model of personality disorder. Personality disorders. 2022. 13 (4): 347–355.

  76. Williams M., Prem S., Zhou X., Matteson P., Yeung P.L., Lu C.W., Pang Z., Brzustowicz L., Millonig J.H., Dicicco-Bloom E. Rapid detection of neuro-developmental phenotypes in human neural precursor cells (NPCs). J. Vis. Exp., 2018. 133: 56628.

  77. Wood A. Prenatal exposure to sodium valproate is associated with increased risk of childhood autism and autistic spectrum disorder. Evidence-based nursing. 2014. 17 (3): 84. https://doi.org/10.1136/eb-2013-101422

  78. Zheng W., Hu Y., Chen D., Li Y., Wang S. Improvement of a mouse model of valproic acid-induced autism. Nan Fang Yi Ke Da Xue Xue Bao, 2019. 39 (6): 718–723. https://doi.org/10.12122/j.issn.1673-4254.2019.06.14

  79. Ziganshin A.U., Khairullin A.E., Hoyle C.H.V., Grishin S.N. Modulatory roles of ATP and adenosine in cholinergic neuromuscular transmission. International Journal of Molecular Sciences, 2020. 21 (17): 1–15.

Дополнительные материалы отсутствуют.