Журнал высшей нервной деятельности им. И.П. Павлова, 2023, T. 73, № 5, стр. 688-703

Вклад эпигенетических механизмов в формирование, поддержание и реконсолидацию долговременной пищевой аверсивной памяти виноградной улитки

А. Б. Зюзина 1*, П. М. Балабан 1

1 Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия

* E-mail: lucky-a89@mail.ru

Поступила в редакцию 25.05.2023
После доработки 26.06.2023
Принята к публикации 03.07.2023

Аннотация

Настоящая работа направлена на анализ роли эпигенетических механизмов (ацетилирование гистонов, метилирование ДНК, серотонилирование гистонов) в формировании, хранении и реконсолидации долговременной пищевой аверсивной памяти виноградной улитки. В первой части работы мы исследовали влияние системного введения ингибитора гистондеацетилаз бутирата натрия в модели условно-рефлекторной пищевой аверсии виноградной улитки. Мы показали, что введение бутирата натрия животным со слабой памятью приводило к усилению памяти. Далее в экспериментах с применением блокатора ДНК метилтрансфераз RG108 было обнаружено, что нарушение метилирования ДНК ухудшает долговременную пищевую аверсивную память у виноградной улитки. Однако, реактивация памяти нивелирует эффект ингибирования активности ДНК метилтрансфераз. В заключительном разделе работы была проведена проверка гипотезы о вовлечении трансглутаминаза-опосредованного серотонилирования в процессы реконсолидации пищевой аверзивной памяти виноградной улитки. Поведенческий анализ показал, что введение блокатора трансглутаминазы монодансилкадаверина (следовательно, блокада серотонилирования) после напоминания нарушало процесс реконсолидации и приводило к подавлению/стиранию памяти.

Ключевые слова: ацетилирование гистонов, метилирование ДНК, серотонилирование гистонов, трансглутаминаза, долговременная память, моллюски

Список литературы

  1. Анохин К.В. Молекулярные сценарии консолидации долговременной памяти. Журн. высш. нервн. деят. им. И.П. Павлова. 1997. 47 (2): 261–279.

  2. Тиунова А., Торопова К., Коновалова Е.В., Анохин К.В. Эффекты системного введения ингибиторов гистондеацетилаз на формирование памяти и экспрессию ранних генов в мозге цыплят. Бюллетень экспериментальной биологии и медицины. 2012. 153 (5): 703–706.

  3. Торопова К., Анохин К., Тиунова А. Блокада деацетилирования гистонов в мозге модулирует экспрессию транскрипционных факторов c-Fos и Zenk и потенциирует образование долговременной памяти у новорожденных цыплят. Журн. высш. нервн. деят. им. И.П. Павлова. 2014. 64 (5): 551–561.

  4. Зюзина А.Б., Балабан П.М. Вклад трансглутаминазы в индукцию и поддержание долговременной синаптической потенциации в нейронах виноградной улитки. Журн. высш. нервн. деят. им. И.П. Павлова. 2022. 72 (6): 851–861.

  5. Abel T., Lattal K.M. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 2001. 11 (2): 180–187.

  6. Anastas J.N., Shi Y. Histone Serotonylation: can the brain have “Happy”. Chromatin. Mol. Cell. 2019. 74 (3): 418–420.

  7. Balaban P.M. Cellular mechanisms of behavioral plasticity in terrestrial snail. Neurosci. Biobehav. Rev. 2002. 26 (5): 597–630.

  8. Balaban P., Bravarenko N. Long-term sensitization and environmental conditioning in terrestrial snails. Exp. Brain Research. 1993. 96 (3): 487–493.

  9. Balaban P.M., Vinarskaya A.K., Zuzina A.B., Ierusalimsky V.N., Malyshev A.Y. Impairment of the serotonergic neurons underlying reinforcement elicits extinction of the repeatedly reactivated context memory. Sci. Rep. 2016. 6: 36933.

  10. Bockaert J., B’ecamel C., Chaumont-Dubel S., Claeysen S., Vandermoere F., Marin P. Novel and atypical pathways for serotonin signaling. Fac. Rev. 2021. 10: 52.

  11. Campbell R.R., Wood M.A. How the epigenome integrates information and reshapes the synapse. Nat. Rev. Neurosci. 2019. 20 (3): 133–147.

  12. Chahrour M., Jung S., Shaw C., Zhou X., Wong S.T., Qin J., Zoghbi H.Y. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008. 320 (5880): 1224–1229.

  13. Cohen S., Zhou Z., Greenberg M. Medicine. Activating a repressor. Science. 2008. 320 (5880): 1172–1173.

  14. Collins B.E., Greer C.B., Coleman B.C., Sweatt J.D. Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin. 2019. 12 (1): 7.

  15. Deryabina I.B., Muranova L.N., Andrianov V.V., Gainutdinov K.L. Impairing of serotonin synthesis by p-chlorphenylanine prevents the forgetting of contextual memory after reminder and the protein synthesis inhibition. Front. Pharmacol. 2018. 9: 607.

  16. Drewell R., Goddard C., Thomas J.O., Surani M.A. Methylation-dependent silencing at the H19 imprinting control region by MeCP2. Nucleic Acids Res. 2002. 30 (5): 1139–1144.

  17. Farrelly L.A., Thompson R.E., Zhao S., Lepack A.E., Lyu Y., Bhanu N.V., Zhang B., Loh Y.-H.E., Ramakrishnan A., Vadodaria K.C., Heard K.J., Erikson G., Nakadai T., Bastle R.M., Lukasak B.J., Zebroski H. 3rd, Alenina N., Bader M., Berton O., Roeder R.G., Molina H., Gage F.H., Shen L., Garcia B.A., Li H., Muir T.W., Maze I. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me. Nature. 2019. 567 (7749): 535–539.

  18. Federman N., Fusti˜nana M., Romano A. Histone acetylation is recruited in consolidation as a molecular feature of stronger memories. Learn. Mem. 2009. 16 (10): 600–606.

  19. Fu L., Zhang L. Serotonylation: a novel histone H3 marker. Signal Trans. Target Ther. 2019. 4: 15.

  20. Fuks F., Hurd P., Wolf D., Nan X., Bird A.P., Kouzarides T. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 2003. 278 (6): 4035–4040.

  21. Fulton S., Mitra S., Lepack A.E., Martin J.A., Stewart A.F., Converse J., Hochstetler M., Dietz D.M., Maze I. Histone H3 dopaminylation in ventral tegmental area underlies heroin-induced transcriptional and behavioral plasticity in male rats. Neuropsychopharmacology. 2022. 47 (10): 1776–1783.

  22. Greer E.L., Shi Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 2012. 13 (5): 343–357.

  23. Guan Z., Giustetto M., Lomvardas S., Kim J.H., Miniaci M.C., Schwartz J.H., Thanos D., Kandel E.R. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell. 2002. 111 (4): 483–493.

  24. Gulmez Karaca K., Kupke J., Brito D.V.C., Zeuch B., Thome C., Weichenhan D., Lutsik P., Plass C., Oliveira A.M.M. Neuronal ensemble-specific DNA methylation strengthens engram stability. Nat. Commun. 2020. 11 (1): 639.

  25. Gupta S., Kim S.Y., Artis S., Molfese D.L., Schumacher A., Sweatt J.D., Paylor R.E., Lubin F.D. Histone methylation regulates memory formation. J. Neurosci. 2010. 30 (10): 3589–3599.

  26. Guzowski J.F., Setlow B., Wagner E.K., McGaugh J.L. Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J. Neurosci. 2001. 21 (14): 5089–5098.

  27. Halder R., Hennion M., Vidal R.O., Shomroni O., Rahman R.U., Rajput A., Centeno T.P., van Bebber F., Capece V., Garcia Vizcaino J.C., Schuetz A.L., Burkhardt S., Benito E., Navarro Sala M., Javan S.B., Haass C., Schmid B., Fischer A., Bonn S. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory // Nat. Neurosci. 2016. 19 (1): 102–110.

  28. Hao J., Li Y. Effect of BDNF expression in cerebral cortex and hippocampus on ability of learning and memory in APP/PS1 transgenic mice. Chinese J. Pathophysiology. 2019. 35: 858–864.

  29. Hu Y.T., Tang C.K., Wu C.P., Wu P.C., Yang E.C., Tai C.C., Wu Y.L. Histone deacetylase inhibitor treatment restores memory-related gene expression and learning ability in neonicotinoid-treated Apis Mellifera. Insect. Mol. Bio. 2018. 27 (4): 512–521.

  30. Ivashkin E., Melnikova V., Kurtova A., Brun N.R., Obukhova A., Khabarova M.Y. Transglutaminase activity determines nuclear localization of serotonin immunoreactivity in the early embryos of invertebrates and vertebrates. ACS Chem. Neurosci. 2019. 10 (8): 3888–3899.

  31. Jiang Y., Langley B., Lubin F.D., Renthal W., Wood M.A., Yasui D.H., Kumar A., Nestler E.J., Akbarian S., Beckel-Mitchener A.C. Epigenetics in the nervous system. J. Neurosci. 2008. 28 (46): 11753–11759.

  32. Josselyn S., K¨ohler S., Frankland P. Finding the engram. Nat. Rev. Neurosci. 2015. 16 (9): 521–534.

  33. Kandel E.R., Schwartz J.H. Molecular biology of an elementary form of learning: modulation of transmitter release by cuclic AMP. Science. 1982. 218 (4571): 433–443.

  34. Lepack A., Werner C., Stewart A.F., Fulton S.L., Zhong P., Farrelly L.A., Smith A.C.W., Ramakrishnan A., Lyu Y., Bastle R.M., Martin J.A., Mitra S., O’Connor R.M., Wang Z.J., Molina H., Turecki G., Shen L., Yan Z., Calipari E.S., Dietz D.M., Kenny P.J., Maze I. Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science. 2020. 368 (6487): 197–201.

  35. Levenson J., Sweatt J. Epigenetic mechanisms: A common theme in vertebrate and invertebrate memory formation. Cell. Mol. Life Sci. 2006. 63 (9): 1009–1016.

  36. Liu P., Zhang J., Li M., Sui N. Distinctive Roles of 5-aza-2'-deoxycytidine in anterior agranular insular and basolateral amygdala in reconsolidation

  37. Lukowiak K., Heckler B., Bennett T.E., Schriner E.K., Wyrick K., Jewett C., Todd R.P., Sorg B.A. Enhanced memory persistence is blocked by a DNA methyltransferase inhibitor in the snail Lymnaea stagnalis. J. Exp. Biol. 2014. 217 (Pt16): 2920–2929.

  38. Maddox S., Schafe G. Epigenetic alterations in the lateral amygdala are required for reconsolidation of a Pavlovian fear memory. Learn. Mem. 2011. 18 (9): 579–593.

  39. Maddox S., Watts C., Schafe G. DNA methyltransferase activity is required for memory-related neural plasticity in the lateral amygdala. Neurobiol. Learn. Mem. 2014. 107: 93–100.

  40. Maity S., Farrell K., Navabpour S., Narayanan S.N., Jarome T.J. Epigenetic mechanisms in memory and cognitive decline associated with aging and Alzheimer’s disease. Int. J. Mol. Sci. 2021. 22 (22): 12280.

  41. Marks P.A., Dokmanovic M. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert. Opin. Investig. Drugs. 2005. 14 (12): 1497–1511.

  42. Matsuo N. Irreplaceability of neuronal ensembles after memory allocation. Cell. Rep.2015. 11 (3): 351–357.

  43. McGaugh J.L. Memory–a century of consolidation. Science. 2000. 287 (5451): 248–251.

  44. Mews P., Donahue G., Drake A.M., Luczak V., Abel T., Berger S.L. Acetyl-CoA synthetasae regulates histone acetylation and hippocampal memory. Nature. 2017. 546 (7658): 381–386.

  45. Miller C., Gavin C., White J.A., Parrish R.R., Honasoge A., Yancey C.R., Rivera I.M., Rubio M.D., Rumbaugh G., Sweatt J.D. Cortical DNA methylation maintains remote memory. Nat. Neurosci. 2010. 13 (6): 664–666.

  46. Mizuno K., Dempster E., Mill J., Giese K.P. Long-lasting regulation of hippocampal Bdnf gene transcription after contextual fear conditioning. Genes Brain Behav. 2012. 11 (6): 651–659.

  47. Moorman S., Mello C.V., Bolhuis J.J. From songs to synapses – Molecular mechanisms of birdsong memory. Bioessays. 2011. 33(5): 377–385.

  48. Muma N.A., Mi Z. Serotonylation and transamidation of other monoamines. ACS Chem. Neurosci. 2015. 6 (7): 961–969.

  49. Oliveira A. DNA methylation: a permissive mark in memory formation and maintenance. Learn. Mem. 2016. 23 (10): 587–593.

  50. Patra S. Emerging histone glutamine modifications mediated gene expression in cell differentiation and the VTA reward pathway. Gene. 2021. 768: 145323.

  51. Pearce K., Cai D., Roberts A.C., Glanzman D.L. Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. Elife. 2017. 6: e18299.

  52. Penney J., Tsai L.H. Histone deacetylases in memory and cognition. Sci. Signal. 2014. 7 (355): re12.

  53. Qian S., Shi C., Huang S., Yang C., Luo Y. DNA methyltransferase activity in the basolateral amygdala is critical for reconsolidation of a heroin reward memory. Front. Mol. Neurosci. 2022. 15: 1002139.

  54. Rajasethupathy P., Antonov I., Sheridan R., Frey S., Sander C., Tuschl T., Kandel E.R. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell. 2012. 149 (3): 693–707.

  55. Rossin F., Ciccosanti F., D’Eletto M., Occhigrossi L., Fimia G.M., Piacentini M. Type 2 transglutaminase in the nucleus: the new epigenetic face of a cytoplasmic enzyme. Cell. Mol. Life Sci. 2023. 80 (2): 52.

  56. Rothwell C., Lukowiak K. Impairing DNA methylation obstructs memory enhancement for at least 24 hours in Lymnaea. Commun. Integr. Biol. 2017. 10 (3): e1306616.

  57. Stilling R., R¨onicke R., Benito E., Urbanke H., Capece V., Burkhardt S., Bahari-Javan S., Barth J., Sananbenesi F., Schütz A.L., Dyczkowski J., Martinez-Hernandez A., Kerimoglu C., Dent S.Y., Bonn S., Reymann K.G., Fischer A. K-Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation. EMBO J. 2014. 33 (17): 1912–1927.

  58. Sultan F., Day J. Epigenetic mechanisms in memory and synaptic function. Epigenomics. 2011. 3 (2): 157–181.

  59. Sunada H., Riaz H., de Freitas E., Lukowiak K., Swinton C., Swinton E., Protheroe A., Shymansky T., Komatsuzaki Y., Lukowiak K. Heat stress enhances LTM formation in Lymnaea: role of HSPs and DNA methylation. J. Exp. Biol. 2016. 219 (Pt9): 1337–1345.

  60. Tonegawa S., Pignatelli M., Roy D.S., Ryan T.J. Memory engram storage and retrieval. Curr. Opin. Neurobiol. 2015. 35: 101–109.

  61. Vecsey C.G., Hawk J.D., Lattal K.M., Stein J.M., Fabian S.A., Attner M.A., Cabrera S.M., McDonough C.B., Brindle P.K., Abel T., Wood M.A. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 2007. 27 (23): 6128–6140.

  62. Vinarskaya A.K., Balaban P.M., Roshchin M.V., Zuzina A.B. Sodium butyrate as a selective cognitive enhancer for weak or impaired memory. Neurobiol. Learn. Mem. 2021. 180: 107414.

  63. Xu S., Wilf R., Menon T., Panikker P., Sarthi J., Elefant F. Epigenetic control of learning and memory in Drosophila by Tip60 HAT action. Genetics. 2014. 198 (4): 1571–1586.

  64. Yang Q., Antonov I., Castillejos D., Nagaraj A., Bostwick C., Kohn A., Moroz L.L., Hawkins R.D. Intermediate-term memory in Aplysia involves neurotrophin signaling, transcription, and DNA methylation. Learn. Mem. 2018. 25 (12): 620–628.

  65. Zhao S., Yue Y., Li Y., Li H. Identification and characterization of ‘readers’ for novel histone modifications. Curr. Opin. Chem. Biol. 2019. 51: 57–65.

  66. Zlotorynski E. Histone serotonylation boosts neuronal transcription. Nat. Rev. Mol. Cell Biol. 2019. 20 (6): 323.

  67. Zovkic I., Guzman-Karlsson M., Sweatt J. Epigenetic regulation of memory formation and maintenance. Learn. Mem. 2013. 20 (2): 61–74.

  68. Zuzina A.B., Vinarskaya A.Kh., Balaban P.M. Histone deacetylase inhibitors rescue the impaired memory in terrestrial snails. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2020. 206 (4): 639–649.

  69. Zuzina A.B., Vinarskaya A.Kh., Balaban P.M., Roshchin M.V. Histone deacetylase inhibitor prevents memory impairment by methiothepin. In: Advances in cognitive research, artificial intelligence and neuroinformatics. Frankfurt: Springer, 2021. 619–631 pp.

  70. Zuzina A., Vinarskaya A. Increased histone acetylation levels or a serotonin precursor reinstate the context memory impaired by the serotonin receptor blocker methiothepin. Neurosci. Behav. Physiol. 2022.

Дополнительные материалы отсутствуют.