Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 5, стр. 623-642

Возможность повышения эффективности коррекции двигательных навыков и когнитивных функций с помощью неинвазивной стимуляции мозга у человека

А. В. Попыванова 1, М. А. Корякина 1, Е. Д. Помелова 1, Н. А. Илюкина 12, О. Е. Агранович 3, А. Н. Шестакова 1, Е. Д. Благовещенский 1*

1 Центр нейроэкономики и когнитивных исследований, Институт когнитивных нейронаук, Национальный исследовательский университет Высшая школа экономики
Москва, Россия

2 Приволжский исследовательский медицинский университет
Нижний Новгород, Россия

3 НИИ детской ортопедии им. Т. Турнера
Санкт-Петербург, Россия

* E-mail: eblagovechensky@hse.ru

Поступила в редакцию 15.03.2022
После доработки 24.05.2022
Принята к публикации 27.06.2022

Аннотация

Существует множество исследований, демонстрирующих влияние неинвазивной стимуляции на различные функции мозга. Основными методами такой стимуляции являются транскраниальная электрическая (ТЭС) и транскраниальная магнитная (ТМС) стимуляция. В клинике уже реализуется ряд протоколов стимуляции, однако достоверность эффектов такого воздействия вызывает ряд вопросов. В данном обзоре мы рассмотрели влияние ТЭС и ТМС на выработку и коррекцию моторных навыков и когнитивных функций и как они связаны между собой. Особый акцент был сделан на эффектах, связанных с коррекцией моторных навыков, так как именно кортикоспинальную систему, связанную с движением (основная мишень стимуляции), можно оценивать максимально объективно при помощи различных методов нейровизуализации и нейростимуляции, что позволяет более точно оценить механизмы воздействия неинвазивной стимуляции мозга (НСМ). Кроме того, в исследованиях с использованием НСМ наблюдается взаимосвязь между когнитивными и моторными функциями, что говорит о необходимости изучать эти области комплексно в контексте рассмотрения повышения эффективности моторных навыков. Рассматриваются как отдельные эффекты ТЭС и ТМС, так и эффекты их совместного использования. На взгляд авторов, нет однозначного ответа на вопрос, можно ли достоверно корректировать при помощи неинвазивной стимуляции выработку двигательных и когнитивных навыков. Приведeнные в настоящем обзоре данные позволяют предположить, что такая корректировка возможна. Данный аспект важен как для клинической медицины (пациенты с моторными нарушениями), так и для других направлений – спортивной медицины, образовательных технологий и т.д.

Ключевые слова: неинвазивная стимуляция мозга, ТЭС, ТМС, моторные навыки, обзор

Список литературы

  1. Логвинова О.В., Пойдашева А.Г., Бакулин И.С., Лагода О.В., Кремнева Е.И., Трошина Е.А., Мазурина Н.В., Супонева Н.А., Танашян М.М., Дедов И.И., Пирадов М.А. Современные представления о патогенезе ожирения и новых подходах к его коррекции. Ожирение и метаболизм 2018. 15(2): 11–16.

  2. Фетисова Т.В. Способ лечения задержки речевого развития у детей с использованием транскраниальной магнитной стимуляции. 2018. RU2675737C1.

  3. Aleman A., Sommer I.E., Kahn R.S. Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: A meta-analysis. J. Clin. Psychiatry 2007. 68: 416–421. https://doi.org/10.4088/JCP.v68n0310

  4. Antal A., Kincses T.Z., Nitsche M.A., Paulus W. Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Exp. Brain Res. 2003. 150: 375–378. https://doi.org/10.1007/S00221-003-1459-8

  5. Antonenko D., Külzow N., Sousa A., Prehn K., Grittner U., Flöel A. Neuronal and behavioral effects of multi-day brain stimulation and memory training. Neurobiol. Aging 2018. 61: 245–254. https://doi.org/10.1016/j.neurobiolaging.2017.09.017

  6. Arciniega H., Gözenman F., Jones K.T., Stephens J.A., Berryhill M.E. Frontoparietal tDCS Benefits Visual Working Memory in Older Adults With Low Working Memory Capacity. Front. Aging Neurosci. 2018. 10.https://doi.org/10.3389/FNAGI.2018.00057

  7. Barker A.T., Shields K. Transcranial Magnetic Stimulation: Basic Principles and Clinical Applications in Migraine. Headache. 2017. 57: 517–524. https://doi.org/10.1111/HEAD.13002

  8. Baeken C., Raedt R.De. Neurobiological mechanisms of repetitive transcranial magnetic stimulation on the underlying neuro circuitry in unipolar depression. Dialogues Clin. Neurosci. 2011. 13: 139. https://doi.org/10.31887/DCNS.2011.13.1/CBAEKEN

  9. Balboa-Bandeira Y., Zubiaurre-Elorza L., Ibarretxe-Bilbao N., Ojeda N., Peña J. Effects of transcranial electrical stimulation techniques on second and foreign language learning enhancement in healthy adults: A systematic review and meta-analysis. Neuropsychologia 2021. 160: 107985. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2021.107985

  10. Banissy M.J., Muggleton N.G. Transcranial direct current stimulation in sports training: Potential approaches. Front. Hum. Neurosci. 2013. https://doi.org/10.3389/FNHUM.2013.00129

  11. Barker A.T., Freeston I.L., Jalinous R., Jarratt J.A. Magnetic stimulation of the human brain and peripheral nervous system. Neurosurgery 1987. 20: 100–119. https://doi.org/10.1097/00006123-198701000-00024

  12. Barker A.T., Jalinous R., Freeston I.L. NON-INVASIVE MAGNETIC STIMULATION OF HUMAN MOTOR CORTEX. Lancet. 1985. https://doi.org/10.1016/S0140-6736(85)92413-4

  13. Battelli L., Grossman E.D., Plow E.B. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network. Brain Stimul. 2017. 10: 263–269. https://doi.org/10.1016/j.brs.2016.10.009

  14. Berardi R.P., James V.A. Overall Vigilance and Sustained Attention Decrements in Healthy Aging. Exp. Aging Res. 2001. 27: 19–39. https://doi.org/10.1080/03610730126014

  15. Bestmann S., Swayne O., Blankenburg F., Ruff C.C., Haggard P., Weiskopf N., Josephs O., Driver J., Rothwell J.C., Ward N.S. Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb. Cortex 2008. 18: 1281. https://doi.org/10.1093/CERCOR/BHM159

  16. Bijsterbosch J.D., Barker A.T., Lee K.H., Woodruff P.W.R. Where does transcranial magnetic stimulation (TMS) stimulate? Modelling of induced field maps for some common cortical and cerebellar targets. Med. Biol. Eng. Comput. 2012. 50: 671–681. https://doi.org/10.1007/s11517-012-0922-8

  17. Bindman L.J., Lippold O.C.J., Redfearn J.W.T. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J. Physiol. 1964. 172: 369–382. https://doi.org/10.1113/jphysiol.1964.sp007425

  18. Borducchi D.M.M., Gomes J.S., Akiba H., Cordeiro Q., Borducchi J.H.M., Valentin L.S.S., Borducchi G.M., Dias Á.M. Transcranial Direct Current Stimulation Effects on Athletes’ Cognitive Performance: An Exploratory Proof of Concept Trial. Front. Psychiatry 2016. 7. https://doi.org/10.3389/FPSYT.2016.00183

  19. Buch E.R., Santarnecchi E., Antal A., Born J., Celnik P.A., Classen J., Gerloff C., Hallett M., Hummel F.C., Nitsche M.A., Pascual-Leone A., Paulus W.J., Reis J., Robertson E.M., Rothwell J.C., Sandrini M., Schambra H.M., Wassermann E.M., Ziemann U., Cohen L.G. Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clin. Neurophysiol. 2017. 128: 589–603. https://doi.org/10.1016/J.CLINPH.2017.01.004

  20. Busan P., Moret B., Masina F., Ben G. Del, Campana G. Speech Fluency Improvement in Developmental Stuttering Using Non-invasive Brain Stimulation: Insights From Available Evidence. Front. Hum. Neurosci. 2021. 15: 662016. https://doi.org/10.3389/FNHUM.2021.662016

  21. Cao P., Xing J., Cao Y., Cheng Q., Sun X., Kang Q., Dai L., Zhou X., Song Z. Clinical effects of repetitive transcranial magnetic stimulation combined with atomoxetine in the treatment of attention-deficit hyperactivity disorder. Neuropsychiatr. Dis. Treat. 2018. 14: 3231–3240. https://doi.org/10.2147/NDT.S182527

  22. Castrillon G., Sollmann N., Kurcyus K., Razi A., Krieg S.M., Riedl V. The physiological effects of noninvasive brain stimulation fundamentally differ across the human cortex. Sci. Adv. 2020. 6. https://doi.org/10.1126/SCIADV.AAY2739

  23. Chesters J., Möttönen R., Watkins K.E. Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter. Brain 2018. 141, 1161–1171. https://doi.org/10.1093/brain/awy011

  24. Chung S.W., Rogasch N.C., Hoy K.E., Fitzgerald P.B. Measuring brain stimulation induced changes in cortical properties using TMS-EEG. Brain Stimul. 2015. https://doi.org/10.1016/j.brs.2015.07.029

  25. Clark L., Kempton M.J., Scarnà A., Grasby P.M., Goodwin G.M. Sustained attention-deficit confirmed in euthymic bipolar disorder but not in first-degree relatives of bipolar patients or euthymic unipolar depression. Biol. Psychiatry 2005. 57: 183–187. https://doi.org/10.1016/j.biopsych.2004.11.007

  26. Cui X., Ren W., Zheng Z., Li J. Repetitive Transcranial Magnetic Stimulation Improved Source Memory and Modulated Recollection-Based Retrieval in Healthy Older Adults. Front. Psychol. 2020. 11: 1137. https://doi.org/10.3389/FPSYG.2020.01137/BIBTEX

  27. Denslow S., Lomarev M., George M.S., Bohning D.E. Cortical and subcortical brain effects of Transcranial Magnetic Stimulation (TMS)-induced movement: An interleaved TMS/functional magnetic resonance imaging study. Biol. Psychiatry 2005. 57: 752–760. https://doi.org/10.1016/j.biopsych.2004.12.017

  28. Detrick J.A., Zink C., Rosch K.S., Horn P.S., Huddleston D.A., Crocetti D., Wu S.W., Pedapati E.V, Wassermann E.M., Mostofsky S.H., Gilbert D.L. Motor cortex modulation and reward in children with attention-deficit/hyperactivity disorder. Brain Commun. 2021. 3. https://doi.org/10.1093/BRAINCOMMS/FCAB093

  29. Devlin J.T., Watkins K.E. Stimulating language: insights from TMS. Brain 2007. 130: 610–622. https://doi.org/10.1093/BRAIN/AWL331

  30. Dionísio A., Duarte I.C., Patrício M., Castelo-Branco M. Transcranial Magnetic Stimulation as an Intervention Tool to Recover from Language, Swallowing and Attentional Deficits after Stroke: A Systematic Review. Cerebrovasc. Dis. 2018. 46: 176–183. https://doi.org/10.1159/000494213

  31. Edwards G., Contò F., Bucci L.K., Battelli L. Controlling Brain State Prior to Stimulation of Parietal Cortex Prevents Deterioration of Sustained Attention. Cereb. Cortex Commun. 2020. 1. https://doi.org/10.1093/TEXCOM/TGAA069

  32. Eldaief M.C., Press D.Z., Pascual-Leone A. Transcranial magnetic stimulation in neurology: A review of established and prospective applications. Neurol. Clin. Pract. 2013. 3: 519. https://doi.org/10.1212/01.CPJ.0000436213.11132.8E

  33. Fadiga L., Craighero L., Buccino G., Rizzolatti G. Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur. J. Neurosci. 2002. 15: 399–402. https://doi.org/10.1046/J.0953-816X.2001.01874.X

  34. Ferrari C., Cattaneo Z., Oldrati V., Casiraghi L., Castelli F., D’Angelo E., Vecchi T. TMS Over the Cerebellum Interferes with Short-term Memory of Visual Sequences. Sci. Rep. 2018. 8: 6722. https://doi.org/10.1038/S41598-018-25151-Y

  35. Flöel A., Suttorp W., Kohl O., Kürten J., Lohmann H., Breitenstein C., Knecht S. Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol. Aging 2012. 33: 1682–1689. https://doi.org/10.1016/j.neurobiolaging.2011.05.007

  36. Freedberg M., Reeves J.A., Toader A.C., Hermiller M.S., Voss J.L., Wassermann E.M. Persistent enhancement of hippocampal network connectivity by parietal rTMS is reproducible. eNeuro 2019. 6. https://doi.org/10.1523/ENEURO.0129-19.2019

  37. Fregni F., Boggio P.S., Mansur C.G., Wagner T., Ferreira M.J.L., Lima M.C., Rigonatti S.P., Marcolin M.A., Freedman S.D., Nitsche M.A., Pascual-Leone A. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 2005. 16: 1551–1555. https://doi.org/10.1097/01.WNR.0000177010.44602.5E

  38. Fregni F., Pascual-Leone A. Technology Insight: Noninvasive brain stimulation in neurology - Perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 2007. https://doi.org/10.1038/ncpneuro0530

  39. Ganguly J., Murgai A., Sharma S., Aur D., Jog M. Non-invasive Transcranial Electrical Stimulation in Movement Disorders. Front. Neurosci. 2020. 14. https://doi.org/10.3389/FNINS.2020.00522

  40. Gatti D., Vecchi T., Mazzoni G. Cerebellum and semantic memory: A TMS study using the DRM paradigm. Cortex. 2021. 135: 78–91. https://doi.org/10.1016/J.CORTEX.2020.11.017

  41. George M.S., Nahas Z., Borckardt J.J., Anderson B., Foust M.J., Burns C., Kose S., Short E.B. Brain stimulation for the treatment of psychiatric disorders. Curr. Opin. Psychiatry. 2007. https://doi.org/10.1097/YCO.0b013e3280ad4698

  42. Goldthorpe R.A., Rapley J.M., Violante I.R. A Systematic Review of Non-invasive Brain Stimulation Applications to Memory in Healthy Aging. Front. Neurol. 2020. 11. https://doi.org/10.3389/FNEUR.2020.575075

  43. Hallett M. Transcranial Magnetic Stimulation: A Primer. Neuron. 2007. https://doi.org/10.1016/j.neuron.2007.06.026

  44. Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000. https://doi.org/10.1038/35018000

  45. Hamada M., Murase N., Hasan A., Balaratnam M., Rothwell J.C. The Role of Interneuron Networks in Driving Human Motor Cortical Plasticity. Cereb. Cortex 2013. 23: 1593–1605. https://doi.org/10.1093/CERCOR/BHS147

  46. Hanajima R., Tanaka N., Tsutsumi R., Enomoto H., Abe M., Nakamura K., Kobayashi S., Hamada M., Shimizu T., Terao Y., Ugawa Y. The effect of age on the homotopic motor cortical long-term potentiation-like effect induced by quadripulse stimulation. Exp. Brain Res. 2017. 235: 2103–2108. https://doi.org/10.1007/S00221-017-4953-0

  47. Hasan A., Strube W., Palm U., Wobrock T. Repetitive Noninvasive Brain Stimulation to Modulate Cognitive Functions in Schizophrenia: A Systematic Review of Primary and Secondary Outcomes. Schizophr. Bull. 2016. 42: 95. https://doi.org/10.1093/SCHBUL/SBV158

  48. Hauer L., Sellner J., Brigo F., Trinka E., Sebastianelli L., Saltuari L., Versace V., Höller Y., Nardone R. Effects of Repetitive Transcranial Magnetic Stimulation over Prefrontal Cortex on Attention in Psychiatric Disorders: A Systematic Review. J. Clin. Med. 2019. 8. https://doi.org/10.3390/JCM8040416

  49. Hazime F.A., Cunha R.A., Soliaman R.R., Romancini A.C.B., Pochini A. de C., Ejnisman B., Baptista A.F. Anodal transcranial direct current stimulation (TDCS) increases isometric strength of shoulder rotators muscles in handball players. Int. J. Sports Phys. Ther. 2017. 12: 402.

  50. Hermiller M.S., Karp E., Nilakantan A.S., Voss J.L. Episodic memory improvements due to noninvasive stimulation targeting the cortical–hippocampal network: A replication and extension experiment. Brain Behav. 2019. 9. https://doi.org/10.1002/brb3.1393

  51. Herpich F., Melnick M.D., Agosta S., Huxlin K.R., Tadin D., Battelli L. Boosting learning efficacy with noninvasive brain stimulation in intact and brain-damaged humans. J. Neurosci. 2019. 39: 5551–5561. https://doi.org/10.1523/JNEUROSCI.3248-18.2019

  52. Hesse S., Waldner A., Mehrholz J., Tomelleri C., Pohl M., Werner C. Combined Transcranial Direct Current Stimulation and Robot-Assisted Arm Training in Subacute Stroke Patients: An Exploratory, Randomized Multicenter Trial. http://dx.doi.org/ 2011. 25: 838–846. https://doi.org/10.1177/1545968311413906

  53. Hesse S., Werner C., Schonhardt E.M., Bardeleben A., Jenrich W., Kirker S.G.B. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study. Restor. Neurol. Neurosci. 2007. 25: 9–15.

  54. Höppner J., Schulz M., Irmisch G., Mau R., Schläfke D., Richter J. Antidepressant efficacy of two different rTMS procedures. High frequency over left versus low frequency over right prefrontal cortex compared with sham stimulation. Eur. Arch. Psychiatry Clin. Neurosci. 2003. 253: 103–109. https://doi.org/10.1007/S00406-003-0416-7

  55. Horvath J.C., Forte J.D., Carter O. Quantitative Review Finds No Evidence of Cognitive Effects in Healthy Populations From Single-session Transcranial Direct Current Stimulation (tDCS). Brain Stimul. 2015. 8: 535–550. https://doi.org/10.1016/J.BRS.2015.01.400

  56. Hummel F.C., Cohen L.G. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 2006. 5: 708–712. https://doi.org/10.1016/S1474-4422(06)70525-7

  57. Inghilleri M., Conte A., Currà A., Frasca V., Lorenzano C., Berardelli A. Ovarian hormones and cortical excitability. An rTMS study in humans. Clin. Neurophysiol. 2004. 115: 1063–1068. https://doi.org/10.1016/J.CLINPH.2003.12.003

  58. Januel D., Dumortier G., Verdon C.M., Stamatiadis L., Saba G., Cabaret W., Benadhira R., Rocamora J.F., Braha S., Kalalou K., Vicaut P.E., Fermanian J. A double-blind sham controlled study of right prefrontal repetitive transcranial magnetic stimulation (rTMS): Therapeutic and cognitive effect in medication free unipolar depression during 4 weeks. Prog. Neuro-Psychopharmacology Biol. Psychiatry 2006. 30: 126–130. https://doi.org/10.1016/j.pnpbp.2005.08.016

  59. Johnson J.S., Feredoes E., Postle B.R. TMS in working memory research. Oxford Handb. Transcranial Stimul. Second Ed. 2021. https://doi.org/10.1093/OXFORDHB/9780198832256.013.34

  60. Joundi R.A., Jenkinson N., Brittain J.S., Aziz T.Z., Brown P. Driving Oscillatory Activity in the Human Cortex Enhances Motor Performance. Curr. Biol. 2012. 22: 403–407. https://doi.org/10.1016/J.CUB.2012.01.024

  61. Jung J.Y., Bungert A., Bowtell R., Jackson S.R. Modulating Brain Networks With Transcranial Magnetic Stimulation Over the Primary Motor Cortex: A Concurrent TMS/fMRI Study. Front. Hum. Neurosci. 2020. 14. https://doi.org/10.3389/FNHUM.2020.00031/-FULL

  62. Kanai R., Chaieb L., Antal A., Walsh V., Paulus W. Frequency-Dependent Electrical Stimulation of the Visual Cortex. Curr. Biol. 2008. 18: 1839–1843. https://doi.org/10.1016/J.CUB.2008.10.027

  63. Kang E.K., Paik N.J. Effect of a tDCS electrode montage on implicit motor sequence learning in healthy subjects. Exp. Transl. Stroke Med. 2011. 3. https://doi.org/10.1186/2040-7378-3-4

  64. Khedr E.M., Ahmed M.A., Fathy N., Rothwell J.C. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 2005. 65: 466–468. https://doi.org/10.1212/01.WNL.0000173067.84247.36

  65. Kim S.H., Han H.J., Ahn H.M., Kim S.A., Kim S.E. Effects of five daily high-frequency rTMS on Stroop task performance in aging individuals. Neurosci. Res. 2012. 74: 256–260. https://doi.org/10.1016/J.NEURES.2012.08.008

  66. Kleim J.A., Chan S., Pringle E., Schallert K., Procaccio V., Jimenez R., Cramer S.C. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat. Neurosci. 2006. 9: 735–737. https://doi.org/10.1038/nn1699

  67. Koch G., Franca M., Albrecht U.V., Caltagirone C., Rothwell J.C. Effects of paired pulse TMS of primary somatosensory cortex on perception of a peripheral electrical stimulus. Exp. Brain Res. 2006. 172: 416–424. https://doi.org/10.1007/s00221-006-0359-0

  68. Krakauer J.W. Motor learning: Its relevance to stroke recovery and neurorehabilitation. Curr. Opin. Neurol. 2006. 19: 84–90. https://doi.org/10.1097/01.WCO.0000200544.29915.CC

  69. Kurmakaeva D., Blagovechtchenski E., Gnedykh D., Mkrtychian N., Kostromina S., Shtyrov Y. Acquisition of concrete and abstract words is modulated by tDCS of Wernicke’s area. Sci. Rep. 2021. 11. https://doi.org/10.1038/S41598-020-79967-8

  70. Lahr J., Paßmann S., List J., Vach W., Flöel A., Klöppel S. Effects of Different Analysis Strategies on Paired Associative Stimulation. A Pooled Data Analysis from Three Research Labs. PLoS One 2016. 11: e0154880. https://doi.org/10.1371/JOURNAL.PONE.0154880

  71. Leach R.C., McCurdy M.P., Trumbo M.C., Matzen L.E., Leshikar E.D. Transcranial stimulation over the left inferior frontal gyrus increases false alarms in an associative memory task in older adults. Heal. Aging Res. 2016. 5: 1–6. https://doi.org/10.1097/01.hxr.0000491108.83234.85

  72. Lefaucheur J.P., André-Obadia N., Antal A., Ayache S.S., Baeken C., Benninger D.H., Cantello R.M., Cincotta M., de Carvalho M., De Ridder D., Devanne H., Di Lazzaro V., Filipović S.R., Hummel F.C., Jääskeläinen S.K., Kimiskidis V.K., Koch G., Langguth B., Nyffeler T., Oliviero A., Padberg F., Poulet E., Rossi S., Rossini P.M., Rothwell J.C., Schönfeldt-Lecuona C., Siebner, H.R., Slotema C.W., Stagg C.J., Valls-Sole J., Ziemann U., Paulus W., Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 2014. 125: 2150–2206. https://doi.org/10.1016/J.CLINPH.2014.05.021

  73. Levkovitz Y., Harel E.V., Roth Y., Braw Y., Most D., Katz L.N., Sheer A., Gersner R., Zangen A. Deep transcranial magnetic stimulation over the prefrontal cortex: evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimul. 2009. 2: 188–200. https://doi.org/10.1016/J.BRS.2009.08.002

  74. Liepert J., Zittel S., Weiller C. Improvement of dexterity by single session low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in acute stroke: a double-blind placebo-controlled crossover trial - PubMed. Restor Neurol Neurosci. 2007.

  75. Lindenberg R., Renga V., Zhu L.L., Nair D., Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 2010. 75: 2176–2184. https://doi.org/10.1212/WNL.0B013E318202013A

  76. Liu S., Sheng J., Li B., Zhang X. Recent Advances in Non-invasive Brain Stimulation for Major Depressive Disorder. Front. Hum. Neurosci. 2017. 11. https://doi.org/10.3389/FNHUM.2017.00526

  77. López-Alonso V., Cheeran B., Río-Rodríguez D., Fernández-Del-Olmo M. Inter-individual Variability in Response to Non-invasive Brain Stimulation Paradigms. Brain Stimul. Basic, Transl. Clin. Res. Neuromodulation. 2014. 7: 372–380. https://doi.org/10.1016/J.BRS.2014.02.004

  78. López-Alonso V., Fernández-del-Olmo M., Costantini A., Gonzalez-Henriquez J.J., Cheeran B. Intra-individual variability in the response to anodal transcranial direct current stimulation. Clin. Neurophysiol. 2015. 126: 2342–2347. https://doi.org/10.1016/J.CLINPH.2015.03.022

  79. Machado S., Jansen P., Almeida V., Veldema J. Is tDCS an adjunct ergogenic resource for improving muscular strength and endurance performance? A systematic review. Front. Psychol. 2019. 10. https://doi.org/10.3389/FPSYG.2019.01127

  80. Manenti R., Brambilla M., Petesi M., Ferrari C., Cotelli M. Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation. Front. Aging Neurosci. 2013. 5. https://doi.org/10.3389/FNAGI.2013.00049

  81. Martin P.I., Naeser M.A., Theoret H., Mariatormos J., Nicholas M., Kurland J., Fregni F., Seekins H., Doron K., Pascual-Leone A. Complementary and Alternative Approaches to Treating Communication Disorders, Seminars in Speech and Language. 2004.

  82. Medeiros L.F., de Souza I.C.C., Vidor L.P., de Souza A., Deitos A., Volz M.S., Fregni F., Caumo W., Torres I.L.S. Neurobiological effects of transcranial direct current stimulation: a review. Front. psychiatry. 2012. 3. https://doi.org/10.3389/FPSYT.2012.00110

  83. Meister I.G., Boroojerdi B., Foltys H., Sparing R., Huber W., Töpper R. Motor cortex hand area and speech: implications for the development of language. Neuropsychologia. 2003. 41: 401–406. https://doi.org/10.1016/S0028-3932(02)00179-3

  84. Miniussi C., Harris J.A., Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci. Biobehav. Rev. 2013. 37: 1702–1712. https://doi.org/10.1016/J.NEUBIOREV.2013.06.014

  85. Morya E., Monte-Silva K., Bikson M., Esmaeilpour Z., Biazoli C.E., Jr Fonseca A., Bocci T., Farzan F., Chatterjee R., Hausdorff J.M., Machado D.G. da S., Brunoni A.R., Mezger E., Moscaleski L.A., Pegado R., Sato J.R., Caetano M.S., Sá K.N., Tanaka C., Li L.M., Baptista A.F., Okano A.H. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J. Neuroeng. Rehabil. 2019. 16. https://doi.org/10.1186/S12984-019-0581-1

  86. Murakami T., Ugawa Y., Ziemann U. Utility of TMS to understand the neurobiology of speech. Front. Psychol. 2013. 4: 446. https://doi.org/10.3389/FPSYG.2013.00446/BIBTEX

  87. Nakamura K., Groiss S.J., Hamada M., Enomoto H., Kadowaki S., Abe M., Murakami T., Wiratman W., Chang F., Kobayashi S., Hanajima R., Terao Y., Ugawa Y. Variability in Response to Quadripulse Stimulation of the Motor Cortex. Brain Stimul. Basic, Transl. Clin. Res. Neuromodulation. 2016. 9: 859–866. https://doi.org/10.1016/J.BRS.2016.01.008

  88. Nilakantan A.S., Mesulam M.M., Weintraub S., Karp E.L., Vanhaerents S., Voss J.L. Network-targeted stimulation engages neurobehavioral hallmarks of age-related memory decline. Neurology. 2019. 92: 2349–2354. https://doi.org/10.1212/WNL.0000000000007502

  89. Nitsche M.A., Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000. 527:633–639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-0-0633.x

  90. Nitsche M.A., Seeber A., Frommann K., Klein C.C., Rochford C., Nitsche M.S., Fricke K., Liebetanz D., Lang N., Antal A., Paulus W., Tergau F. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. 2005. 568: 291–303. https://doi.org/10.1113/JPHYSIOL.2005.092429

  91. Okano A.H., Fontes E.B., Montenegro R.A., De Tarso Veras Farinatti P., Cyrino E.S., Li L.M., Bikson M., Noakes T.D. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br. J. Sports Med. 2015. 49: 1213–1218. https://doi.org/10.1136/bjsports-2012-091658

  92. Park S.H., Seo J.H., Kim Y.H., Ko M.H. Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport. 2014. 25: 122–126. https://doi.org/10.1097/WNR.0000000000000080

  93. PinaultD. A. Neurophysiological Perspective on a Preventive Treatment against Schizophrenia Using Transcranial Electric Stimulation of the Corticothalamic Pathway. Brain Sci. 2017. 7. https://doi.org/10.3390/BRAINSCI7040034

  94. Polanía R., Nitsche M.A., Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapp. 2011. 32: 1236. https://doi.org/10.1002/HBM.21104

  95. Polanía R., Nitsche M.A., Ruff C.C. Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 2018. https://doi.org/10.1038/s41593-017-0054-4

  96. Pulvermüller F., Hauk O., Nikulin V.V., Ilmoniemi R.J. Functional links between motor and language systems. Eur. J. Neurosci. 2005. 21: 793–797. https://doi.org/10.1111/J.1460-9568.2005.03900.X

  97. Purpura D.P., McMurtry J.G. Intracellular activities and evoked potential changes during polarization of motor cortex. J. Neurophysiol. 1965. 28: 66–185. https://doi.org/10.1152/jn.1965.28.1.166

  98. Reinhart R.M.G., Nguyen J.A. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 2019. 22: 820–827. https://doi.org/10.1038/S41593-019-0371-X

  99. Ridding M.C., Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 2010. 588: 2291. https://doi.org/10.1113/JPHYSIOL.2010.190314

  100. Rosa E.Di, Brigadoi S., Cutini S., Tarantino V., Dell’Acqua R., Mapelli D., Braver T.S., Vallesi A. Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study. Neuroimage. 2019. 202: 116062. https://doi.org/10.1016/J.NEUROIMAGE.2019.-116062

  101. Rossini P.M., Burke D., Chen R., Cohen L.G., Daskalakis Z., Di Iorio R., Di Lazzaro V., Ferreri F., Fitzgerald P.B., George M.S., Hallett, M., Lefaucheur J.P., Langguth B., Matsumoto H., Miniussi C., Nitsche M.A., Pascual-Leone A., Paulus W., Rossi S., Rothwell J.C., Siebner H.R., Ugawa Y., Walsh V., Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application: An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015. https://doi.org/10.1016/j.clinph.2015.02.001

  102. Salehinejad M.A., Wischnewski M., Nejati V., Vicario C.M., Nitsche M.A. Transcranial direct current stimulation in attention-deficit hyperactivity disorder: A meta-analysis of neuropsychological deficits. PLoS One. 2019. 14. https://doi.org/10.1371/JOURNAL.PONE.0215095

  103. Sanches C., Stengel C., Godard J., Mertz J., Teichmann M., Migliaccio R., Valero-Cabré A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front. Aging Neurosci. 2020. 12. https://doi.org/10.3389/FNAGI.2020.578339

  104. Sankarasubramanian V., Cunningham D.A., Potter-Baker K.A., Beall E.B., Roelle S.M., Varnerin N.M., Machado A.G., Jones S.E., Lowe M.J., Plow E.B. Transcranial Direct Current Stimulation Targeting Primary Motor Versus Dorsolateral Prefrontal Cortices: Proof-of-Concept Study Investigating Functional Connectivity of Thalamocortical Networks Specific to Sensory-Affective Information Processing. Brain Connect. 2017. 7: 182. https://doi.org/10.1089/BRAIN.2016.0440

  105. Sarter M., Givens B., Bruno J.P. The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews. 2001. 35(2): 146–160. https://doi.org/10.1016/S0165-0173(01)00044-3

  106. Sehm B., Kipping J., Schäfer A., Villringer A., Ragert P. A Comparison between Uni- and Bilateral tDCS Effects on Functional Connectivity of the Human Motor Cortex. Front. Hum. Neurosci. 2013. 7: 183. https://doi.org/10.3389/FNHUM.2013.00183

  107. Seidel O., Ragert P. Effects of Transcranial Direct Current Stimulation of Primary Motor Cortex on Reaction Time and Tapping Performance: A Comparison Between Athletes and Non-athletes. Front. Hum. Neurosci. 2019. 13: 103. https://doi.org/10.3389/FNHUM.2019.00103

  108. Seniów J., Bilik M., Leśniak M., Waldowski K., Iwański S., Członkowska A. Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, double-blind, placebo-controlled study. Neurorehabil Neural Repair. 2012. 26(9): 1072–1079. https://doi.org/10.1177/1545968312445635

  109. Shahar H., Alyagon U., Lazarovits A., Hadar A., Cohen D., Shalev H., Zangen A. Right Prefrontal Deep Tms Effects On Attention Symptoms: Behavioral Outcomes and Electrophysiological Correlates. Eur. Psychiatry. 2015. 30(1): 841. https://doi.org/10.1016/S0924-9338(15)30656-8

  110. Stefan K., Wycislo M., Classen J. Modulation of Associative Human Motor Cortical Plasticity by Attention. J Neurophysiol. 2004. 92: 66–72 https://doi.org/10.1152/JN.00383.2003

  111. Stephens J.A., Berryhill M.E. Older Adults Improve on Everyday Tasks after Working Memory Training and Neurostimulation. Brain Stimul. 2016. 9: 553–559. https://doi.org/10.1016/j.brs.2016.04.001

  112. Strube A., Rose M., Fazeli S., Büchel C. The temporal and spectral characteristics of expectations and prediction errors in pain and thermoception. Elife. 2021. 10: 1–41. https://doi.org/10.7554/ELIFE.62809

  113. Takeuchi N., Chuma T., Matsuo Y., Watanabe I., Ikoma K. Repetitive Transcranial Magnetic Stimulation of Contralesional Primary Motor Cortex Improves Hand Function After Stroke. Stroke. 2005. 36: 2681–2686. https://doi.org/10.1161/01.STR.0000189658.51972.34

  114. Talelli P.E., Wallace A., Dileone M., Hoad D., Cheeran B., Oliver R., Vandenbos M., Hammerbeck U., Barratt K., Gillini C., Musumeci G., Boudrias M.H., Cloud G.C., Ball J., Marsden J.F., Ward N.S., Di Lazzaro V., Greenwood R.G., Rothwell J.C. Theta burst stimulation in the rehabilitation of the upper limb: A semirandomized, placebo-controlled trial in chronic stroke patients. Neurorehabil. Neural Repair. 2012. 26: 976–987. https://doi.org/10.1177/1545968312437940

  115. Tang D.L., McDaniel A., Watkins K.E. Disruption of speech motor adaptation with repetitive transcranial magnetic stimulation of the articulatory representation in primary motor cortex. Cortex. 2021. 145: 115–130. https://doi.org/10.1016/J.CORTEX.2021.09.008

  116. Terranova C., Rizzo V., Cacciola A., Chillemi G., Calamuneri A., Milardi D., Quartarone A. Is There a Future for Non-invasive Brain Stimulation as a Therapeutic Tool? Front. Neurol. 2019. 9: 1146. https://doi.org/10.3389/FNEUR.2018.01146

  117. Ullrich H., Kranaster L., Sigges E., Andrich J., Sartorius A. Ultra-high-frequency left prefrontal transcranial magnetic stimulation as augmentation in severely ill patients with depression: a naturalistic sham-controlled, double-blind, randomized trial. Neuropsychobiology. 2012. 66: 141–148. https://doi.org/10.1159/000339561

  118. Van Dyke D.L., Werner L., Rassenti L.Z., Neuberg D., Ghia E., Heerema N.A., Dal Cin P., Dell Aquila M., Sreekantaiah C., Greaves A.W., Kipps T.J., Kay N.E. The Dohner fluorescence in situ hybridization prognostic classification of chronic lymphocytic leukaemia (CLL): the CLL Research Consortium experience. Br. J. Haematol. 2016. 173: 105–113. https://doi.org/10.1111/BJH.13933

  119. Vines B.W., Cerruti C., Schlaug G. 2008. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 2008. 9: 1–7. https://doi.org/10.1186/1471-2202-9-103/FIGURES/1

  120. Vitor-Costa M., Okuno N.M., Bortolotti H., Bertollo M., Boggio P.S., Fregni F., Altimari L.R. Improving Cycling Performance: Transcranial Direct Current Stimulation Increases Time to Exhaustion in Cycling. PLoS One. 2015. 10(12): e0144916. https://doi.org/10.1371/JOURNAL.PONE.0144916

  121. Voineskos A.N., Blumberger D.M., Schifani C., Hawco C., Dickie E.W., Rajji T.K., Mulsant B.H., Foussias G., Wang W., Daskalakis Z.J. Effects of Repetitive Transcranial Magnetic Stimulation on Working Memory Performance and Brain Structure in People With Schizophrenia Spectrum Disorders: A Double-Blind, Randomized, Sham-Controlled Trial. Biol. psychiatry. Cogn. Neurosci. neuroimaging. 2021. 6: 449–458. https://doi.org/10.1016/J.BPSC.2020.11.011

  122. Vosskuhl J., Strüber D., Herrmann C.S. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations. Front. Hum. Neurosci. 2018. 12:1–19. https://doi.org/10.3389/FNHUM.2018.00211

  123. Walsh V., Cowey A. Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci. 2000. 1: 73–80. https://doi.org/10.1038/35036239

  124. Watkins K., Paus T. Modulation of motor excitability during speech perception: the role of Broca’s area. J. Cogn. Neurosci. 2004. 16: 978–987. https://doi.org/10.1162/0898929041502616

  125. Watkins K.E., Strafella A.P., Paus T. Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia. 2003. 41: 989–994. https://doi.org/10.1016/S0028-3932(02)00316-0

  126. Wessel M.J., Zimerman M., Hummel F.C. Non-Invasive Brain Stimulation: An Interventional Tool for Enhancing Behavioral Training after Stroke. Front. Hum. Neurosci. 2015. 9: 265. https://doi.org/10.3389/FNHUM.2015.00265

  127. Whitehurst L.N., Agosta S., Castaños R., Battelli L., Mednick S.C. The impact of psychostimulants on sustained attention over a 24-h period. Cognitio. 2019. 193: 104015 https://doi.org/10.1016/j.cognition.2019.104015

  128. Wiethoff S., Hamada M., Rothwell J.C. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014. 7: 468–475. https://doi.org/10.1016/J.BRS.2014.02.003

  129. Yada Y., Tomisato S., Hashimoto R. Online cathodal transcranial direct current stimulation to the right homologue of Broca’s area improves speech fluency in people who stutter. Psychiatry Clin. Neurosci. 2019. 73: 63–69. https://doi.org/10.1111/PCN.12796

  130. Yang D., Shin Y.I., Hong K.S. Systemic Review on Transcranial Electrical Stimulation Parameters and EEG/fNIRS Features for Brain Diseases. Front. Neurosci. 2021. 15: 629323. https://doi.org/10.3389/FNINS.2021.629323

  131. Yeh N., Rose N.S. How Can Transcranial Magnetic Stimulation Be Used to Modulate Episodic Memory?: A Systematic Review and Meta-Analysis. Front. Psychol. 2019. 10: 993. https://doi.org/10.3389/FPSYG.2019.00993

  132. Yozbatiran N., Alonso-Alonso M., See J., Demirtas-Tatlidede A., Luu D., Motiwala R.R., Pascual-Leone A., Cramer S.C. Safety and Behavioral Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation in Stroke. Stroke. 2009. 40: 309–312. https://doi.org/10.1161/STROKEAHA.108.522144

  133. Zaehle T., Rach S., Herrmann C.S. Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG. PLoS One. 2010. 5: e13766. https://doi.org/10.1371/JOURNAL.PONE.0013766

  134. Zimerman M., Hummel F.C. 2010. Non-invasive brain stimulation: enhancing motor and cognitive functions in healthy old subjects. Front. Aging Neurosci. 2010. 2: 149. https://doi.org/10.3389/FNAGI.2010.00149

Дополнительные материалы отсутствуют.