Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 5, стр. 623-642
Возможность повышения эффективности коррекции двигательных навыков и когнитивных функций с помощью неинвазивной стимуляции мозга у человека
А. В. Попыванова 1, М. А. Корякина 1, Е. Д. Помелова 1, Н. А. Илюкина 1, 2, О. Е. Агранович 3, А. Н. Шестакова 1, Е. Д. Благовещенский 1, *
1 Центр нейроэкономики и когнитивных исследований, Институт когнитивных нейронаук, Национальный исследовательский университет Высшая школа экономики
Москва, Россия
2 Приволжский исследовательский медицинский университет
Нижний Новгород, Россия
3 НИИ детской ортопедии им. Т. Турнера
Санкт-Петербург, Россия
* E-mail: eblagovechensky@hse.ru
Поступила в редакцию 15.03.2022
После доработки 24.05.2022
Принята к публикации 27.06.2022
- EDN: ANLSZS
- DOI: 10.31857/S0044467722050136
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Аннотация
Существует множество исследований, демонстрирующих влияние неинвазивной стимуляции на различные функции мозга. Основными методами такой стимуляции являются транскраниальная электрическая (ТЭС) и транскраниальная магнитная (ТМС) стимуляция. В клинике уже реализуется ряд протоколов стимуляции, однако достоверность эффектов такого воздействия вызывает ряд вопросов. В данном обзоре мы рассмотрели влияние ТЭС и ТМС на выработку и коррекцию моторных навыков и когнитивных функций и как они связаны между собой. Особый акцент был сделан на эффектах, связанных с коррекцией моторных навыков, так как именно кортикоспинальную систему, связанную с движением (основная мишень стимуляции), можно оценивать максимально объективно при помощи различных методов нейровизуализации и нейростимуляции, что позволяет более точно оценить механизмы воздействия неинвазивной стимуляции мозга (НСМ). Кроме того, в исследованиях с использованием НСМ наблюдается взаимосвязь между когнитивными и моторными функциями, что говорит о необходимости изучать эти области комплексно в контексте рассмотрения повышения эффективности моторных навыков. Рассматриваются как отдельные эффекты ТЭС и ТМС, так и эффекты их совместного использования. На взгляд авторов, нет однозначного ответа на вопрос, можно ли достоверно корректировать при помощи неинвазивной стимуляции выработку двигательных и когнитивных навыков. Приведeнные в настоящем обзоре данные позволяют предположить, что такая корректировка возможна. Данный аспект важен как для клинической медицины (пациенты с моторными нарушениями), так и для других направлений – спортивной медицины, образовательных технологий и т.д.
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Список литературы
Логвинова О.В., Пойдашева А.Г., Бакулин И.С., Лагода О.В., Кремнева Е.И., Трошина Е.А., Мазурина Н.В., Супонева Н.А., Танашян М.М., Дедов И.И., Пирадов М.А. Современные представления о патогенезе ожирения и новых подходах к его коррекции. Ожирение и метаболизм 2018. 15(2): 11–16.
Фетисова Т.В. Способ лечения задержки речевого развития у детей с использованием транскраниальной магнитной стимуляции. 2018. RU2675737C1.
Aleman A., Sommer I.E., Kahn R.S. Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: A meta-analysis. J. Clin. Psychiatry 2007. 68: 416–421. https://doi.org/10.4088/JCP.v68n0310
Antal A., Kincses T.Z., Nitsche M.A., Paulus W. Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Exp. Brain Res. 2003. 150: 375–378. https://doi.org/10.1007/S00221-003-1459-8
Antonenko D., Külzow N., Sousa A., Prehn K., Grittner U., Flöel A. Neuronal and behavioral effects of multi-day brain stimulation and memory training. Neurobiol. Aging 2018. 61: 245–254. https://doi.org/10.1016/j.neurobiolaging.2017.09.017
Arciniega H., Gözenman F., Jones K.T., Stephens J.A., Berryhill M.E. Frontoparietal tDCS Benefits Visual Working Memory in Older Adults With Low Working Memory Capacity. Front. Aging Neurosci. 2018. 10.https://doi.org/10.3389/FNAGI.2018.00057
Barker A.T., Shields K. Transcranial Magnetic Stimulation: Basic Principles and Clinical Applications in Migraine. Headache. 2017. 57: 517–524. https://doi.org/10.1111/HEAD.13002
Baeken C., Raedt R.De. Neurobiological mechanisms of repetitive transcranial magnetic stimulation on the underlying neuro circuitry in unipolar depression. Dialogues Clin. Neurosci. 2011. 13: 139. https://doi.org/10.31887/DCNS.2011.13.1/CBAEKEN
Balboa-Bandeira Y., Zubiaurre-Elorza L., Ibarretxe-Bilbao N., Ojeda N., Peña J. Effects of transcranial electrical stimulation techniques on second and foreign language learning enhancement in healthy adults: A systematic review and meta-analysis. Neuropsychologia 2021. 160: 107985. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2021.107985
Banissy M.J., Muggleton N.G. Transcranial direct current stimulation in sports training: Potential approaches. Front. Hum. Neurosci. 2013. https://doi.org/10.3389/FNHUM.2013.00129
Barker A.T., Freeston I.L., Jalinous R., Jarratt J.A. Magnetic stimulation of the human brain and peripheral nervous system. Neurosurgery 1987. 20: 100–119. https://doi.org/10.1097/00006123-198701000-00024
Barker A.T., Jalinous R., Freeston I.L. NON-INVASIVE MAGNETIC STIMULATION OF HUMAN MOTOR CORTEX. Lancet. 1985. https://doi.org/10.1016/S0140-6736(85)92413-4
Battelli L., Grossman E.D., Plow E.B. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network. Brain Stimul. 2017. 10: 263–269. https://doi.org/10.1016/j.brs.2016.10.009
Berardi R.P., James V.A. Overall Vigilance and Sustained Attention Decrements in Healthy Aging. Exp. Aging Res. 2001. 27: 19–39. https://doi.org/10.1080/03610730126014
Bestmann S., Swayne O., Blankenburg F., Ruff C.C., Haggard P., Weiskopf N., Josephs O., Driver J., Rothwell J.C., Ward N.S. Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb. Cortex 2008. 18: 1281. https://doi.org/10.1093/CERCOR/BHM159
Bijsterbosch J.D., Barker A.T., Lee K.H., Woodruff P.W.R. Where does transcranial magnetic stimulation (TMS) stimulate? Modelling of induced field maps for some common cortical and cerebellar targets. Med. Biol. Eng. Comput. 2012. 50: 671–681. https://doi.org/10.1007/s11517-012-0922-8
Bindman L.J., Lippold O.C.J., Redfearn J.W.T. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J. Physiol. 1964. 172: 369–382. https://doi.org/10.1113/jphysiol.1964.sp007425
Borducchi D.M.M., Gomes J.S., Akiba H., Cordeiro Q., Borducchi J.H.M., Valentin L.S.S., Borducchi G.M., Dias Á.M. Transcranial Direct Current Stimulation Effects on Athletes’ Cognitive Performance: An Exploratory Proof of Concept Trial. Front. Psychiatry 2016. 7. https://doi.org/10.3389/FPSYT.2016.00183
Buch E.R., Santarnecchi E., Antal A., Born J., Celnik P.A., Classen J., Gerloff C., Hallett M., Hummel F.C., Nitsche M.A., Pascual-Leone A., Paulus W.J., Reis J., Robertson E.M., Rothwell J.C., Sandrini M., Schambra H.M., Wassermann E.M., Ziemann U., Cohen L.G. Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clin. Neurophysiol. 2017. 128: 589–603. https://doi.org/10.1016/J.CLINPH.2017.01.004
Busan P., Moret B., Masina F., Ben G. Del, Campana G. Speech Fluency Improvement in Developmental Stuttering Using Non-invasive Brain Stimulation: Insights From Available Evidence. Front. Hum. Neurosci. 2021. 15: 662016. https://doi.org/10.3389/FNHUM.2021.662016
Cao P., Xing J., Cao Y., Cheng Q., Sun X., Kang Q., Dai L., Zhou X., Song Z. Clinical effects of repetitive transcranial magnetic stimulation combined with atomoxetine in the treatment of attention-deficit hyperactivity disorder. Neuropsychiatr. Dis. Treat. 2018. 14: 3231–3240. https://doi.org/10.2147/NDT.S182527
Castrillon G., Sollmann N., Kurcyus K., Razi A., Krieg S.M., Riedl V. The physiological effects of noninvasive brain stimulation fundamentally differ across the human cortex. Sci. Adv. 2020. 6. https://doi.org/10.1126/SCIADV.AAY2739
Chesters J., Möttönen R., Watkins K.E. Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter. Brain 2018. 141, 1161–1171. https://doi.org/10.1093/brain/awy011
Chung S.W., Rogasch N.C., Hoy K.E., Fitzgerald P.B. Measuring brain stimulation induced changes in cortical properties using TMS-EEG. Brain Stimul. 2015. https://doi.org/10.1016/j.brs.2015.07.029
Clark L., Kempton M.J., Scarnà A., Grasby P.M., Goodwin G.M. Sustained attention-deficit confirmed in euthymic bipolar disorder but not in first-degree relatives of bipolar patients or euthymic unipolar depression. Biol. Psychiatry 2005. 57: 183–187. https://doi.org/10.1016/j.biopsych.2004.11.007
Cui X., Ren W., Zheng Z., Li J. Repetitive Transcranial Magnetic Stimulation Improved Source Memory and Modulated Recollection-Based Retrieval in Healthy Older Adults. Front. Psychol. 2020. 11: 1137. https://doi.org/10.3389/FPSYG.2020.01137/BIBTEX
Denslow S., Lomarev M., George M.S., Bohning D.E. Cortical and subcortical brain effects of Transcranial Magnetic Stimulation (TMS)-induced movement: An interleaved TMS/functional magnetic resonance imaging study. Biol. Psychiatry 2005. 57: 752–760. https://doi.org/10.1016/j.biopsych.2004.12.017
Detrick J.A., Zink C., Rosch K.S., Horn P.S., Huddleston D.A., Crocetti D., Wu S.W., Pedapati E.V, Wassermann E.M., Mostofsky S.H., Gilbert D.L. Motor cortex modulation and reward in children with attention-deficit/hyperactivity disorder. Brain Commun. 2021. 3. https://doi.org/10.1093/BRAINCOMMS/FCAB093
Devlin J.T., Watkins K.E. Stimulating language: insights from TMS. Brain 2007. 130: 610–622. https://doi.org/10.1093/BRAIN/AWL331
Dionísio A., Duarte I.C., Patrício M., Castelo-Branco M. Transcranial Magnetic Stimulation as an Intervention Tool to Recover from Language, Swallowing and Attentional Deficits after Stroke: A Systematic Review. Cerebrovasc. Dis. 2018. 46: 176–183. https://doi.org/10.1159/000494213
Edwards G., Contò F., Bucci L.K., Battelli L. Controlling Brain State Prior to Stimulation of Parietal Cortex Prevents Deterioration of Sustained Attention. Cereb. Cortex Commun. 2020. 1. https://doi.org/10.1093/TEXCOM/TGAA069
Eldaief M.C., Press D.Z., Pascual-Leone A. Transcranial magnetic stimulation in neurology: A review of established and prospective applications. Neurol. Clin. Pract. 2013. 3: 519. https://doi.org/10.1212/01.CPJ.0000436213.11132.8E
Fadiga L., Craighero L., Buccino G., Rizzolatti G. Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur. J. Neurosci. 2002. 15: 399–402. https://doi.org/10.1046/J.0953-816X.2001.01874.X
Ferrari C., Cattaneo Z., Oldrati V., Casiraghi L., Castelli F., D’Angelo E., Vecchi T. TMS Over the Cerebellum Interferes with Short-term Memory of Visual Sequences. Sci. Rep. 2018. 8: 6722. https://doi.org/10.1038/S41598-018-25151-Y
Flöel A., Suttorp W., Kohl O., Kürten J., Lohmann H., Breitenstein C., Knecht S. Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol. Aging 2012. 33: 1682–1689. https://doi.org/10.1016/j.neurobiolaging.2011.05.007
Freedberg M., Reeves J.A., Toader A.C., Hermiller M.S., Voss J.L., Wassermann E.M. Persistent enhancement of hippocampal network connectivity by parietal rTMS is reproducible. eNeuro 2019. 6. https://doi.org/10.1523/ENEURO.0129-19.2019
Fregni F., Boggio P.S., Mansur C.G., Wagner T., Ferreira M.J.L., Lima M.C., Rigonatti S.P., Marcolin M.A., Freedman S.D., Nitsche M.A., Pascual-Leone A. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 2005. 16: 1551–1555. https://doi.org/10.1097/01.WNR.0000177010.44602.5E
Fregni F., Pascual-Leone A. Technology Insight: Noninvasive brain stimulation in neurology - Perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 2007. https://doi.org/10.1038/ncpneuro0530
Ganguly J., Murgai A., Sharma S., Aur D., Jog M. Non-invasive Transcranial Electrical Stimulation in Movement Disorders. Front. Neurosci. 2020. 14. https://doi.org/10.3389/FNINS.2020.00522
Gatti D., Vecchi T., Mazzoni G. Cerebellum and semantic memory: A TMS study using the DRM paradigm. Cortex. 2021. 135: 78–91. https://doi.org/10.1016/J.CORTEX.2020.11.017
George M.S., Nahas Z., Borckardt J.J., Anderson B., Foust M.J., Burns C., Kose S., Short E.B. Brain stimulation for the treatment of psychiatric disorders. Curr. Opin. Psychiatry. 2007. https://doi.org/10.1097/YCO.0b013e3280ad4698
Goldthorpe R.A., Rapley J.M., Violante I.R. A Systematic Review of Non-invasive Brain Stimulation Applications to Memory in Healthy Aging. Front. Neurol. 2020. 11. https://doi.org/10.3389/FNEUR.2020.575075
Hallett M. Transcranial Magnetic Stimulation: A Primer. Neuron. 2007. https://doi.org/10.1016/j.neuron.2007.06.026
Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000. https://doi.org/10.1038/35018000
Hamada M., Murase N., Hasan A., Balaratnam M., Rothwell J.C. The Role of Interneuron Networks in Driving Human Motor Cortical Plasticity. Cereb. Cortex 2013. 23: 1593–1605. https://doi.org/10.1093/CERCOR/BHS147
Hanajima R., Tanaka N., Tsutsumi R., Enomoto H., Abe M., Nakamura K., Kobayashi S., Hamada M., Shimizu T., Terao Y., Ugawa Y. The effect of age on the homotopic motor cortical long-term potentiation-like effect induced by quadripulse stimulation. Exp. Brain Res. 2017. 235: 2103–2108. https://doi.org/10.1007/S00221-017-4953-0
Hasan A., Strube W., Palm U., Wobrock T. Repetitive Noninvasive Brain Stimulation to Modulate Cognitive Functions in Schizophrenia: A Systematic Review of Primary and Secondary Outcomes. Schizophr. Bull. 2016. 42: 95. https://doi.org/10.1093/SCHBUL/SBV158
Hauer L., Sellner J., Brigo F., Trinka E., Sebastianelli L., Saltuari L., Versace V., Höller Y., Nardone R. Effects of Repetitive Transcranial Magnetic Stimulation over Prefrontal Cortex on Attention in Psychiatric Disorders: A Systematic Review. J. Clin. Med. 2019. 8. https://doi.org/10.3390/JCM8040416
Hazime F.A., Cunha R.A., Soliaman R.R., Romancini A.C.B., Pochini A. de C., Ejnisman B., Baptista A.F. Anodal transcranial direct current stimulation (TDCS) increases isometric strength of shoulder rotators muscles in handball players. Int. J. Sports Phys. Ther. 2017. 12: 402.
Hermiller M.S., Karp E., Nilakantan A.S., Voss J.L. Episodic memory improvements due to noninvasive stimulation targeting the cortical–hippocampal network: A replication and extension experiment. Brain Behav. 2019. 9. https://doi.org/10.1002/brb3.1393
Herpich F., Melnick M.D., Agosta S., Huxlin K.R., Tadin D., Battelli L. Boosting learning efficacy with noninvasive brain stimulation in intact and brain-damaged humans. J. Neurosci. 2019. 39: 5551–5561. https://doi.org/10.1523/JNEUROSCI.3248-18.2019
Hesse S., Waldner A., Mehrholz J., Tomelleri C., Pohl M., Werner C. Combined Transcranial Direct Current Stimulation and Robot-Assisted Arm Training in Subacute Stroke Patients: An Exploratory, Randomized Multicenter Trial. http://dx.doi.org/ 2011. 25: 838–846. https://doi.org/10.1177/1545968311413906
Hesse S., Werner C., Schonhardt E.M., Bardeleben A., Jenrich W., Kirker S.G.B. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study. Restor. Neurol. Neurosci. 2007. 25: 9–15.
Höppner J., Schulz M., Irmisch G., Mau R., Schläfke D., Richter J. Antidepressant efficacy of two different rTMS procedures. High frequency over left versus low frequency over right prefrontal cortex compared with sham stimulation. Eur. Arch. Psychiatry Clin. Neurosci. 2003. 253: 103–109. https://doi.org/10.1007/S00406-003-0416-7
Horvath J.C., Forte J.D., Carter O. Quantitative Review Finds No Evidence of Cognitive Effects in Healthy Populations From Single-session Transcranial Direct Current Stimulation (tDCS). Brain Stimul. 2015. 8: 535–550. https://doi.org/10.1016/J.BRS.2015.01.400
Hummel F.C., Cohen L.G. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 2006. 5: 708–712. https://doi.org/10.1016/S1474-4422(06)70525-7
Inghilleri M., Conte A., Currà A., Frasca V., Lorenzano C., Berardelli A. Ovarian hormones and cortical excitability. An rTMS study in humans. Clin. Neurophysiol. 2004. 115: 1063–1068. https://doi.org/10.1016/J.CLINPH.2003.12.003
Januel D., Dumortier G., Verdon C.M., Stamatiadis L., Saba G., Cabaret W., Benadhira R., Rocamora J.F., Braha S., Kalalou K., Vicaut P.E., Fermanian J. A double-blind sham controlled study of right prefrontal repetitive transcranial magnetic stimulation (rTMS): Therapeutic and cognitive effect in medication free unipolar depression during 4 weeks. Prog. Neuro-Psychopharmacology Biol. Psychiatry 2006. 30: 126–130. https://doi.org/10.1016/j.pnpbp.2005.08.016
Johnson J.S., Feredoes E., Postle B.R. TMS in working memory research. Oxford Handb. Transcranial Stimul. Second Ed. 2021. https://doi.org/10.1093/OXFORDHB/9780198832256.013.34
Joundi R.A., Jenkinson N., Brittain J.S., Aziz T.Z., Brown P. Driving Oscillatory Activity in the Human Cortex Enhances Motor Performance. Curr. Biol. 2012. 22: 403–407. https://doi.org/10.1016/J.CUB.2012.01.024
Jung J.Y., Bungert A., Bowtell R., Jackson S.R. Modulating Brain Networks With Transcranial Magnetic Stimulation Over the Primary Motor Cortex: A Concurrent TMS/fMRI Study. Front. Hum. Neurosci. 2020. 14. https://doi.org/10.3389/FNHUM.2020.00031/-FULL
Kanai R., Chaieb L., Antal A., Walsh V., Paulus W. Frequency-Dependent Electrical Stimulation of the Visual Cortex. Curr. Biol. 2008. 18: 1839–1843. https://doi.org/10.1016/J.CUB.2008.10.027
Kang E.K., Paik N.J. Effect of a tDCS electrode montage on implicit motor sequence learning in healthy subjects. Exp. Transl. Stroke Med. 2011. 3. https://doi.org/10.1186/2040-7378-3-4
Khedr E.M., Ahmed M.A., Fathy N., Rothwell J.C. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 2005. 65: 466–468. https://doi.org/10.1212/01.WNL.0000173067.84247.36
Kim S.H., Han H.J., Ahn H.M., Kim S.A., Kim S.E. Effects of five daily high-frequency rTMS on Stroop task performance in aging individuals. Neurosci. Res. 2012. 74: 256–260. https://doi.org/10.1016/J.NEURES.2012.08.008
Kleim J.A., Chan S., Pringle E., Schallert K., Procaccio V., Jimenez R., Cramer S.C. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat. Neurosci. 2006. 9: 735–737. https://doi.org/10.1038/nn1699
Koch G., Franca M., Albrecht U.V., Caltagirone C., Rothwell J.C. Effects of paired pulse TMS of primary somatosensory cortex on perception of a peripheral electrical stimulus. Exp. Brain Res. 2006. 172: 416–424. https://doi.org/10.1007/s00221-006-0359-0
Krakauer J.W. Motor learning: Its relevance to stroke recovery and neurorehabilitation. Curr. Opin. Neurol. 2006. 19: 84–90. https://doi.org/10.1097/01.WCO.0000200544.29915.CC
Kurmakaeva D., Blagovechtchenski E., Gnedykh D., Mkrtychian N., Kostromina S., Shtyrov Y. Acquisition of concrete and abstract words is modulated by tDCS of Wernicke’s area. Sci. Rep. 2021. 11. https://doi.org/10.1038/S41598-020-79967-8
Lahr J., Paßmann S., List J., Vach W., Flöel A., Klöppel S. Effects of Different Analysis Strategies on Paired Associative Stimulation. A Pooled Data Analysis from Three Research Labs. PLoS One 2016. 11: e0154880. https://doi.org/10.1371/JOURNAL.PONE.0154880
Leach R.C., McCurdy M.P., Trumbo M.C., Matzen L.E., Leshikar E.D. Transcranial stimulation over the left inferior frontal gyrus increases false alarms in an associative memory task in older adults. Heal. Aging Res. 2016. 5: 1–6. https://doi.org/10.1097/01.hxr.0000491108.83234.85
Lefaucheur J.P., André-Obadia N., Antal A., Ayache S.S., Baeken C., Benninger D.H., Cantello R.M., Cincotta M., de Carvalho M., De Ridder D., Devanne H., Di Lazzaro V., Filipović S.R., Hummel F.C., Jääskeläinen S.K., Kimiskidis V.K., Koch G., Langguth B., Nyffeler T., Oliviero A., Padberg F., Poulet E., Rossi S., Rossini P.M., Rothwell J.C., Schönfeldt-Lecuona C., Siebner, H.R., Slotema C.W., Stagg C.J., Valls-Sole J., Ziemann U., Paulus W., Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 2014. 125: 2150–2206. https://doi.org/10.1016/J.CLINPH.2014.05.021
Levkovitz Y., Harel E.V., Roth Y., Braw Y., Most D., Katz L.N., Sheer A., Gersner R., Zangen A. Deep transcranial magnetic stimulation over the prefrontal cortex: evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimul. 2009. 2: 188–200. https://doi.org/10.1016/J.BRS.2009.08.002
Liepert J., Zittel S., Weiller C. Improvement of dexterity by single session low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in acute stroke: a double-blind placebo-controlled crossover trial - PubMed. Restor Neurol Neurosci. 2007.
Lindenberg R., Renga V., Zhu L.L., Nair D., Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 2010. 75: 2176–2184. https://doi.org/10.1212/WNL.0B013E318202013A
Liu S., Sheng J., Li B., Zhang X. Recent Advances in Non-invasive Brain Stimulation for Major Depressive Disorder. Front. Hum. Neurosci. 2017. 11. https://doi.org/10.3389/FNHUM.2017.00526
López-Alonso V., Cheeran B., Río-Rodríguez D., Fernández-Del-Olmo M. Inter-individual Variability in Response to Non-invasive Brain Stimulation Paradigms. Brain Stimul. Basic, Transl. Clin. Res. Neuromodulation. 2014. 7: 372–380. https://doi.org/10.1016/J.BRS.2014.02.004
López-Alonso V., Fernández-del-Olmo M., Costantini A., Gonzalez-Henriquez J.J., Cheeran B. Intra-individual variability in the response to anodal transcranial direct current stimulation. Clin. Neurophysiol. 2015. 126: 2342–2347. https://doi.org/10.1016/J.CLINPH.2015.03.022
Machado S., Jansen P., Almeida V., Veldema J. Is tDCS an adjunct ergogenic resource for improving muscular strength and endurance performance? A systematic review. Front. Psychol. 2019. 10. https://doi.org/10.3389/FPSYG.2019.01127
Manenti R., Brambilla M., Petesi M., Ferrari C., Cotelli M. Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation. Front. Aging Neurosci. 2013. 5. https://doi.org/10.3389/FNAGI.2013.00049
Martin P.I., Naeser M.A., Theoret H., Mariatormos J., Nicholas M., Kurland J., Fregni F., Seekins H., Doron K., Pascual-Leone A. Complementary and Alternative Approaches to Treating Communication Disorders, Seminars in Speech and Language. 2004.
Medeiros L.F., de Souza I.C.C., Vidor L.P., de Souza A., Deitos A., Volz M.S., Fregni F., Caumo W., Torres I.L.S. Neurobiological effects of transcranial direct current stimulation: a review. Front. psychiatry. 2012. 3. https://doi.org/10.3389/FPSYT.2012.00110
Meister I.G., Boroojerdi B., Foltys H., Sparing R., Huber W., Töpper R. Motor cortex hand area and speech: implications for the development of language. Neuropsychologia. 2003. 41: 401–406. https://doi.org/10.1016/S0028-3932(02)00179-3
Miniussi C., Harris J.A., Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci. Biobehav. Rev. 2013. 37: 1702–1712. https://doi.org/10.1016/J.NEUBIOREV.2013.06.014
Morya E., Monte-Silva K., Bikson M., Esmaeilpour Z., Biazoli C.E., Jr Fonseca A., Bocci T., Farzan F., Chatterjee R., Hausdorff J.M., Machado D.G. da S., Brunoni A.R., Mezger E., Moscaleski L.A., Pegado R., Sato J.R., Caetano M.S., Sá K.N., Tanaka C., Li L.M., Baptista A.F., Okano A.H. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J. Neuroeng. Rehabil. 2019. 16. https://doi.org/10.1186/S12984-019-0581-1
Murakami T., Ugawa Y., Ziemann U. Utility of TMS to understand the neurobiology of speech. Front. Psychol. 2013. 4: 446. https://doi.org/10.3389/FPSYG.2013.00446/BIBTEX
Nakamura K., Groiss S.J., Hamada M., Enomoto H., Kadowaki S., Abe M., Murakami T., Wiratman W., Chang F., Kobayashi S., Hanajima R., Terao Y., Ugawa Y. Variability in Response to Quadripulse Stimulation of the Motor Cortex. Brain Stimul. Basic, Transl. Clin. Res. Neuromodulation. 2016. 9: 859–866. https://doi.org/10.1016/J.BRS.2016.01.008
Nilakantan A.S., Mesulam M.M., Weintraub S., Karp E.L., Vanhaerents S., Voss J.L. Network-targeted stimulation engages neurobehavioral hallmarks of age-related memory decline. Neurology. 2019. 92: 2349–2354. https://doi.org/10.1212/WNL.0000000000007502
Nitsche M.A., Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000. 527:633–639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-0-0633.x
Nitsche M.A., Seeber A., Frommann K., Klein C.C., Rochford C., Nitsche M.S., Fricke K., Liebetanz D., Lang N., Antal A., Paulus W., Tergau F. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. 2005. 568: 291–303. https://doi.org/10.1113/JPHYSIOL.2005.092429
Okano A.H., Fontes E.B., Montenegro R.A., De Tarso Veras Farinatti P., Cyrino E.S., Li L.M., Bikson M., Noakes T.D. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br. J. Sports Med. 2015. 49: 1213–1218. https://doi.org/10.1136/bjsports-2012-091658
Park S.H., Seo J.H., Kim Y.H., Ko M.H. Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport. 2014. 25: 122–126. https://doi.org/10.1097/WNR.0000000000000080
PinaultD. A. Neurophysiological Perspective on a Preventive Treatment against Schizophrenia Using Transcranial Electric Stimulation of the Corticothalamic Pathway. Brain Sci. 2017. 7. https://doi.org/10.3390/BRAINSCI7040034
Polanía R., Nitsche M.A., Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapp. 2011. 32: 1236. https://doi.org/10.1002/HBM.21104
Polanía R., Nitsche M.A., Ruff C.C. Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 2018. https://doi.org/10.1038/s41593-017-0054-4
Pulvermüller F., Hauk O., Nikulin V.V., Ilmoniemi R.J. Functional links between motor and language systems. Eur. J. Neurosci. 2005. 21: 793–797. https://doi.org/10.1111/J.1460-9568.2005.03900.X
Purpura D.P., McMurtry J.G. Intracellular activities and evoked potential changes during polarization of motor cortex. J. Neurophysiol. 1965. 28: 66–185. https://doi.org/10.1152/jn.1965.28.1.166
Reinhart R.M.G., Nguyen J.A. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 2019. 22: 820–827. https://doi.org/10.1038/S41593-019-0371-X
Ridding M.C., Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 2010. 588: 2291. https://doi.org/10.1113/JPHYSIOL.2010.190314
Rosa E.Di, Brigadoi S., Cutini S., Tarantino V., Dell’Acqua R., Mapelli D., Braver T.S., Vallesi A. Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study. Neuroimage. 2019. 202: 116062. https://doi.org/10.1016/J.NEUROIMAGE.2019.-116062
Rossini P.M., Burke D., Chen R., Cohen L.G., Daskalakis Z., Di Iorio R., Di Lazzaro V., Ferreri F., Fitzgerald P.B., George M.S., Hallett, M., Lefaucheur J.P., Langguth B., Matsumoto H., Miniussi C., Nitsche M.A., Pascual-Leone A., Paulus W., Rossi S., Rothwell J.C., Siebner H.R., Ugawa Y., Walsh V., Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application: An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015. https://doi.org/10.1016/j.clinph.2015.02.001
Salehinejad M.A., Wischnewski M., Nejati V., Vicario C.M., Nitsche M.A. Transcranial direct current stimulation in attention-deficit hyperactivity disorder: A meta-analysis of neuropsychological deficits. PLoS One. 2019. 14. https://doi.org/10.1371/JOURNAL.PONE.0215095
Sanches C., Stengel C., Godard J., Mertz J., Teichmann M., Migliaccio R., Valero-Cabré A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front. Aging Neurosci. 2020. 12. https://doi.org/10.3389/FNAGI.2020.578339
Sankarasubramanian V., Cunningham D.A., Potter-Baker K.A., Beall E.B., Roelle S.M., Varnerin N.M., Machado A.G., Jones S.E., Lowe M.J., Plow E.B. Transcranial Direct Current Stimulation Targeting Primary Motor Versus Dorsolateral Prefrontal Cortices: Proof-of-Concept Study Investigating Functional Connectivity of Thalamocortical Networks Specific to Sensory-Affective Information Processing. Brain Connect. 2017. 7: 182. https://doi.org/10.1089/BRAIN.2016.0440
Sarter M., Givens B., Bruno J.P. The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews. 2001. 35(2): 146–160. https://doi.org/10.1016/S0165-0173(01)00044-3
Sehm B., Kipping J., Schäfer A., Villringer A., Ragert P. A Comparison between Uni- and Bilateral tDCS Effects on Functional Connectivity of the Human Motor Cortex. Front. Hum. Neurosci. 2013. 7: 183. https://doi.org/10.3389/FNHUM.2013.00183
Seidel O., Ragert P. Effects of Transcranial Direct Current Stimulation of Primary Motor Cortex on Reaction Time and Tapping Performance: A Comparison Between Athletes and Non-athletes. Front. Hum. Neurosci. 2019. 13: 103. https://doi.org/10.3389/FNHUM.2019.00103
Seniów J., Bilik M., Leśniak M., Waldowski K., Iwański S., Członkowska A. Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, double-blind, placebo-controlled study. Neurorehabil Neural Repair. 2012. 26(9): 1072–1079. https://doi.org/10.1177/1545968312445635
Shahar H., Alyagon U., Lazarovits A., Hadar A., Cohen D., Shalev H., Zangen A. Right Prefrontal Deep Tms Effects On Attention Symptoms: Behavioral Outcomes and Electrophysiological Correlates. Eur. Psychiatry. 2015. 30(1): 841. https://doi.org/10.1016/S0924-9338(15)30656-8
Stefan K., Wycislo M., Classen J. Modulation of Associative Human Motor Cortical Plasticity by Attention. J Neurophysiol. 2004. 92: 66–72 https://doi.org/10.1152/JN.00383.2003
Stephens J.A., Berryhill M.E. Older Adults Improve on Everyday Tasks after Working Memory Training and Neurostimulation. Brain Stimul. 2016. 9: 553–559. https://doi.org/10.1016/j.brs.2016.04.001
Strube A., Rose M., Fazeli S., Büchel C. The temporal and spectral characteristics of expectations and prediction errors in pain and thermoception. Elife. 2021. 10: 1–41. https://doi.org/10.7554/ELIFE.62809
Takeuchi N., Chuma T., Matsuo Y., Watanabe I., Ikoma K. Repetitive Transcranial Magnetic Stimulation of Contralesional Primary Motor Cortex Improves Hand Function After Stroke. Stroke. 2005. 36: 2681–2686. https://doi.org/10.1161/01.STR.0000189658.51972.34
Talelli P.E., Wallace A., Dileone M., Hoad D., Cheeran B., Oliver R., Vandenbos M., Hammerbeck U., Barratt K., Gillini C., Musumeci G., Boudrias M.H., Cloud G.C., Ball J., Marsden J.F., Ward N.S., Di Lazzaro V., Greenwood R.G., Rothwell J.C. Theta burst stimulation in the rehabilitation of the upper limb: A semirandomized, placebo-controlled trial in chronic stroke patients. Neurorehabil. Neural Repair. 2012. 26: 976–987. https://doi.org/10.1177/1545968312437940
Tang D.L., McDaniel A., Watkins K.E. Disruption of speech motor adaptation with repetitive transcranial magnetic stimulation of the articulatory representation in primary motor cortex. Cortex. 2021. 145: 115–130. https://doi.org/10.1016/J.CORTEX.2021.09.008
Terranova C., Rizzo V., Cacciola A., Chillemi G., Calamuneri A., Milardi D., Quartarone A. Is There a Future for Non-invasive Brain Stimulation as a Therapeutic Tool? Front. Neurol. 2019. 9: 1146. https://doi.org/10.3389/FNEUR.2018.01146
Ullrich H., Kranaster L., Sigges E., Andrich J., Sartorius A. Ultra-high-frequency left prefrontal transcranial magnetic stimulation as augmentation in severely ill patients with depression: a naturalistic sham-controlled, double-blind, randomized trial. Neuropsychobiology. 2012. 66: 141–148. https://doi.org/10.1159/000339561
Van Dyke D.L., Werner L., Rassenti L.Z., Neuberg D., Ghia E., Heerema N.A., Dal Cin P., Dell Aquila M., Sreekantaiah C., Greaves A.W., Kipps T.J., Kay N.E. The Dohner fluorescence in situ hybridization prognostic classification of chronic lymphocytic leukaemia (CLL): the CLL Research Consortium experience. Br. J. Haematol. 2016. 173: 105–113. https://doi.org/10.1111/BJH.13933
Vines B.W., Cerruti C., Schlaug G. 2008. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 2008. 9: 1–7. https://doi.org/10.1186/1471-2202-9-103/FIGURES/1
Vitor-Costa M., Okuno N.M., Bortolotti H., Bertollo M., Boggio P.S., Fregni F., Altimari L.R. Improving Cycling Performance: Transcranial Direct Current Stimulation Increases Time to Exhaustion in Cycling. PLoS One. 2015. 10(12): e0144916. https://doi.org/10.1371/JOURNAL.PONE.0144916
Voineskos A.N., Blumberger D.M., Schifani C., Hawco C., Dickie E.W., Rajji T.K., Mulsant B.H., Foussias G., Wang W., Daskalakis Z.J. Effects of Repetitive Transcranial Magnetic Stimulation on Working Memory Performance and Brain Structure in People With Schizophrenia Spectrum Disorders: A Double-Blind, Randomized, Sham-Controlled Trial. Biol. psychiatry. Cogn. Neurosci. neuroimaging. 2021. 6: 449–458. https://doi.org/10.1016/J.BPSC.2020.11.011
Vosskuhl J., Strüber D., Herrmann C.S. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations. Front. Hum. Neurosci. 2018. 12:1–19. https://doi.org/10.3389/FNHUM.2018.00211
Walsh V., Cowey A. Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci. 2000. 1: 73–80. https://doi.org/10.1038/35036239
Watkins K., Paus T. Modulation of motor excitability during speech perception: the role of Broca’s area. J. Cogn. Neurosci. 2004. 16: 978–987. https://doi.org/10.1162/0898929041502616
Watkins K.E., Strafella A.P., Paus T. Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia. 2003. 41: 989–994. https://doi.org/10.1016/S0028-3932(02)00316-0
Wessel M.J., Zimerman M., Hummel F.C. Non-Invasive Brain Stimulation: An Interventional Tool for Enhancing Behavioral Training after Stroke. Front. Hum. Neurosci. 2015. 9: 265. https://doi.org/10.3389/FNHUM.2015.00265
Whitehurst L.N., Agosta S., Castaños R., Battelli L., Mednick S.C. The impact of psychostimulants on sustained attention over a 24-h period. Cognitio. 2019. 193: 104015 https://doi.org/10.1016/j.cognition.2019.104015
Wiethoff S., Hamada M., Rothwell J.C. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014. 7: 468–475. https://doi.org/10.1016/J.BRS.2014.02.003
Yada Y., Tomisato S., Hashimoto R. Online cathodal transcranial direct current stimulation to the right homologue of Broca’s area improves speech fluency in people who stutter. Psychiatry Clin. Neurosci. 2019. 73: 63–69. https://doi.org/10.1111/PCN.12796
Yang D., Shin Y.I., Hong K.S. Systemic Review on Transcranial Electrical Stimulation Parameters and EEG/fNIRS Features for Brain Diseases. Front. Neurosci. 2021. 15: 629323. https://doi.org/10.3389/FNINS.2021.629323
Yeh N., Rose N.S. How Can Transcranial Magnetic Stimulation Be Used to Modulate Episodic Memory?: A Systematic Review and Meta-Analysis. Front. Psychol. 2019. 10: 993. https://doi.org/10.3389/FPSYG.2019.00993
Yozbatiran N., Alonso-Alonso M., See J., Demirtas-Tatlidede A., Luu D., Motiwala R.R., Pascual-Leone A., Cramer S.C. Safety and Behavioral Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation in Stroke. Stroke. 2009. 40: 309–312. https://doi.org/10.1161/STROKEAHA.108.522144
Zaehle T., Rach S., Herrmann C.S. Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG. PLoS One. 2010. 5: e13766. https://doi.org/10.1371/JOURNAL.PONE.0013766
Zimerman M., Hummel F.C. 2010. Non-invasive brain stimulation: enhancing motor and cognitive functions in healthy old subjects. Front. Aging Neurosci. 2010. 2: 149. https://doi.org/10.3389/FNAGI.2010.00149
Дополнительные материалы отсутствуют.
Инструменты
Журнал высшей нервной деятельности им. И.П. Павлова