Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 2, стр. 149-158

Применение оптических зондов для визуализации внутриклеточного кальция и регистрации потенциалов действия нейронов

Е. С. Никитин 1*, М. В. Рощин 1, А. А. Бородинова 1, А. Б. Зюзина 1, П. М. Балабан 1

1 Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия

* E-mail: nikitin@ihna.ru

Поступила в редакцию 21.07.2021
После доработки 21.07.2021
Принята к публикации 05.10.2021

Аннотация

На сегодняшний день репортеры внутриклеточного кальция являются самыми распространенными оптическими зондами для детекции активности нейрона. Синтетические низкомолекулярные и генетически кодируемые белковые соединения обеспечивают огромное разнообразие доступных методов регистрации сигналов разной интенсивности на разных уровнях изучения нервной системы, начиная от синаптических бутонов и дендритных шипиков и заканчивая регистрацией активности центральной нервной системы в свободном поведении in vivo. В работе проводится сравнительное описание методик оптической регистрации изменений в концентрации внутриклеточного кальция и сопоставляются оригинальные экспериментальные данные, полученные каждым из описываемых методов. Описаны преимущества и недостатки, а также очерчены возможные области применения каждого из коммерчески доступных и широко используемых видов кальций-чувствительных репортеров.

Ключевые слова: нейрон, потенциал действия, кальций, оптическая регистрация

Список литературы

  1. Adams P.J., Ben-Johny M., Dick I.E., Inoue T., Yue D.T. Apocalmodulin itself promotes ion channel opening and Ca(2+) regulation. Cell. 2014. 159 (3): 608–622.

  2. Akerboom J., Chen T.W., Wardill T.J., Tian L., Marvin J.S., Mutlu S., Calderón N.C., Esposti F., Borghuis B.G., Sun X.R., Gordus A., Orger M.B., Portugues R., Engert F., Macklin J.J., Filosa A., Aggarwal A., Kerr R.A., Takagi R., Kracun S., Shigetomi E., Khakh B.S., Baier H., Lagnado L., Wang S.S., Bargmann C.I., Kimmel B.E., Jayaraman V., Svoboda K., Kim D.S., Schreiter E.R., and Looger L.L. Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci. 2012. 32 (40): 13819–13840.

  3. Alexopoulou A.N., Couchman J.R., Whiteford J.R. The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors. BMC cell biology. 2008. 9: 2–2.

  4. Barnett L.M., Hughes T.E., Drobizhev M. Deciphering the molecular mechanism responsible for GCaMP6m's Ca2+-dependent change in fluorescence. PLoS One. 2017. 12 (2): e0170934.

  5. Barykina N.V., Subach O.M., Doronin D.A., Sotskov V.P., Roshchina M.A., Kunitsyna T.A., Malyshev A.Y., Smirnov I.V., Azieva A.M., Sokolov I.S., Piatkevich K.D., Burtsev M.S., Varizhuk A.M., Pozmogova G.E., Anokhin K.V., Subach F.V., Enikolopov G.N. A new design for a green calcium indicator with a smaller size and a reduced number of calcium-binding sites. Scientific Reports. 2016. 6 (1): 34447.

  6. Blockstein L., Luk C.C., Mudraboyina A.K., Syed N.I., Yadid-Pecht O. A PVAc-Based Benzophenone-8 Filter as an Alternative to Commercially Available Dichroic Filters for Monitoring Calcium Activity in Live Neurons via Fura-2 AM. IEEE Photonics Journal. 2012. 4 (3): 1004–1012.

  7. Canepari M., Vogt K., Zecevic D. Combining voltage and calcium imaging from neuronal dendrites. Cell Mol Neurobiol. 2008. 28 (8): 1079–1093.

  8. Catterall W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol. 2000. 16: 521–555.

  9. Chang A., Abderemane-Ali F., Hura G.L., Rossen N.D., Gate R.E., Minor D.L., Jr. A Calmodulin C-Lobe Ca(2+)-Dependent Switch Governs Kv7 Channel Function. Neuron. 2018. 97 (4): 836–852 e6.

  10. Chen T.-W., Wardill T.J., Sun Y., Pulver S.R., Renninger S.L., Baohan A., Schreiter E.R., Kerr R.A., Orger M.B., Jayaraman V., Looger L.L., Svoboda K., Kim D.S. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013. 499 (7458): 295–300.

  11. Cong L., Wang Z., Chai Y., Hang W., Shang C., Yang W., Bai L., Du J., Wang K., Wen Q. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife. 2017. 6: e28158.

  12. Dana H., Sun Y., Mohar B., Hulse B.K., Kerlin A.M., Hasseman J.P., Tsegaye G., Tsang A., Wong A., Patel R., Macklin J.J., Chen Y., Konnerth A., Jayaraman V., Looger L.L., Schreiter E.R., Svoboda K., Kim D.S. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat Methods. 2019. 16 (7): 649–657.

  13. Dreosti E., Odermatt B., Dorostkar M.M., Lagnado L. A genetically encoded reporter of synaptic activity in vivo. Nat Methods. 2009. 6 (12): 883–889.

  14. Fowler C.J., Tiger G. Calibration of Fura-2 signals introduces errors into measurement of thrombin-stimulated calcium mobilisation in human platelets. Clin Chim Acta. 1997. 265 (2): 247–261.

  15. Friedrich R.W., Korsching S.I. Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron. 1997. 18 (5): 737–52.

  16. Gleichmann M., Mattson M.P. Neuronal calcium homeostasis and dysregulation. Antioxidants & redox signaling. 2011. 14 (7): 1261–1273.

  17. Grewe B.F., Langer D., Kasper H., Kampa B.M., Helmchen F. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nature Methods. 2010. 7 (5): 399–405.

  18. Grienberger C., Konnerth A. Imaging calcium in neurons. Neuron. 2012. 73 (5): 862–85.

  19. Grynkiewicz G., Poenie M., Tsien R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985. 260 (6): 3440–3450.

  20. Heim N., Griesbeck O. Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J Biol Chem. 2004. 279 (14): 14280–14286.

  21. Higley M.J., Sabatini B.L. Calcium signaling in dendritic spines. Cold Spring Harbor perspectives in biology. 2012. 4 (4): a005686-a005686.

  22. Hovis K.R., Padmanabhan K., Urban N.N. A simple method of in vitro electroporation allows visualization, recording, and calcium imaging of local neuronal circuits. Journal of neuroscience methods. 2010. 191 (1): 1–10.

  23. Kemenes I., Straub V.A., Nikitin E.S., Staras K., O’Shea M., Kemenes G., Benjamin P.R. Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory. Current Biology. 2006. 16 (13): 1269–1279.

  24. Koester H.J., Johnston D. Target cell-dependent normalization of transmitter release at neocortical synapses. Science. 2005. 308 (5723): 863–866.

  25. Kumada T., Komuro H. Completion of neuronal migration regulated by loss of Ca(2+) transients. Proceedings of the National Academy of Sciences of the United States of America. 2004. 101 (22): 8479–8484.

  26. Lin K., Sadée W., Quillan J.M. Rapid measurements of intracellular calcium using a fluorescence plate reader. Biotechniques. 1999. 26 (2): 318–22, 324–6.

  27. LoTurco J., Manent J.-B., Sidiqi F. New and improved tools for in utero electroporation studies of developing cerebral cortex. Cerebral cortex (New York, N.Y.: 1991). 2009. 19 Suppl 1(Suppl 1): i120–i125.

  28. Mangialavori I., Ferreira-Gomes M., Pignataro M.F., Strehler E.E., Rossi J.P. Determination of the dissociation constants for Ca2+ and calmodulin from the plasma membrane Ca2+ pump by a lipid probe that senses membrane domain changes. J Biol Chem. 2010. 285 (1): 123–130.

  29. Mao T., O’Connor D.H., Scheuss V., Nakai J., Svoboda K. Characterization and Subcellular Targeting of GCaMP-Type Genetically-Encoded Calcium Indicators. PLOS ONE. 2008. 3 (3): e1796.

  30. Matlashov M.E., Bogdanova Y.A., Ermakova G.V., Mishina N.M., Ermakova Y.G., Nikitin E.S., Balaban P.M., Okabe S., Lukyanov S., Enikolopov G., Zaraisky A.G., Belousov V.V. Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology. Biochimica et Biophysica Acta (BBA) - General Subjects. 2015. 1850 (11): 2318–2328.

  31. Matthews E.A., Dietrich D. Buffer mobility and the regulation of neuronal calcium domains. Frontiers in cellular neuroscience. 2015. 9: 48–48.

  32. Mehta P., Kreeger L., Wylie D.C., Pattadkal J.J., Lusignan T., Davis M.J., Turi G.F., Li W.-K., Whitmire M.P., Chen Y., Kajs B.L., Seidemann E., Priebe N.J., Losonczy A., Zemelman B.V. Functional Access to Neuron Subclasses in Rodent and Primate Forebrain. Cell reports. 2019. 26 (10): 2818–2832.e8.

  33. Nakai J., Ohkura M., Imoto K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol. 2001. 19 (2): 137–141.

  34. Nikitin Evgeny S., Balaban Pavel M., Kemenes G. Nonsynaptic Plasticity Underlies a Compartmentalized Increase in Synaptic Efficacy after Classical Conditioning. Current Biology. 2013. 23 (7): 614–619.

  35. Nikitin E.S., Zakharov I.S., Samarova E.I., Kemenes G., Balaban P.M. Fine tuning of olfactory orientation behaviour by the interaction of oscillatory and single neuronal activity. European Journal of Neuroscience. 2005. 22 (11): 2833–2844.

  36. Osakada F., Mori T., Cetin A.H., Marshel J.H., Virgen B., Callaway E.M. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron. 2011. 71 (4): 617–631.

  37. Roshchin M.V., Matlashov M.E., Ierusalimsky V.N., Balaban P.M., Belousov V.V., Kemenes G., Staras K., Nikitin E.S. A BK channel-mediated feedback pathway links single-synapse activity with action potential sharpening in repetitive firing. Sci Adv. 2018. 4 (7): eaat1357.

  38. Ross W.N. Understanding calcium waves and sparks in central neurons. Nat Rev Neurosci. 2012. 13 (3): 157–168.

  39. Sah P., Clements J.D. Photolytic manipulation of [Ca2+]i reveals slow kinetics of potassium channels underlying the afterhyperpolarization in hippocampal pyramidal neurons. J Neurosci. 1999. 19 (10): 3657–3664.

  40. Steinmetz N.A., Buetfering C., Lecoq J., Lee C.R., Peters A.J., Jacobs E.A.K., Coen P., Ollerenshaw D.R., Valley M.T., de Vries S.E.J., Garrett M., Zhuang J., Groblewski P.A., Manavi S., Miles J., White C., Lee E., Griffin F., Larkin J.D., Roll K., Cross S., Nguyen T.V., Larsen R., Pendergraft J., Daigle T., Tasic B., Thompson C.L., Waters J., Olsen S., Margolis D.J., Zeng H., Hausser M., Carandini M., and Harris K.D. Aberrant Cortical Activity in Multiple GCaMP6-Expressing Transgenic Mouse Lines. eNeuro. 2017. 4 (5).

  41. Storace D.A., Braubach O.R., Jin L., Cohen L.B., Sung U. Monitoring Brain Activity with Protein Voltage and Calcium Sensors. Scientific Reports. 2015. 5 (1): 10212.

  42. Tervo D.G., Hwang B.Y., Viswanathan S., Gaj T., Lavzin M., Ritola K.D., Lindo S., Michael S., Kuleshova E., Ojala D., Huang C.C., Gerfen C.R., Schiller J., Dudman J.T., Hantman A.W., Looger L.L., Schaffer D.V., Karpova A.Y. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron. 2016. 92 (2):372–382. https://doi.org/10.1016/j.neuron.2016.09.021

  43. Tian L., Hires S.A., Mao T., Huber D., Chiappe M.E., Chalasani S.H., Petreanu L., Akerboom J., McKinney S.A., Schreiter E.R., Bargmann C.I., Jayaraman V., Svoboda K., Looger L.L. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods. 2009. 6 (12): 875–881.

  44. van Den Pol A.N., Mocarski E., Saederup N., Vieira J., Meier T.J. Cytomegalovirus cell tropism, replication, and gene transfer in brain. The Journal of Neuroscience: the official journal of the Society for Neuroscience. 1999. 19 (24): 10948–10965.

  45. Wachowiak M., Cohen L.B. Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron. 2001. 32 (4): 723–735.

  46. Wang S.S., Augustine G.J. Confocal imaging and local photolysis of caged compounds: dual probes of synaptic function. Neuron. 1995. 15 (4): 755–760.

  47. Wang T., Kumada T., Morishima T., Iwata S., Kaneko T., Yanagawa Y., Yoshida S., Fukuda A. Accumulation of GABAergic neurons, causing a focal ambient GABA gradient, and downregulation of KCC2 are induced during microgyrus formation in a mouse model of polymicrogyria. Cerebral cortex (New York, N.Y.: 1991). 2014. 24 (4): 1088–1101.

  48. Watakabe A., Ohtsuka M., Kinoshita M., Takaji M., Isa K., Mizukami H., Ozawa K., Isa T., Yamamori T. Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res. 2015. 93: 144–157.

  49. Wilson J.M., Dombeck D.A., Díaz-Ríos M., Harris-Warrick R.M., Brownstone R.M. Two-Photon Calcium Imaging of Network Activity in XFP-Expressing Neurons in the Mouse. Journal of Neurophysiology. 2007. 97 (4): 3118–3125.

  50. Yang Y., Liu N., He Y., Liu Y., Ge L., Zou L., Song S., Xiong W., Liu X. Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nature Communications. 2018. 9 (1): 1504.

  51. Zheng K., Bard L., Reynolds J.P., King C., Jensen T.P., Gourine A.V., Rusakov D.A. Time-Resolved Imaging Reveals Heterogeneous Landscapes of Nanomolar Ca(2+) in Neurons and Astroglia. Neuron. 2015. 88 (2): 277–288.

Дополнительные материалы отсутствуют.