Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 2, стр. 159-186

Роль стриатума в двигательном научении

Н. Ю. Ивлиева 1*

1 Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия

* E-mail: nivlieva@mail.ru

Поступила в редакцию 01.06.2021
После доработки 14.07.2021
Принята к публикации 05.10.2021

Аннотация

Рассмотрена роль стриатума в двигательном научении. Современные молекулярно-генетические подходы позволили ближе взглянуть на участие нейронов прямого и непрямого пути в различных аспектах двигательного научения. Исследования на животных свидетельствуют о том, что при критическом участии дофаминергической системы нейроны прямого пути играют ключевую роль в формировании и поддержании часто выполняемых в данном контексте движений вплоть до участия в механизмах обеспечения процесса их автоматизации, а нейроны непрямого пути – в сообразующемся с конкретной ситуацией гибком вовлечении определенных движений. Эти эффекты активности двух путей, вероятно, достигаются за счет их комплементарного влияния на механизмы обеспечения поведенческой вариабельности.

Ключевые слова: стриатум, научение, инструментальный условный рефлекс, привычка, навык, базальные ганглии, проекционные нейроны стриатума, дофамин, черное вещество, вентральная область покрышки

Список литературы

  1. Бернштейн Н.А. О построении движений. М.: Наука, 1947.

  2. Ивлиев Д.А., Ивлиева Н.Ю. Плавное снижение активности нейронов вентральной области покрышки среднего мозга в процессе выполнения пищедобывательного движения. Журн. высш. нервн. деятельности им. И.П. Павлова.2018. 68 (3): 265–272. https://doi.org/10.7868/S0044467718030012

  3. Ивлиева Н.Ю. Роль стриатума в организации произвольного движения. Журн. высш. нерв. деят. 2021. 71 (2): 164–183. https://doi.org/10.31857/S00444677210200522021

  4. Майоров В.И. Функции дофамина в инструментальном условном рефлексе. Журн. высш. нервн. деятельности им. И.П. Павлова. 2018. 68 (4): 404–414. https://doi.org/10.1134/S0044467718040093

  5. Майоров В.И. Модель нейронного механизма инструментализации движений, вызванных стимуляцией двигательной коры. Журн. высш. нервн. деятельности им. И.П. Павлова. 2021. 71 (2): 202–212. https://doi.org/10.31857/S0044467721020064

  6. Майоров В.И., Серков А.Н. Активность нейронов вентральной тегментальной области среднего мозга при первом выполнении условного рефлекса активного избегания. Журн. высш. нервн. деятельности им. И.П. Павлова. 2016. 66 (6): 725–729. https://doi.org/7868/S004446771606006X

  7. Мамардашвили М. Эстетика мышления. Философские чтения. СПб.: Азбука-классика, 2002. 832 с.

  8. Шаповалова К.Б., Поминова Е.В., Дюбкачева Т.А. Особенности влияния холинергической системы неостриатума крыс на обучение активному избеганию в норме и при разрушении интраламинарных ядер таламуса. Рос. физиол. журн. им. И.М. Сеченова. 1996. 82 (1): 1–12.

  9. Alcacer C., Andreoli L., Sebastianutto I., Jakobsson J., Fieblinger T., Cenci M.A. Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease therapy. J Clin Invest. 2017. 127 (2): 720–734. https://doi.org/10.1172/JCI90132

  10. Anderson M.E., Horak F.B. Influence of the globus pallidus on arm movements in monkeys. III. Timing of movement-related information. J Neurophysiol. 1985. 54 (2): 433–48. https://doi.org/10.1152/jn.1985.54.2.433

  11. Ashby F.G., Ennis J.M., Spiering B.J. A neurobiological theory of automaticity in perceptual categorization. Psychol Rev. 2007. 114 (3): 632–56. https://doi.org/10.1037/0033-295X.114.3.632

  12. Atallah H.E., Lopez-Paniagua D., Rudy J.W., O’Reilly R.C. Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. Nat Neurosci. 2007. 10 (1): 126–31. https://doi.org/10.1038/nn1817

  13. Bakhurin K.I., Li X., Friedman A.D., Lusk N.A., Watson G.D., Kim N., Yin H.H. Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. Elife. 2020. 9:e54831. https://doi.org/10.7554/eLife.54831

  14. Balleine B.W. The Meaning of Behavior: Discriminating Reflex and Volition in the Brain. Neuron. 2019. 104(1): 47–62. https://doi.org/10.1016/j.neuron.2019.09.024

  15. Bariselli S., Fobbs W.C., Creed M.C., Kravitz A.V. A competitive model for striatal action selection. Brain Res. 2019. 1713: 70–79. https://doi.org/10.1016/j.brainres.2018.10.009

  16. Bova A., Gaidica M., Hurst A., Iwai Y., Hunter J., Leventhal D.K. Precisely timed dopamine signals establish distinct kinematic representations of skilled movements. Elife. 2020. 9:e61591. https://doi.org/10.7554/eLife.61591

  17. Burnette E.M., Grodin E.N., Schacht J.P., Ray L.A. Clinical and Neural Correlates of Reward and Relief Drinking. Alcohol Clin Exp Res. 2021. 45(1): 194–203. https://doi.org/10.1111/acer.14495

  18. Cacciapaglia F., Wightman R.M., Carelli R.M. Rapid dopamine signaling differentially modulates distinct microcircuits within the nucleus accumbens during sucrose-directed behavior. J Neurosci. 2011. 31(39): 13860–13869. https://doi.org/10.1523/JNEUROSCI.1340-11.2011

  19. Calabresi P., Di Filippo M. Neuroscience: Brain’s traffic lights. Nature. 2010. 466(7305): 449. https://doi.org/10.1038/466449a

  20. Caveney S., Cladman W., Verellen L., Donly C. Ancestry of neuronal monoamine transporters in the Metazoa. Journal of Experimental Biology. 2006. 209: 4858–4868. https://doi.org/10.1242/jeb.02607

  21. Ceceli A.O., Natsheh J.Y., Cruz D., Tricomi E. The neurobehavioral mechanisms of motivational control in attention-deficit/hyperactivity disorder. Cortex. 2020. 127: 191–207. https://doi.org/10.1016/j.cortex.2020.02.009

  22. Chang C.Y., Esber G.R., Marrero-Garcia Y., Yau H.J., Bonci A., Schoenbaum G. Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors. Nature neuroscience. 2016. 19 (1): 111. https://doi.org/10.1038/nn.4191

  23. Choi Y., Shin E.Y., Kim S. Spatiotemporal dissociation of fMRI activity in the caudate nucleus underlies human de novo motor skill learning. Proc Natl Acad Sci U S A. 2020. 117 (38): 23886–23897. https://doi.org/10.1073/pnas.2003963117

  24. Coddington L.T., Dudman J.T. The timing of action determines reward prediction signals in identified midbrain dopamine neurons. Nat Neurosci. 2018. 21(11): 1563–1573. https://doi.org/10.1038/s41593-018-0245-7

  25. Coddington L.T., Dudman J.T. Learning from Action: Reconsidering Movement Signaling in Midbrain Dopamine Neuron Activity. Neuron. 2019. 104 (1): 63–77. https://doi.org/10.1016/j.neuron.2019.08.036

  26. Cover K.K., Gyawali U., Kerkhoff W.G., Patton M.H., Mu C., White M.G., Marquardt A.E., Roberts B.M., Cheer J.F., Mathur B.N. Activation of the Rostral Intralaminar Thalamus Drives Reinforcement through Striatal Dopamine Release. Cell Rep. 2019. 26 (6): 1389–1398.e3. https://doi.org/10.1016/j.celrep.2019.01.044

  27. Crego A.C.G., Štoček F., Marchuk A.G., Carmichael J.E., van der Meer M.A.A., Smith K.S. Complementary Control over Habits and Behavioral Vigor by Phasic Activity in the Dorsolateral Striatum. J Neurosci. 2020. 40 (10): 2139–2153. https://doi.org/10.1523/JNEUROSCI.1313-19.2019

  28. Cui G., Jun S.B., Jin X., Pham M.D., Vogel S.S., Lovinger D.M., Costa R.M. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 2013. 494 (7436): 238–242. https://doi.org/10.1038/nature11846

  29. Damodaran S., Evans R.C., Blackwell K.T. Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. J Neurophysiol. 2014. 111 (4): 836–48. https://doi.org/10.1152/jn.00382.2013

  30. Daw N.D. Are we of two minds? Nat Neurosci. 2018. 21 (11): 1497–1499. https://doi.org/10.1038/s41593-018-0258-2

  31. Desmurget M., Turner R.S. Motor sequences and the basal ganglia: kinematics, not habits. J Neurosci. 2010. 30 (22): 7685–90. https://doi.org/10.1523/JNEUROSCI.0163-10.2010

  32. Dhawale A.K., Miyamoto Y.R., Smith M.A., Ölveczky B.P. Adaptive Regulation of Motor Variability. Curr Biol. 2019. 29 (21): 3551–3562.e7. https://doi.org/10.1016/j.cub.2019.08.052

  33. Diao Z., Yao L., Cheng Q., Wu M., Di Y., Qian Z., Wei C., Liu Y., Tian Y., Ren W. Involvement of Midbrain Dopamine Neuron Activity in Negative Reinforcement Learning in Mice. Mol Neurobiol. 2021. 58 (11): 5667–5681. https://doi.org/10.1007/s12035-021-02515-6

  34. Dickinson A. Actions and habits: the development of behavioural autonomy Philosophical Transactions of the Royal Society of London. Series B, BiologicalSciences. 1985. 308 (1135): 67–78.

  35. Dodson P.D., Dreyer J.K., Jennings K.A., Syed E.C., Wade-Martins R., Cragg S.J., Bolam J.P., Magill P.J. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism. Proceedings of the National Academy of Sciences. 2016. 113 (15). P. E2180–E2188. https://doi.org/10.1073/pnas.1515941113

  36. Dudman J.T., Krakauer J.W. The basal ganglia: from motor commands to the control of vigor. Curr Opin Neurobiol. 2016. 37: 158–166. https://doi.org/10.1016/j.conb.2016.02.005

  37. Durieux P.F., Schiffmann S.N., de Kerchove d’Exaerde A. Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions. EMBO J. 2012. 31 (3): 640–653. https://doi.org/10.1038/emboj.2011.400

  38. Edlow B.L., Haynes R.L., Takahashi E., Klein J.P., Cummings P., Benner T., Greer D.M., Greenberg S.M., Wu O., Kinney H.C., Folkerth R.D. Disconnection of the ascending arousal system in traumatic coma. J Neuropathol Exp Neurol. 2013. 72 (6): 505–23. https://doi.org/10.1097/NEN.0b013e3182945bf6

  39. Engelhard B., Finkelstein J., Cox J., Fleming W., Jang H.J., Ornelas S., Koay S.A., Thiberge S.Y., Daw N.D., Tank D.W., Witten I.B. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature. 2019. 570 (7762): 509–513. https://doi.org/10.1038/s41586-019-1261-9

  40. Eshel N., Tian J., Bukwich M., Uchida N. Dopamine neurons share common response function for reward prediction error. Nat Neurosci. 2016. 19 (3): 479–86. https://doi.org/10.1038/nn.4239

  41. Evans R.C., Twedell E.L., Zhu M., Ascencio J., Zhang R., Khaliq Z.M. Functional Dissection of Basal Ganglia Inhibitory Inputs onto Substantia Nigra Dopaminergic Neurons. Cell Rep. 2020. 32 (11): 108156. https://doi.org/10.1016/j.celrep.2020.108156

  42. Flagel S.B., Clark J.J., Robinson T.E., Mayo L., Czuj A., Willuhn I., Akers C.A., Clinton S.M., Phillips P.E., Akil H. A selective role for dopamine in stimulus-reward learning. Nature. 2011. 469 (7328): 53–7. https://doi.org/10.1038/nature09588

  43. Galaj E., Ranaldi R. Neurobiology of reward-related learning. Neurosci Biobehav Rev. 2021. 124: 224–234. https://doi.org/10.1016/j.neubiorev.2021.02.007

  44. Garr E., Delamater A.R. Exploring the relationship between actions, habits, and automaticity in an action sequence task. Learn Mem. 2019. 26 (4): 128–132. https://doi.org/10.1101/lm.048645.118

  45. Garr E., Delamater A.R. Chemogenetic inhibition in the dorsal striatum reveals regional specificity of direct and indirect pathway control of action sequencing. Neurobiol Learn Mem. 2020. 169: 107169. https://doi.org/10.1016/j.nlm.2020.107169

  46. Geddes C.E., Li H., Jin X. Optogenetic Editing Reveals the Hierarchical Organization of Learned Action Sequences. Cell. 2018. 174 (1): 32–43.e15. https://doi.org/10.1016/j.cell.2018.06.012

  47. Gerfen C.R., Surmeier D.J. Modulation of striatal projection systems by dopamine. Annual review of neuroscience. 2011. 34: 441–466.

  48. Goodman J., Packard M.G. There Is More Than One Kind of Extinction Learning. Front Syst Neurosci. 2019. 13: 16. https://doi.org/10.3389/fnsys.2019.00016

  49. Graybiel A.M. Habits, rituals, and the evaluative brain. Annu Rev Neurosci. 2008. 31: 359–87. https://doi.org/10.1146/annurev.neuro.29.051605.112851

  50. Graybiel A.M., Grafton S.T. The striatum: where skills and habits meet. Cold Spring Harb Perspect Biol. 2015. 7 (8): a021691. https://doi.org/10.1101/cshperspect.a021691

  51. Hamid A.A., Pettibone J.R., Mabrouk O.S., Hetrick V.L., Schmidt R., Vander Weele C.M., Kennedy R.T., Aragona B.J., Berke J.D. Mesolimbic dopamine signals the value of work. Nat Neurosci. 2016. 19 (1): 117–26. https://doi.org/10.1038/nn.4173

  52. Hamid A.A., Frank M.J., Moore C.I. Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment. Cell. 2021. 184 (10): 2733–2749.e16. https://doi.org/10.1016/j.cell.2021.03.046

  53. Hammond L.J. The effect of contingency upon the appetitive conditioning of free-operant behavior. J Exp Anal Behav. 1980. 34 (3): 297–304. https://doi.org/10.1901/jeab.1980.34-297

  54. Hardwick R.M., Forrence A.D., Krakauer J.W., Haith A.M. Time-dependent competition between goal-directed and habitual response preparation. Nat Hum Behav. 2019. 3 (12): 1252–1262. https://doi.org/10.1038/s41562-019-0725-0

  55. Hartmann C., Lazar A., Nessler B., Triesch J. Where’s the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network. PLoS Comput Biol. 2015. 11 (12): e1004640. https://doi.org/10.1371/journal.pcbi.1004640

  56. Hawes S.L., Evans R.C., Unruh B.A., Benkert E.E., Gillani F., Dumas T.C., Blackwell K.T. Multimodal Plasticity in Dorsal Striatum While Learning a Lateralized Navigation Task. J Neurosci. 2015. 35 (29): 10535–49. https://doi.org/10.1523/JNEUROSCI.4415-14.2015

  57. Hernandez L.F., Obeso I., Costa R.M., Redgrave P., Obeso J.A. Dopaminergic Vulnerability in Parkinson Disease: The Cost of Humans’ Habitual Performance. Trends Neurosci. 2019. 42 (6): 375–383. https://doi.org/10.1016/j.tins.2019.03.007

  58. Hikosaka O., Takikawa Y., Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000. 80: 953–978.

  59. Hikosaka O., Kim H.F., Amita H., Yasuda M., Isoda M., Tachibana Y., Yoshida A. Direct and indirect pathways for choosing objects and actions. Eur J Neurosci. 2019. 49 (5): 637–645. https://doi.org/10.1111/ejn.13876

  60. Hikosaka O., Yasuda M., Nakamura K., Isoda M., Kim H.F., Terao Y., Amita H., Maeda K. Multiple neuronal circuits for variable object-action choices based on short- and long-term memories. Proc Natl Acad Sci U S A. 2019. 116 (52): 26313–20. https://doi.org/10.1073/pnas.1902283116

  61. Hintiryan H., Foster N.N., Bowman I., Bay M., Song M.Y., Gou L., Yamashita S., Bienkowski M.S., Zingg B., Zhu M., Yang X.W., Shih J.C., Toga A.W., Dong H.W. The mouse cortico-striatal projectome. Nat Neurosci. 2016. 19 (8): 1100–1114. https://doi.org/10.1038/nn.4332

  62. Hormigo S., Zhou J., Chabbert D., Shanmugasundaram B., Castro-Alamancos M.A. Basal Ganglia Output Has a Permissive Non-Driving Role in a Signaled Locomotor Action Mediated by the Midbrain. J Neurosci. 2021. 41 (7): 1529–1552. https://doi.org/10.1523/JNEUROSCI.1067-20.2020

  63. Howard C.D., Li H., Geddes C.E., Jin X. Dynamic Nigrostriatal Dopamine Biases Action Selection. Neuron. 2017. 93 (6): 1436–1450.e8. https://doi.org/10.1016/j.neuron.2017.02.029

  64. Howe M.W., Tierney P.L., Sandberg S.G., Phillips P.E., Graybiel A.M. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature. 2013. 500 (7464): 575–579. https://doi.org/10.1038/nature12475

  65. Howe M.W., Dombeck D.A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature. 2016. 535 (7613): 505–510. https://doi.org/10.1038/nature18942

  66. Hughes R.N., Bakhurin K.I., Petter E.A., Watson G.D.R., Kim N., Friedman A.D., Yin H.H. Ventral Tegmental Dopamine Neurons Control the Impulse Vector during Motivated Behavior. Curr Biol. 2020. 30 (14): 2681–2694.e5. https://doi.org/10.1016/j.cub.2020.05.003

  67. Isomura Y., Takekawa T., Harukuni R., Handa T., Aizawa H., Takada M., Fukai T. Reward-modulated motor information in identified striatum neurons. J Neurosci. 2013. 33 (25): 10209–20. https://doi.org/10.1523/JNEUROSCI.0381-13.2013

  68. Ivlieva N.Y., Timofeeva N.O., Ivliev D.A. The Dopamine Impels Us to Action as Suggested by the Neuronal Activity in the Ventral Tegmental Area during Avoidance Conditioning. The Russian Journal of Cognitive Science. 2014. 1 (1–2): 54–64.

  69. Jenrette T.A., Logue J.B., Horner K.A. Lesions of the Patch Compartment of Dorsolateral Striatum Disrupt Stimulus-Response Learning. Neuroscience. 2019. 415: 161–172. https://doi.org/10.1016/j.neuroscience.2019.07.033

  70. Jin X., Costa R.M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature. 2010.466: 457–462. https://doi.org/10.1038/nature09263

  71. Jin X., Tecuapetla F., Costa R.M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci. 2014. 17 (3): 423–30. https://doi.org/10.1038/nn.3632

  72. Kato S., Fukabori R., Nishizawa K., Okada K., Yoshioka N., Sugawara M., Maejima Y., Shimomura K., Okamoto M., Eifuku S., Kobayashi K. Action Selection and Flexible Switching Controlled by the Intralaminar Thalamic Neurons. Cell Rep. 2018. 22 (9): 2370–2382. https://doi.org/10.1016/j.celrep.2018.02.016

  73. Kent K., Deng Q., McNeill T.H. Unilateral skill acquisition induces bilateral NMDA receptor subunit composition shifts in the rat sensorimotor striatum. Brain Res. 2013. 1517: 77–86. https://doi.org/10.1016/j.brainres.2013.04.021

  74. Kim H.F., Ghazizadeh A., Hikosaka O. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Front. Neuroanat. 2014. 8. 120. https://doi.org/10.3389/fnana.2014.00120

  75. Kim H.F., Ghazizadeh A., Hikosaka O. Dopamine Neurons Encoding Long-Term Memory of Object Value for Habitual Behavior. Cell. 2015. 163 (5): 1165–1175. https://doi.org/10.1016/j.cell.2015.10.063

  76. Kim H.F., Hikosaka O. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain. 2015. 138 (Pt 7): 1776–800. https://doi.org/10.1093/brain/awv134

  77. Kim H.F., Amita H., Hikosaka O. Indirect Pathway of Caudal Basal Ganglia for Rejection of Valueless Visual Objects. Neuron. 2017. 94 (4): 920–930.e3. https://doi.org/10.1016/j.neuron.2017.04.033

  78. Klugah-Brown B., Di X., Zweerings J., Mathiak K., Becker B., Biswal B. Common and separable neural alterations in substance use disorders: A coordinate-based meta-analyses of functional neuroimaging studies in humans. Hum Brain Mapp. 2020. 41 (16): 4459–4477. https://doi.org/10.1002/hbm.25085

  79. Knowlton B.J., Patterson T.K. Habit Formation and the Striatum. Curr Top Behav Neurosci. 2018. 37: 275–295. https://doi.org/10.1007/7854_2016_451

  80. Krakauer J.W., Ghilardi M.F., Ghez C. Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci. 1999. 2 (11): 1026–31. https://doi.org/10.1038/14826

  81. Krakauer J.W., Hadjiosif A.M., Xu J., Wong A.L., Haith A.M. Motor Learning. Compr Physiol. 2019. 9 (2): 613–663. https://doi.org/10.1002/cphy.c170043

  82. Kravitz A.V., Tye L.D., Kreitzer A.C. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci. 2012. 15(6): 816-8. https://doi.org/10.1038/nn.3100

  83. Kunimatsu J., Yamamoto S., Maeda K., Hikosaka O. Environment-based object values learned by local network in the striatum tail. Proc Natl Acad Sci U S A. 2021. 118 (4): e2013623118. https://doi.org/10.1073/pnas.2013623118

  84. Kupferschmidt D.A., Juczewski K., Cui G., Johnson K.A., Lovinger D.M. Parallel, but Dissociable, Processing in Discrete Corticostriatal Inputs Encodes Skill Learning. Neuron. 2017. 96 (2): 476–489.e5. https://doi.org/10.1016/j.neuron.2017.09.040

  85. Kutlu M.G., Zachry J.E., Melugin P.R., Cajigas S.A., Chevee M.F., Kelly S.J., Kutlu B., Tian L., Siciliano C.A., Calipari E.S. Dopamine release in the nucleus accumbens core signals perceived saliency. Curr Biol. 2021.31 (21): 4748–4761.e8. https://doi.org/10.1016/j.cub.2021.08.052

  86. Kwak S., Jung M.W. Distinct roles of striatal direct and indirect pathways in value-based decision making. Elife. 2019. 8: e46050. https://doi.org/10.7554/eLife.46050

  87. Laurent M., De Backer J.F., Rial D., Schiffmann S.N., de Kerchove d’Exaerde A. Bidirectional Control of Reversal in a Dual Action Task by Direct and Indirect Pathway Activation in the Dorsolateral Striatum in Mice. Front Behav Neurosci. 2017. 11: 256. https://doi.org/10.3389/fnbeh.2017.00256

  88. Lee R.S., Mattar M.G., Parker N.F., Witten I.B., Daw N.D. Reward prediction error does not explain movement selectivity in DMS-projecting dopamine neurons. Elife. 2019. 8: e42992. https://doi.org/10.7554/eLife.42992

  89. Lee K., Claar L.D., Hachisuka A., Bakhurin K.I., Nguyen J., Trott J.M., Gill J.L., Masmanidis S.C. Temporally restricted dopaminergic control of reward-conditioned movements. Nat Neurosci. 2020. 23 (2): 209–216. https://doi.org/10.1038/s41593-019-0567-0

  90. Lee S.J., Lodder B., Chen Y., Patriarchi T., Tian L., Sabatini B.L. Cell-type-specific asynchronous modulation of PKA by dopamine in learning. Nature. 2021. 590 (7846): 451–456. https://doi.org/10.1038/s41586-020-03050-5

  91. Lemke S.M., Ramanathan D.S., Guo L., Won S.J., Ganguly K. Emergent modular neural control drives coordinated motor actions. Nat Neurosci. 2019. 22 (7): 1122–1131. https://doi.org/10.1038/s41593-019-0407-2

  92. Lemos J.C., Friend D.M., Kaplan A.R., Shin J.H., Rubinstein M., Kravitz A.V., Alvarez V.A. Enhanced GABA Transmission Drives Bradykinesia Following Loss of Dopamine D2 Receptor Signaling. Neuron. 2016. 90 (4): 824–838. https://doi.org/10.1016/j.neuron.2016.04.040

  93. Lipton D.M., Gonzales B.J., Citri A. Dorsal Striatal Circuits for Habits, Compulsions and Addictions. Front Syst Neurosci. 2019. 13: 28. https://doi.org/10.3389/fnsys.2019.00028

  94. Lopez-Huerta V.G., Denton J.A., Nakano Y., Jaidar O., Garcia-Munoz M., Arbuthnott G.W. Striatal bilateral control of skilled forelimb movement. Cell Rep. 2021. 34 (3): 108651. https://doi.org/10.1016/j.celrep.2020.108651

  95. Malvaez M. Neural substrates of habit. J Neurosci Res. 2020. 98 (6): 986–997. https://doi.org/10.1002/jnr.24552

  96. Martiros N., Burgess A.A., Graybiel A.M. Inversely Active Striatal Projection Neurons and Interneurons Selectively Delimit Useful Behavioral Sequences. Curr Biol. 2018. 28 (4): 560–573.e5. https://doi.org/10.1016/j.cub.2018.01.031

  97. Matamales M., McGovern A.E., Mi J.D., Mazzone S.B., Balleine B.W., Bertran-Gonzalez J. Local D2- to D1-neuron transmodulation updates goal-directed learning in the striatum. Science. 2020. 367 (6477): 549–555. https://doi.org/10.1126/science.aaz5751

  98. Matsumoto M., Hikosaka O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature. 2009. 459: 837–841. https://doi.org/10.1038/nature08028

  99. Mawase F., Uehara S., Bastian A.J., Celnik P. Motor Learning Enhances Use-Dependent Plasticity. J Neurosci. 2017. 37 (10): 2673–2685. https://doi.org/10.1523/JNEUROSCI.3303-16.2017

  100. Menegas W., Akiti K., Amo R., Uchida N., Watabe-Uchida M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat Neurosci. 2018. 21 (10): 1421–1430. https://doi.org/10.1038/s41593-018-0222-1

  101. Mohebi A., Pettibone J.R., Hamid A.A., Wong J.T., Vinson L.T., Patriarchi T., Tian L., Kennedy R.T., Berke J.D. Dissociable dopamine dynamics for learning and motivation. Nature. 2019. 570 (7759): 65–70. https://doi.org/10.1038/s41586-019-1235-y

  102. Nadel J.A., Pawelko S.S., Copes-Finke D., Neidhart M., Howard C.D. Lesion of striatal patches disrupts habitual behaviors and increases behavioral variability. PLoS One. 2020. 15 (1): e0224715. https://doi.org/10.1371/journal.pone.0224715

  103. Nakamura T., Nagata M., Yagi T., Graybiel A.M., Yamamori T., Kitsukawa T. Learning new sequential stepping patterns requires striatal plasticity during the earliest phase of acquisition. Eur J Neurosci. 2017. 45(7): 901–911. https://doi.org/10.1111/ejn.13537

  104. Nakayama H., Ibañez-Tallon I., Heintz N. Cell-Type-Specific Contributions of Medial Prefrontal Neurons to Flexible Behaviors. J Neurosci. 2018. 38 (19): 4490–4504. https://doi.org/10.1523/JNEUROSCI.3537-17.2018

  105. Nisanov R., Schelbaum E., Morris D., Ranaldi R. CaMKII antagonism in the ventral tegmental area impairs acquisition of conditioned approach learning in rats. Neurobiol Learn Mem. 2020. 175: 107299. https://doi.org/10.1016/j.nlm.2020.107299

  106. Nonomura S., Nishizawa K., Sakai Y., Kawaguchi Y., Kato S., Uchigashima M., Watanabe M., Yamanaka K., Enomoto K., Chiken S., Sano H., Soma S., Yoshida J., Samejima K., Ogawa M., Kobayashi K., Nambu A., Isomura Y., Kimura M. Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways. Neuron. 2018. 99 (6): 1302–1314.e5. https://doi.org/10.1016/j.neuron.2018.08.002

  107. Oldenburg I.A., Sabatini B.L. Antagonistic but Not Symmetric Regulation of Primary Motor Cortex by Basal Ganglia Direct and Indirect Pathways. Neuron. 2015. 86 (5): 1174–81. https://doi.org/10.1016/j.neuron.2015.05.008

  108. O’Hare J.K., Ade K.K., Sukharnikova T., Van Hooser S.D., Palmeri M.L., Yin H.H., Calakos N. Pathway-Specific Striatal Substrates for Habitual Behavior. Neuron. 2016. 89 (3): 472–9. https://doi.org/10.1016/j.neuron.2015.12.032

  109. Oleson E.B., Gentry R.N., Chioma V.C., Cheer J.F. Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance. J Neurosci. 2012. 32 (42): 14804–8. https://doi.org/10.1523/JNEUROSCI.3087-12.2012

  110. Owesson-White C., Belle A.M., Herr N.R., Peele J.L., Gowrishankar P., Carelli R.M., Wightman R.M. Cue-Evoked Dopamine Release Rapidly Modulates D2 Neurons in the Nucleus Accumbens During Motivated Behavior. J Neurosci. 2016. 36 (22): 6011–21. https://doi.org/10.1523/JNEUROSCI.0393-16.2016

  111. Packard M.G., McGaugh J.L. Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem. 1996. 65: 65–72. https://doi.org/10.1006/nlme.1996.0007

  112. Parker N.F., Cameron C.M., Taliaferro J.P., Lee J., Choi J.Y., Davidson T.J., Daw N.D., Witten I.B. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nat Neurosci. 2016. 19 (6): 845–54. https://doi.org/10.1038/nn.4287

  113. Parker J.G., Marshall J.D., Ahanonu B., Wu Y.W., Kim T.H., Grewe B.F., Zhang Y., Li J.Z., Ding J.B., Ehlers M.D., Schnitzer M.J. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature. 2018. 557 (7704): 177–182. https://doi.org/10.1038/s41586-018-0090-6

  114. Pasquereau B., Turner R.S. Dopamine neurons encode errors in predicting movement trigger occurrence. Journal of neurophysiology. 2014. 113 (4): 1110–1123.

  115. Peak J., Hart G., Balleine B.W. From learning to action: the integration of dorsal striatal input and output pathways in instrumental conditioning. Eur J Neurosci. 2019. 49 (5): 658–671. https://doi.org/10.1111/ejn.13964

  116. Pinsard B., Boutin A., Gabitov E., Lungu O., Benali H., Doyon J. Consolidation alters motor sequence-specific distributed representations. Elife. 2019. 8: e39324. https://doi.org/10.7554/eLife.39324

  117. Poulin J.F., Caronia G., Hofer C., Cui Q., Helm B., Ramakrishnan C., Chan C.S., Dombeck D.A., Deisseroth K., Awatramani R. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci. 2018. 21 (9): 1260–1271. https://doi.org/10.1038/s41593-018-0203-4

  118. Reig R., Silberberg G. Multisensory integration in the mouse striatum. Neuron. 2014 Sep 3; 83 (5): 1200–12. https://doi.org/10.1016/j.neuron.2014.07.033

  119. Richfield E.K., Penney J.B., Young A. B. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience. 1989. 30 (3): 767–777.

  120. Rothwell P.E., Hayton S.J., Sun G.L., Fuccillo M.V., Lim B.K., Malenka R.C. Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits. Neuron. 2015. 88 (2): 345–56. https://doi.org/10.1016/j.neuron.2015.09.035

  121. Rueda-Orozco P.E., Robbe D. The striatum multiplexes contextual and kinematic information to constrain motor habits execution. Nat Neurosci. 2015. 18 (3): 453–60. https://doi.org/10.1038/nn.3924

  122. Sales-Carbonell C., Taouali W., Khalki L., Pasquet M.O., Petit L.F., Moreau T., Rueda-Orozco P.E., Robbe D. No Discrete Start/Stop Signals in the Dorsal Striatum of Mice Performing a Learned Action. Curr Biol. 2018. 28 (19): 3044–3055.e5. https://doi.org/10.1016/j.cub.2018.07.038

  123. Saund J., Dautan D., Rostron C., Urcelay G.P., Gerdjikov T.V. Thalamic inputs to dorsomedial striatum are involved in inhibitory control: evidence from the five-choice serial reaction time task in rats. Psychopharmacology (Berl). 2017. 234 (16): 2399–2407. https://doi.org/10.1007/s00213-017-4627-4

  124. Saunders B.T., Richard J.M., Margolis E.B., Janak P.H. Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nat Neurosci. 2018. 21 (8): 1072–1083. https://doi.org/10.1038/s41593-018-0191-4

  125. Schiff N.D., Giacino J.T., Kalmar K., Victor J.D., Baker K., Gerber M., Fritz B., Eisenberg B., Biondi T., O’Connor J., Kobylarz E.J., Farris S., Machado A., McCagg C., Plum F., Fins J.J., Rezai A.R. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 2007. 448 (7153): 600–3. https://doi.org/10.1038/nature06041

  126. Schreiner D.C., Renteria R., Gremel C.M. Fractionating the all-or-nothing definition of goal-directed and habitual decision-making. J Neurosci Res. 2020. 98 (6): 998–1006. https://doi.org/10.1002/jnr.24545

  127. Schultz W., Ruffieux A., Aebischer P. The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation. Exp Brain Res. 1983. 51: 377–387.

  128. Schultz W. Updating dopamine reward signals. Current opinion in neurobiology. 2013. 23 (2): 229–238.

  129. Shan Q., Ge M., Christie M.J., Balleine B.W. The acquisition of goal-directed actions generates opposing plasticity in direct and indirect pathways in dorsomedial striatum. J Neurosci. 2014. 34: 9196–9201.

  130. Shen W., Flajolet M., Greengard P., Surmeier D. J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science. 2008. 321 (5890): 848–851. https://doi.org/10.1126/science.1160575

  131. Sheng M.J., Lu D., Shen Z.M., Poo M.M. Emergence of stable striatal D1R and D2R neuronal ensembles with distinct firing sequence during motor learning. Proc Natl Acad Sci U S A. 2019. 116 (22): 11038–11047. https://doi.org/10.1073/pnas.1901712116

  132. Shin J.H., Kim D., Jung M.W. Differential coding of reward and movement information in the dorsomedial striatal direct and indirect pathways. Nat Commun. 2018. 9(1):404. https://doi.org/10.1038/s41467-017-02817-1

  133. Shin J.H., Song M., Paik S.B., Jung M.W. Spatial organization of functional clusters representing reward and movement information in the striatal direct and indirect pathways. Proc Natl Acad Sci U S A. 2020. 117 (43): 27004–27015. https://doi.org/10.1073/pnas.2010361117

  134. Sigurdsson H.P., Jackson S.R., Kim S., Dyke K., Jackson G.M. A feasibility study for somatomotor cortical mapping in Tourette syndrome using neuronavigated transcranial magnetic stimulation. Cortex. 2020. 129: 175–187. https://doi.org/10.1016/j.cortex.2020.04.014

  135. da Silva J.A. Tecuapetla F., Paixão V., Costa R.M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature. 2018. 554 (7691): 244–248. https://doi.org/10.1038/nature25457

  136. Simmons D.V., Higgs M.H., Lebby S., Wilson C.J. Indirect pathway control of firing rate and pattern in the substantia nigra pars reticulata. J Neurophysiol. 2020. 123 (2): 800–814. https://doi.org/10.1152/jn.00678.2019

  137. Sippy T., Lapray D., Crochet S., Petersen C.C. Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal-Directed Behavior. Neuron. 2015. 88 (2): 298–305. https://doi.org/10.1016/j.neuron.2015.08.039

  138. Smith K.S., Graybiel A.M. A dual operator view of habitual behavior reflecting cortical and striatal dynamics. Neuron. 2013. 79 (2): 361–74. https://doi.org/10.1016/j.neuron.2013.05.038

  139. Sommer W.H., Costa R.M., Hansson A.C. Dopamine systems adaptation during acquisition and consolidation of a skill. Front Integr Neurosci. 2014. 8: 87. https://doi.org/10.3389/fnint.2014.00087

  140. Steinberg E.E., Keiflin R., Boivin J.R., Witten I.B., Deisseroth K., Janak P.H. A causal link between prediction errors, dopamine neurons and learning. Nature neuroscience. 2013. 16 (7): 966–973. https://doi.org/10.1038/nn.3413

  141. Syed E.C., Grima L.L., Magill P.J., Bogacz R., Brown P., Walton M.E. Action initiation shapes mesolimbic dopamine encoding of future rewards. Nat Neurosci. 2016. 19 (1): 34–36. https://doi.org/10.1038/nn.4187

  142. Tecuapetla F., Jin X., Lima S.Q., Costa R.M. Complementary Contributions of Striatal Projection Pathways to Action Initiation and Execution. Cell. 2016 Jul 28; 166 (3): 703–715. https://doi.org/10.1016/j.cell.2016.06.032

  143. Threlfell S., Lalic T., Platt N.J., Jennings K.A., Deisseroth K., Cragg S.J. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron. 2012. 75 (1): 58–64. https://doi.org/10.1016/j.neuron.2012.04.038

  144. Thura D., Cisek P. The Basal Ganglia Do Not Select Reach Targets but Control the Urgency of Commitment. Neuron. 2017. 95 (5): 1160–1170.e5. https://doi.org/10.1016/j.neuron.2017.07.039

  145. Tye K.M., Mirzabekov J.J., Warden M.R., Ferenczi E.A., Tsai H.C., Finkelstein J., Kim S.Y., Adhikari A., Thompson K.R., Andalman A.S., Gunaydin L.A., Witten I.B., Deisseroth K. Dopamine neurons modulate neural encoding and expression of depression-related behavior. Nature. 2013. 493 (7433): 537–541. https://doi.org/10.1038/nature11740

  146. Ueda Y., Yamanaka K., Noritake A., Enomoto K., Matsumoto N., Yamada H., Samejima K., Inokawa H., Hori Y., Nakamura K., Kimura M. Distinct Functions of the Primate Putamen Direct and Indirect Pathways in Adaptive Outcome-Based Action Selection. Front Neuroanat. 2017. 11: 66. https://doi.org/10.3389/fnana.2017.00066

  147. Vandaele Y., Mahajan N.R., Ottenheimer D.J., Richard J.M., Mysore S.P., Janak P.H. Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training. Elife. 2019. 8: e49536. https://doi.org/10.7554/eLife.49536

  148. Vicente A.M., Galvão-Ferreira P., Tecuapetla F., Costa R.M. Direct and indirect dorsolateral striatum pathways reinforce different action strategies. Curr Biol. 2016. 26 (7): R267–9. https://doi.org/10.1016/j.cub.2016.02.036

  149. Wang Y., Qin Y., Li H., Yao D., Sun B., Li Z., Li X., Dai Y., Wen C., Zhang L., Zhang C., Zhu T., Luo C. The Modulation of Reward and Habit Systems by Acupuncture in Adolescents with Internet Addiction. Neural Plast. 2020 Mar 13; 2020: 7409417. https://doi.org/10.1155/2020/7409417

  150. Watabe-Uchida M., Eshel N., Uchida N. Neural Circuitry of Reward Prediction Error. Annu Rev Neurosci. 2017. 40: 373–394.

  151. Xiao L., Chattree G., Oscos F.G., Cao M., Wanat M.J., Roberts T.F. A Basal Ganglia Circuit Sufficient to Guide Birdsong Learning. Neuron. 2018 Apr 4; 98 (1): 208–221.e5. https://doi.org/10.1016/j.neuron.2018.02.020

  152. Xiao X., Deng H., Furlan A., Yang T., Zhang X., Hwang G.R., Tucciarone J., Wu P., He M., Palaniswamy R., Ramakrishnan C., Ritola K., Hantman A., Deisseroth K., Osten P., Huang Z.J., Li B. A Genetically Defined Compartmentalized Striatal Direct Pathway for Negative Reinforcement. Cell. 2020. 183 (1): 211–227.e20. https://doi.org/10.1016/j.cell.2020.08.032

  153. Yagishita S., Hayashi-Takagi A., Ellis-Davies G.C.R., Urakubo H., Ishii S., Kasai H: A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 2014. 345: 1616–1620.

  154. Yapo C., Nair A.G., Clement L., Castro L.R., Hellgren Kotaleski J., Vincent P. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons. J Physiol. 2017. 595 (24): 7451–7475. https://doi.org/10.1113/JP274475

  155. Yasuda M., Hikosaka O. Functional territories in primate substantia nigra pars reticulata separately signaling stable and flexible values. J Neurophysiol. 2015. 113 (6): 1681–96. https://doi.org/10.1152/jn.00674.2014

  156. Yin H.H., Knowlton B.J. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006 7 (6): 464–76. https://doi.org/10.1038/nrn1919

  157. Yin H.H., Mulcare S.P., Hilário M.R., Clouse E., Holloway T., Davis M.I., Hansson A.C., Lovinger D.M., Costa R.M. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat Neurosci. 2009. 12 (3): 333–41. https://doi.org/10.1038/nn.2261

  158. Yttri E.A., Dudman J.T. Opponent and bidirectional control of movement velocity in the basal ganglia. Nature. 2016. 533 (7603): 402–6. https://doi.org/10.1038/nature17639

  159. Yu X., Chen S., Shan Q. Depression in the Direct Pathway of the Dorsomedial Striatum Permits the Formation of Habitual Action. Cereb Cortex. 2021. bhab031. https://doi.org/10.1093/cercor/bhab031

Дополнительные материалы отсутствуют.