Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 1, стр. 11-35

Мю-ритм в современных исследованиях: теоретические и методологические аспекты

Е. В. Ларионова 1*, Ж. В. Гарах 1, Ю. С. Зайцева 23

1 Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия

2 Национальный центр психического здоровья
Клецаны, Чехия

3 3-й лечебный факультет, Карлов Университет в Праге
Прага, Чехия

* E-mail: larionova.ekaterin@gmail.com

Поступила в редакцию 07.05.2021
После доработки 01.06.2021
Принята к публикации 05.10.2021

Аннотация

Мю-ритм представляет интерес для изучения широкого спектра процессов от моторных функций до языковых процессов и эмоций. Этот ритм включает как минимум два негармонических компонента в частотных диапазонах альфа- (8–13 Гц) и бета-ритмов (15–25 Гц), имеющих различную функциональную роль, что обусловливает необходимость их самостоятельного изучения. Перекрытие с альфа-активностью требует контроля эффектов изменения внимания, учета электрической активности не только центральных отведений, а также применения математических методов для разделения мю- и альфа-ритмов. Подавление мю-ритма было предложено как индекс активации системы зеркальных нейронов, что породило большое число споров и исследований, в том числе связанных с проблемой потенциального смешения ее активности и активности системы внимания. В данном обзоре рассматриваются современные исследования в контексте этих трех аспектов, в том числе результаты собственных исследований авторов.

Ключевые слова: мю-ритм, ЭЭГ, система зеркальных нейронов, подавление мю-ритма, сенсомоторная кора, моторные функции

Список литературы

  1. Александров А.А., Тугин С.М. Изменения мю-ритма при различных формах двигательной активности и наблюдении движений. Российский физиологический журнал им. И.М. Сеченова. 2010. 96 (11): 46–54.

  2. Аликина М.А., Махин С.А., Павленко В.Б. Амплитудно-частотные, топографические, возрастные особенности и функциональное значение сенсомоторного ритма ЭЭГ. Ученые записки Крымского федерального университета им. В.И. Вернадского. Биология. Химия. 2016. 2 (2): 3–24.

  3. Гарах Ж.В., Зайцева Ю.С., Новотоцкий-Власов В.Ю., Хаердинова О.Ю., Гурович И.Я., Шмуклер А.Б., Стрелец В.Б. Подавление мю-ритма ЭЭГ при представлении движения у больных шизофренией. Социальная и клиническая психиатрия. 2014. 24 (3): 5–11.

  4. Керечанин Я.В., Гусек Д., Бобров П.Д., Федотова И.Р., Фролов А.А. Источники электрической активности областей мозга, вовлеченных в воображение движений. Журн. высш. нерв. деят. им. И.П. Павлова. 2019. 69 (6): 711–725.

  5. Лебедева Н.Н., Буркитбаев С.Е., Каримова Е.Д. Активация зеркальной системы мозга зависит от способа предъявления стимулов: непосредственно экспериментатором или как видеоролик. Журн. высш. нерв. деят. им. И.П. Пав-лова. 2020. 70 (4): 460–472.

  6. Лебедева Н.Н., Каримова Е.Д., Карпычев В.В., Мальцев В.Ю. Зеркальная система мозга при наблюдении, выполнении и представлении моторных задач – нейрофизиологическое отражение восприятия чужого сознания. Журн. высш. нерв. деят. им. И.П. Павлова. 2018. 68 (2): 204–215.

  7. Либуркина С.П., Васильев А.Н., Каплан А.Я., Иванова Г.Е., Чуканова А.С. Пилотное исследование идеомоторного тренинга в контуре интерфейса мозг–компьютер у пациентов с двигательными нарушениями. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2018. 118 (9): 63–68.

  8. Мокиенко О.А., Черникова Л.А., Фролов А.А., Бобров П.Д. Воображение движения и его практическое применение. Журн. высш. нервн. деят. им. И.П. Павлова. 2013. 63 (2): 195–204.

  9. Фролов А.А., Азиатская Г.А., Бобров П.Д., Люкманов Р.Х., Федотова И.Р., Гусек Д., Снашел В. Электрофизиологическая активность мозга при управлении интерфейсом мозг-компьютер, основанным на воображении движений. Физиология человека. 2017a. 43 (5): 17–28.

  10. Фролов А.А., Федотова И.Р., Гусек Д., Бобров П.Д. Ритмическая активность мозга и интерфейс мозг-компьютер, основанный на воображении движений. Успехи физиол. наук. 2017b. 48 (3): 72–91.

  11. Aflalo T., Zhang C.Y., Rosario E.R., Pouratian N., Orban G.A., Andersen R.A. A shared neural substrate for action verbs and observed actions in human posterior parietal cortex. Sci Adv. 2020. 6 (43): eabb3984.

  12. Alhajri N., Hodges N.J., Zwicker J.G., Virji-Babul N. Mu Suppression Is Sensitive to Observational Practice but Results in Different Patterns of Activation in Comparison with Physical Practice. Neural plasticity. 2018. 2018: 8309483.

  13. Angelini M., Fabbri-Destro M., Lopomo N.F., Gobbo M., Rizzolatti G., Avanzini P. Perspective-dependent reactivity of sensorimotor mu rhythm in alpha and beta ranges during action observation: an EEG study. Scientific reports. 2018. 8 (1): 1–11.

  14. Aridan N., Ossmy O., Buaron B., Reznik D., Mukamel R. Suppression of EEG mu rhythm during action observation corresponds with subsequent changes in behavior. Brain research. 2018. 1691: 55–63.

  15. Arnstein D., Cui F., Keysers C., Maurits N.M., Gazzola V. μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices. J Neurosci. 2011. 31 (40): 14243–14249.

  16. Avanzini P., Fabbri-Destro M., Dalla Volta R., Daprati E., Rizzolatti G., Cantalupo G. The dynamics of sensorimotor cortical oscillations during the observation of hand movements: an EEG study. 2012. PLoS One. 7 (5): e37534.

  17. Bartur G., Pratt H., Soroker N. Changes in mu and beta amplitude of the EEG during upper limb movement correlate with motor impairment and structural damage in subacute stroke. Clinical neurophysiology. 2019. 130 (9): 1644–1651.

  18. Bechtold L., Ghio M., Lange J., Bellebaum C. Event-related desynchronization of mu and beta oscillations during the processing of novel tool names. Brain and language. 2018. 177: 44–55.

  19. Behmer Jr.L.P., Fournier L.R. Mirror neuron activation as a function of explicit learning: changes in mu-event-related power after learning novel responses to ideomotor compatible, partially compatible, and non-compatible stimuli. European Journal of Neuroscience. 2016. 44 (10): 2774–2785.

  20. Bernier R., Dawson G., Webb S., Murias M. EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain and cognition. 2007. 64 (3): 228–237.

  21. Bimbi M., Festante F., Coudé G., Vanderwert R.E., Fox N.A., Ferrari P.F. Simultaneous scalp recorded EEG and local field potentials from monkey ventral premotor cortex during action observation and execution reveals the contribution of mirror and motor neurons to the mu-rhythm. NeuroImage. 2018. 175: 22–31.

  22. Boonstra T.W., Daffertshofer A., Breakspear M., Beek P.J. Multivariate time-frequency analysis of electromagnetic brain activity during bimanual motor learning. Neuroimage. 2007. 36 (2): 370–377.

  23. Bowers A., Saltuklaroglu T., Jenson D., Harkrider A., Thornton D. Power and phase coherence in sensorimotor mu and temporal lobe alpha components during covert and overt syllable production. Experimental brain research. 2019. 237 (3): 705–721.

  24. Bowman L.C., Bakermans-Kranenburg M.J., Yoo K.H., Cannon E.N., Vanderwert R.E., Ferrari P.F., van IJzendoorn M.H., Fox N.A. The mu-rhythm can mirror: Insights from experimental design, and looking past the controversy. Cortex. 2017. 96: 121–125.

  25. Braadbaart L., Williams J.H., Waiter G.D. Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? International Journal of Psychophysiology. 2013. 89 (1): 99–105.

  26. Brinkman L., Stolk A., Dijkerman H.C., de Lange F.P., Toni I. Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. J. Neurosci. 2014. 34 (44): 14783–14792.

  27. Brismar T. Review The human EEG–physiological and clinical studies. Physiol Behav. 2007. 92 (1–2): 141–147.

  28. Brown E.C., Gonzalez-Liencres C., Tas C. Reward modulates the mirror neuron system in schizophrenia: A study into the mu rhythm suppression, empathy, and mental state attribution. Soc. Neurosci. 2016. 11 (2): 175–186.

  29. Bruni S., Gerbella M., Bonini L., Borra E., Coudé G., Ferrari P.F., Rozzi S. Cortical and subcortical connections of parietal and premotor nodes of the monkey hand mirror neuron network. Brain Structure and Function. 2018. 223 (4): 1713–1729.

  30. Brunsdon V.E.A., Bradford E.E.F., Smith L., Ferguson H.J. Short-term physical training enhances mirror system activation to action observation. Soc Neurosci. 2020. 15 (1): 98–107.

  31. Buneo C.A., Jarvis M.R., Batista A.P., Andersen R.A. Direct visuomotor transformations for reaching. Nature. 2002. 416: 632–636.

  32. Capotosto P., Babiloni C., Romani G.L., Corbetta M. Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J. Neurosci. 2009. 29: 5863–5872.

  33. Carlqvist H., Nikulin V.V., Strömberg J.O., Brismar T. Amplitude and phase relationship between alpha and beta oscillations in the human electroencephalogram. Med Biol Eng Comput. 2005. 43 (5): 599–607.

  34. Caspers S., Zilles K., Laird A.R., Eickhoff S.B. ALE meta-analysis of action observation and imitation in the human brain. NeuroImage. 2010. 50: 1148–1167.

  35. Cebolla A.M., Petieau M., Dan B., Balazs L., McIntyre J., Chéron G. Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness. Scientific reports. 2016. 6 (1): 1–10.

  36. Chatrian G.E., Petersen M.C., Lazarte J.A. The blocking of the rolandic wicket rhythm and some central changes related to movement. Electroencephal. Clin. Neurophysiol. 1959. 11: 497–510.

  37. Cochin S., Barthelemy C., Roux S., Martineau J. Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur J Neurosci. 1999. 11: 1839–1842.

  38. Cole E.J., Barraclough N.E., Enticott P.G. Investigating Mirror System (MS) Activity in Adults with ASD When Inferring Others’ Intentions Using Both TMS and EEG. Journal of autism and developmental disorders. 2018. 48 (7): 2350–2367.

  39. Coll M.P., Press C., Hobson H., Catmur C., Bird G. Crossmodal classification of mu rhythm activity during action observation and execution suggests specificity to somatosensory features of actions. Journal of Neuroscience. 2017. 37 (24): 5936–5947.

  40. Cook R., Bird G., Catmur C., Press C., Heyes C. Mirror neurons: from origin to function. Behav Brain Sci. 2014. 37: 177–192.

  41. Cuellar M.E., Del Toro C.M. Time-Frequency Analysis of Mu Rhythm Activity during Picture and Video Action Naming Tasks. Brain Sci. 2017. 7 (9): 114.

  42. Cuellar M., Harkrider A.W., Jenson D., Thornton D., Bowers A., Saltuklaroglu T. Time–frequency analysis of the EEG mu rhythm as a measure of sensorimotor integration in the later stages of swallowing. Clinical Neurophysiology. 2016. 127 (7): 2625–2635.

  43. Cuevas K., Cannon E.N., Yoo K., Fox N.A. The infant EEG mu rhythm: methodological considerations and best practices. Dev. Rev. 2014. 34 (1): 26–43.

  44. Debnath R., Salo V.C., Buzzell G.A., Yoo K.H., Fox N.A. Mu rhythm desynchronization is specific to action execution and observation: Evidence from time-frequency and connectivity analysis. Neuroimage. 2019. 184: 496–507.

  45. Démas J., Bourguignon M., Périvier M., De Tiège X., Dinomais M., Van Bogaert P. Mu rhythm: State of the art with special focus on cerebral palsy. Annals of physical and rehabilitation medicine. 2019. 63 (5): 439–446.

  46. Denis D., Rowe R., Williams A.M., Milne E. The role of cortical sensorimotor oscillations in action anticipation. Neuroimage. 2017. 146: 1102–1114.

  47. De Vega M., Padrón I., Moreno I.Z., García-Marco E., Domínguez A., Marrero H., Hernández S. Both the mirror and the affordance systems might be impaired in adults with high autistic traits. Evidence from EEG mu and beta rhythms. Autism research. 2019. 12 (7): 1032–1042.

  48. Dillon D.G., Pizzagalli D.A. Inhibition of action, thought, and emotion: a selective neurobiological review. Applied and Preventive Psychology. 2007. 12 (3): 99–114.

  49. Dinstein I., Thomas C., Behrmann M., Heeger D.J. A mirror up to nature. Current Biology. 2008. 18 (1): R13–R18.

  50. Di Pellegrino G., Fadiga L., Fogassi L., Gallese V., Rizzolatti G. Understanding motor events: a neurophysiological study. Experimental brain research. 1992. 91 (1): 176–180.

  51. Dumas G., Soussignan R., Hugueville L., Martinerie J., Nadel J. Revisiting mu suppression in autism spectrum disorder. Brain research. 2014. 1585: 108–119.

  52. Engel A.K., Fries P. Beta-band oscillations–signalling the status quo? Current opinion in neurobiology. 2010. 20: 156–165.

  53. Ensenberg N.S., Perry A., Aviezer H. Are you looking at me? Mu suppression modulation by facial expression direction. Cognitive, Affective, & Behavioral Neuroscience. 2017. 17 (1): 174–184.

  54. Fitzpatrick P., Mitchell T., Schmidt R.C., Kennedy D., Frazier J.A. Alpha band signatures of social synchrony. Neuroscience letters. 2019. 699: 24–30.

  55. Forschack N., Nierhaus T., Müller M.M., Villringer A. Alpha-Band Brain Oscillations Shape the Processing of Perceptible as well as Imperceptible Somatosensory Stimuli during Selective Attention. J Neurosci. 2017. 37 (29): 6983–6994.

  56. Fox N.A., Bakermans-Kranenburg M.J., Yoo K.H., Bowman L.C., Cannon E.N., Vanderwert R.E., Ferrari P.F., van IJzendoorn M.H. Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychol Bull. 2016. 142 (3): 291–313.

  57. Frenkel-Toledo S., Bentin S., Perry A., Liebermann D.G., Soroker N. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements. Brain Res. 2013. 1509: 43–57.

  58. Frenkel-Toledo S., Liebermann D.G., Bentin S., Soroker N. Dysfunction of the Human Mirror Neuron System in Ideomotor Apraxia: Evidence from Mu Suppression. Journal of cognitive neuroscience. 2016. 28 (6): 775–791.

  59. Garakh Z., Novototsky-Vlasov V., Larionova E., Zaytseva Y. Mu rhythm separation from the mix with alpha rhythm: Principal component analyses and factor topography. Journal of Neuroscience Methods. 2020. 346: 108892.

  60. Gastaut H. Étude électrocorticographique de la réativité des rhythmes rolandiques. Rev. Neurologique. 1952. 87: 176–182.

  61. Gehringer J.E., Arpin D.J., Heinrichs-Graham E., Wilson T.W., Kurz M.J. Practice modulates motor-related beta oscillations differently in adolescents and adults. J Physiol. 2019. 597 (12): 3203–3216.

  62. Gutsell J.N., Simon J.C., Jiang Y. Perspective taking reduces group biases in sensorimotor resonance. Cortex. 2020. 131: 42–53.

  63. Hanakawa T. Organizing motor imageries. Neuroscience research. 2016. 104: 56–63.

  64. Hari R., Salmelin R. Human cortical oscillations: a neuromagnetic view through the skull. Trends in neurosciences. 1997. 20 (1): 44–49.

  65. Heimann K.S., Uithol S., Calbi M., Umiltà M.A., Guerra M., Gallese V. “Cuts in Action”: A High-Density EEG Study Investigating the Neural Correlates of Different Editing Techniques in Film. Cogn Sci. 2017. 41 (6): 1555–1588.

  66. Heimann K., Uithol S., Calbi M., Umiltà M.A., Guerra M., Fingerhut J., Gallese V. Embodying the camera: An EEG study on the effect of camera movements on film spectators sensorimotor cortex activation. PloS one. 2019. 14 (3): e0211026.

  67. Heinrichs-Graham E., Wilson T.W. Coding complexity in the human motor circuit. Hum Brain Mapp. 2015. 36 (12): 5155–5167.

  68. Hobson H.M., Bishop D.V.M. Mu suppression – A good measure of the human mirror neuron system? Cortex. 2016. 82: 290–310.

  69. Hobson H.M., Bishop D.V. The interpretation of mu suppression as an index of mirror neuron activity: past, present and future. R Soc Open Sci. 2017. 4 (3): 160662.

  70. Horan W.P., Pineda J.A., Wynn J.K., Iacoboni M., Green M.F. Some markers of mirroring appear intact in schizophrenia: evidence from mu suppression. Cognitive, affective & behavioral neuroscience. 2014. 14 (3): 1049–1060.

  71. Hudac C.M., Stessman H.A.F., DesChamps T.D., Kresse A., Faja S., Neuhaus E., Webb S.J., Eichler E.E., Bernier R.A. Exploring the heterogeneity of neural social indices for genetically distinct etiologies of autism. J Neurodev Disord. 2017. 9: 24.

  72. Isoda K., Sueyoshi K., Ikeda Y., Nishimura Y., Hisanaga I., Orlic S., Higuchi S. Effect of the hand-omitted tool motion on mu rhythm suppression. Frontiers in human neuroscience. 2016. 10: 266.

  73. Iwane F., Lisi G., Morimoto J. EEG sensorimotor correlates of speed during forearm passive movements. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2019. 27 (9): 1667–1675.

  74. Jensen O., Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. 2010. 4: 186.

  75. Jenson D., Bowers A.L., Harkrider A.W., Thornton D., Cuellar M., Saltuklaroglu T. Temporal dynamics of sensorimotor integration in speech perception and production: independent component analysis of EEG data. Front Psychol. 2014. 5: 656.

  76. Jenson D., Bowers A.L., Hudock D., Saltuklaroglu T. The Application of EEG Mu Rhythm Measures to Neurophysiological Research in Stuttering. Frontiers in human neuroscience. 2020. 13: 458.

  77. Jenson D., Thornton D., Harkrider A.W., Saltuklaroglu T. Influences of cognitive load on sensorimotor contributions to working memory: an EEG investigation of mu rhythm activity during speech discrimination. Neurobiology of learning and memory. 2019. 166: 107098.

  78. Jochumsen M., Rovsing C., Rovsing H., Cremoux S., Signal N., Allen K., Taylor D., Niazi I.K. Quantification of Movement-Related EEG Correlates Associated with Motor Training: A Study on Movement-Related Cortical Potentials and Sensorimotor Rhythms. Front Hum Neurosci. 2017. 11: 604.

  79. John A.M.S., Kao K., Choksi M., Liederman J., Grieve P.G., Tarullo A.R. Variation in infant EEG power across social and nonsocial contexts. J Exp Child Psychol. 2016. 152: 106–122.

  80. Jongsma M., Steenbergen B., Baas C.M., Aarts P.B., van Rijn C.M. Lateralized EEG mu power during action observation and motor imagery in typically developing children and children with unilateral Cerebral Palsy. Clinical neurophysiology. 2020. 131 (12): 2829–2840.

  81. Karakale O., Moore M.R., Kirk I.J. Mental simulation of facial expressions: Mu suppression to the viewing of dynamic neutral face videos. Frontiers in human neuroscience. 2019. 13: 34.

  82. Kessler K., Biermann-Ruben K., Jonas M., Siebner H.R., Baumer T., Munchau A., Schnitzler A. Investigating the human mirror neuron system by means of cortical synchronization during the imitation of biological movements, Neuroimage. 2006. 33 (1): 227–238.

  83. Kilavik B.E., Zaepffel M., Brovelli A., MacKay W.A., Riehle A. The ups and downs of beta oscillations in sensorimotor cortex. Experimental neurology. 2013. 245: 15–26.

  84. Kim J., Kim S. The effects of visual stimuli on EEG mu rhythms in healthy adults. Journal of physical therapy science. 2016. 28 (6): 1748–1752.

  85. Kittilstved T., Reilly K.J., Harkrider A.W., Casenhiser D., Thornton D., Jenson D.E., Saltuklaroglu T. The effects of fluency enhancing conditions on sensorimotor control of speech in typically fluent speakers: an EEG mu rhythm study. Frontiers in human neuroscience. 2018. 12: 126.

  86. Klass D.W., Bickford R.G. Observations on the rolandic arceau rhythm. Electroencephalography and Clinical Neurophysiology. 1957. 9 (3): 570.

  87. Klimesch W., Sauseng P., Hanslmayr S. EEG alpha oscillations: the inhibitiontiming hypothesis. Brain research reviews. 2007. 53: 63–88.

  88. Kompatsiari K., Bossi F., Wykowska A. Eye contact during joint attention with a humanoid robot modulates oscillatory brain activity. Soc Cogn Affect Neurosci. 2021. 16 (4): 383–392.

  89. Kooiman V.G.M., van Keeken H.G., Maurits N.M., Weerdesteyn V., Solis-Escalante T. Rhythmic neural activity is comodulated with short-term gait modifications during first-time use of a dummy prosthesis: a pilot study. J Neuroeng Rehabil. 2020. 17 (1): 134.

  90. Krol M.A., Schutter D.J.L.G., Jellema T. Sensorimotor cortex activation during anticipation of upcoming predictable but not unpredictable actions. Social neuroscience. 2020. 15 (2): 214–226.

  91. Kuhlman W.N. Functional topography of the human mu rhythm. Electroencephalogr Clin Neurophysiol. 1978. 44: 83–93.

  92. Lin N.H., Liu C.H., Lee P., Guo L.Y., Sung J.L., Yen C.W., Liaw L.J. Backward Walking Induces Significantly Larger Upper-Mu-Rhythm Suppression Effects Than Forward Walking Does. Sensors. 2020. 20 (24): 7250.

  93. Livi A., Lanzilotto M., Maranesi M., Fogassi L., Rizzolatti G., Bonini L. Agent-based representations of objects and actions in the monkey pre-supplementary motor area. Proceedings of the National Academy of Sciences. 2019. 116 (7): 2691–2700.

  94. Lust J.M., van Schie H.T., Wilson P.H., van der Helden J., Pelzer B., Steenbergen B. Activation of Mirror Neuron Regions Is Altered in Developmental Coordination Disorder (DCD)-Neurophysiological Evidence Using an Action Observation Paradigm. Frontiers in human neuroscience. 2019. 13: 232.

  95. Makeig S., Delorme A., Westerfield M., Jung T.P., Townsend J., Courchesne E., Sejnowski T.J. Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biol. 2004. 2: 747–762.

  96. Malcolm B.R., Foxe J.J., Butler J.S., Molholm S., De Sanctis P. Cognitive load reduces the effects of optic flow on gait and electrocortical dynamics during treadmill walking. J Neurophysiol. 2018. 120 (5): 2246–2259.

  97. Marini F., Breeding K.A., Snow J.C. Distinct visuo-motor brain dynamics for real-world objects versus planar images. Neuroimage. 2019. 195: 232–242.

  98. Marshall P.J., Meltzoff A.N. Neural mirroring mechanisms and imitation in human infants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014. 369 (1644): 20130620.

  99. Martin F., Flasbeck V., Brown E.C., Brüne M. Altered mu-rhythm suppression in Borderline Personality Disorder. Brain research. 2017. 1659: 64–70.

  100. Mazaheri A., Nieuwenhuis I.L.C., van Dijk H., Jensen O. Prestimulus alpha and mu activity predicts failure to inhibit motor responses. Human brain mapping. 2009. 30 (6): 1791–1800.

  101. McCormick L.M., Brumm M.C., Beadle J.N., Para-diso S., Yamada T., Andreasen N. Mirror neuron function, psychosis, and empathy in schizophrenia. Psychiatry research. 2012. 201 (3): 233–239.

  102. McFarland D.J., Miner L.A., Vaughan T.M., Wolpaw J.R. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 2000. 12 (3): 177–186.

  103. Mitra S., Haque Nizamie S., Goyal N., Tikka S.K. Event related desynchronisation of mu-wave over right sensorimotor cortex at baseline may predict subsequent response to antipsychotics in Schizophrenia. Asian journal of psychiatry. 2015. 14: 19–21.

  104. Mizuhara H. Cortical dynamics of human scalp EEG origins in a visually guided motor execution. Neuroimage. 2012. 62 (3): 1884–1895.

  105. Moisello C., Blanco D., Lin J., Panday P., Kelly S.P., Quartarone A., Di Rocco A., Cirelli C., Tononi G., Ghilardi M.F. Practice changes beta power at rest and its modulation during movement in healthy subjects but not in patients with Parkinson’s disease. Brain Behav. 2015. 5 (10): e00374.

  106. Molenberghs P., Cunnington R., Mattingley J.B. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neurosci Biobehav Rev. 2012. 36 (1): 341–349.

  107. Moore M.R., Franz E.A. Mu rhythm suppression is associated with the classification of emotion in faces. Cognitive, Affective, & Behavioral Neuroscience. 2016. 17 (1): 224–234.

  108. Moreno I., de Vega M., León I. Understanding action language modulates oscillatory mu and beta rhythms in the same way as observing actions. Brain Cogn. 2013. 82 (3): 236–242.

  109. Mukamel R., Ekstrom A.D., Kaplan J., Iacoboni M., Fried I. Single-Neuron Responses in Humans during Execution and Observation of Actions. Current Biology. 2010. 20 (8): 750–756.

  110. Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm (Vienna). 2007. 114 (10): 1265–1278.

  111. Muthukumaraswamy S.D., Johnson B.W. Changes in rolandic mu rhythm during observation of a precision grip, Psychophysiology. 2004. 41 (1): 152–156.

  112. Muthukumaraswamy S.D., Johnson B.W., McNair N.A. Mu rhythm modulation during observation of an object-directed grasp. Cognitive brain research. 2004. 19 (2): 195–201.

  113. Muthukumaraswamy S.D., Singh K.D. Modulation of the human mirror neuron system during cognitive activity. Psychophysiology. 2008. 45 (6): 896–905.

  114. Nishimura Y., Ikeda Y., Higuchi S. The relationship between inhibition of automatic imitation and personal cognitive styles. J Physiol Anthropol. 2018. 37 (1): 1–10.

  115. Oberman L.M., Hubbard E.M., McCleery J.P., Altschuler E.L., Ramachandran V.S., Pineda J.A. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Research. Cognitive Brain Research. 2005. 24 (2): 190–198.

  116. Oberman L.M., McCleery J.P., Hubbard E.M., Bernier R., Wiersema J.R., Raymaekers R., Pineda J.A. Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders. Social cognitive and affective neuroscience. 2013. 8 (3): 300–304.

  117. Oberman L.M., Pineda J.A., Ramachandran V.S. The human mirror neuron system: A link between action observation and social skills. Social Cognitive and Affective Neuroscience. 2007. 2 (1): 62–66.

  118. Oosterhof N.N., Tipper S.P., Downing P.E. Crossmodal and action-specific: neuroimaging the human mirror neuron system. Trends Cogn Sci. 2013. 17(7): 311–318.

  119. Park J.H., Cynn H.S., Cha K.S., Kim K.H., Jeon H.S. Event-related desynchronization of mu rhythms during concentric and eccentric contractions. Journal of motor behavior. 2018. 50 (4): 457–466.

  120. Park W., Kwon G.H., Kim D.H., Kim Y.H., Kim S.P., Kim L. Assessment of cognitive engagement in stroke patients from single-trial EEG during motor rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2015. 23 (3): 351–362.

  121. Peled-Avron L., Goldstein P., Yellinek S., Weissman-Fogel I., Shamay-Tsoory S.G. Empathy during consoling touch is modulated by mu-rhythm: An EEG study. Neuropsychologia. 2018. 116: 68–74.

  122. Pereira M., Argelaguet F., Millán J.D.R., Lécuyer A. Novice shooters with lower pre-shooting alpha power have better performance during competition in a virtual reality scenario. 2018. Frontiers in psychology. 9: 527.

  123. Perry A., Bentin S. Does focusing on hand-grasping intentions modulate electroencephalogram mu and alpha suppressions? Neuroreport. 2010. 21 (16): 1050–1054.

  124. Pfurtscheller G., Lopes da Silva F.H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999. 110 (11): 1842–1857.

  125. Pfurtscheller G., Neuper C., Krausz G. Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement. Clin Neurophysiol. 2000. 111 (10): 1873–1879.

  126. Pilacinski A., Lindner A. Distinct contributions of human posterior parietal and dorsal premotor cortex to reach trajectory planning. Sci Rep. 2019. 9: 1962.

  127. Pineda J.A. The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res Brain Res Rev. 2005. 50 (1): 57–68.

  128. Pollok B., Latz D., Krause V., Butz M., Schnitzler A. Changes of motor-cortical oscillations associated with motor learning. Neuroscience. 2014. 275: 47–53.

  129. Pomiechowska B., Csibra G. Motor activation during action perception depends on action interpretation. Neuropsychologia. 2017. 105: 84–91.

  130. Proverbio A.M. Tool perception suppresses 10–12 Hz mu rhythm of EEG over the somatosensory area. Biol Psychol. 2012. 91 (1): 1–7.

  131. Rashid M., Sulaiman N., Majeed A.P.A., Musa R.M., Nasir A.F.A., Bari B.S., Khatun S. Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review. Front Neurorobot. 2020. 14.

  132. Rayson H., Bonaiuto J.J., Ferrari P.F., Murray L. Early maternal mirroring predicts infant motor system activation during facial expression observation. Sci Rep. 2017. 7 (1): 1–11.

  133. Reid V.M., Striano T., Iacoboni M. Neural correlates of dyadic interaction during infancy. Developmental Cognitive Neuroscience. 2011. 1 (2): 124–130.

  134. Remsik A.B., Williams Jr.L., Gjini K., Dodd K., Thoma J., Jacobson T., Prabhakaran V. Ipsilesional mu rhythm desynchronization and changes in motor behavior following post stroke bci intervention for motor rehabilitation. Frontiers in neuroscience. 2019. 13: 53.

  135. Ricci S., Mehraram R., Tatti E., Nelson A.B., Bossini-Baroggi M., Panday P., Lin N., Ghilardi M.F. Aging Does Not Affect Beta Modulation during Reaching Movements. Neural Plast. 2019. 2019: 1619290.

  136. Riečanský I., Lengersdorff L.L., Pfabigan D.M., Lamm C. Increasing self-other bodily overlap increases sensorimotor resonance to others' pain. Cogn Affect Behav Neurosci. 2020. 20 (1): 19–33.

  137. Rimbert S., Al-Chwa R., Zaepffel M., Bougrain L. Electroencephalographic modulations during an open-or closed-eyes motor task. PeerJ. 2018. 6: e4492.

  138. Ritter P., Moosmann M., Villringer A. Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Human brain mapping. 2009. 30 (4): 1168–1187.

  139. Rizzolatti G., Craighero L. The Mirror-neuron system. Annual Reviews of Neuroscience. 2004. 27: 169–192.

  140. Rizzolatti G., Sinigaglia C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci. 2010. 11 (4): 264–274.

  141. Rüther N.N., Brown E.C., Klepp A., Bellebaum C. Observed manipulation of novel tools leads to mu rhythm suppression over sensory-motor cortices. Behavioural brain research. 2014. 261: 328–335.

  142. Ruysschaert L., Warreyn P., Wiersema J.R., Oostra A., Roeyers H. Exploring the role of neural mirroring in children with autism spectrum disorder. Autism research. 2014. 7 (2): 197–206.

  143. Saltuklaroglu T., Harkrider A.W., Thornton D., Jenson D., Kittilstved T. EEG Mu (µ) rhythm spectra and oscillatory activity differentiate stuttering from non-stuttering adults. NeuroImage. 2017. 153: 232–245.

  144. Sauseng P., Klimesch W., Stadler W., Schabus M., Doppelmayr M., Hanslmayr S., Gruber W.R., Birbaumer N. A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci. 2005. 22: 2917–2926.

  145. Sestito M., Harel A., Nador J., Flach J. Investigating Neural Sensorimotor Mechanisms Underlying Flight Expertise in Pilots: Preliminary Data From an EEG Study. Front Hum Neurosci. 2018. 12: 489.

  146. Shen G., Saby J.N., Drew A.R., Marshall P.J. Exploring potential social influences on brain potentials during anticipation of tactile stimulation. Brain Res. 2017. 1659: 8–18.

  147. Shibuya S., Unenaka S., Zama T., Shimada S., Ohki Y. Sensorimotor and posterior brain activations during the observation of illusory embodied fake hand movement. Frontiers in human neuroscience. 2019. 13: 367.

  148. Simon S., Mukamel R. Power modulation of electroencephalogram mu and beta frequency depends on perceived level of observed actions. Brain Behav. 2016. 6 (8): e00494.

  149. Singh F., Pineda J., Cadenhead K.S. Association of impaired EEG mu wave suppression, negative symptoms and social functioning in biological motion processing in first episode of psychosis. Schizophrenia research. 2011. 130 (1–3): 182–186.

  150. Siqi-Liu A., Harris A.M., Atkinson A.P., Reed C.L. Dissociable processing of emotional and neutral body movements revealed by μ-alpha and beta rhythms. Social cognitive and affective neuroscience. 2018. 13 (12): 1269–1279.

  151. Smyk N.J., Weiss S.M., Marshall P.J. Sensorimotor oscillations during a reciprocal touch paradigm with a human or robot partner. Frontiers in psychology. 2018. 9: 2280.

  152. Sotoodeh M.S., Taheri-Torbati H., Hadjikhani N., Lassalle A. Preserved action recognition in children with autism spectrum disorders: Evidence from an EEG and eye-tracking study. Psychophysiology. 2020. 58 (3): e13740.

  153. Tangwiriyasakul C., Verhagen R., van Putten M.J.A.M., Rutten W.L.C. Importance of baseline in eventrelated desynchronization during a combination task of motor imagery and motor observation. Journal of Neural Engineering. 2013. 10 (2): 026009.

  154. Tan H., Wade C., Brown P. Post-movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models. J Neurosci. 2016. 36 (5): 1516–1528.

  155. Tatti E., Ricci S., Nelson A.B., Mathew D., Chen H., Quartarone A., Ghilardi M.F. Prior practice affects movement-related beta modulation and quiet wake restores it to baseline. Front Syst Neurosci. 2020. 14: 61.

  156. Thornton D., Harkrider A.W., Jenson D., Saltuklaroglu T. Sensorimotor activity measured via oscillations of EEG mu rhythms in speech and non-speech discrimination tasks with and without segmentation demands. Brain and language. 2018. 187: 62–73.

  157. Tiihonen J., Kajola M., Hari R. Magnetic mu rhythm in man. Neuroscience. 1989. 32 (3): 793–800.

  158. Turella L., Pierno A.C., Tubaldi F., Castiello U. Mirror neurons in humans: consisting or confounding evidence? Brain Lang. 2009. 108: 10–21.

  159. Tzagarakis C., West S., Pellizzer G. Brain oscillatory activity during motor preparation: effect of directional uncertainty on beta, but not alpha, frequency band. Front Neurosci. 2015. 9: 246.

  160. Ulloa E.R., Pineda J.A. Recognition of point-light biological motion: mu rhythms and mirror neuron activity. Behavioural brain research. 2007. 183 (2): 188–194.

  161. Van de Vijver I., Van Schie H.T., Veling H., Van Dooren R., Holland R.W. Go/no-go training affects frontal midline theta and mu oscillations to passively observed food stimuli. Neuropsychologia. 2018. 119: 280–291.

  162. Van Overwalle F., Baetens K. Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage. 2009. 48: 564–584.

  163. Wamain Y., Sahaï A., Decroix J., Coello Y., Kalénine S. Conflict between gesture representations extinguishes μ rhythm desynchronization during manipulable object perception: an EEG study. Biological psychology. 2018. 132: 202–211.

  164. Weiss S.M., Laconi R.N., Marshall P.J. Individual differences in anticipatory mu rhythm modulation are associated with executive function and processing speed. Cognitive, Affective, & Behavioral Neuroscience. 2020. 20 (5): 901–916.

  165. Wen W., Yamashita A., Asama H. Measurement of the Perception of Control during Continuous Movement using Electroencephalography. Front Hum Neurosci. 2017. 11: 392.

  166. Williams J.H., Whiten A., Suddendorf T., Perrett D.I. Imitation, mirror neurons and autism. Neuroscience & Biobehavioral Reviews. 2001. 25 (4): 287–295.

  167. Wu C.C., Hamm J.P., Lim V.K., Kirk I.J. Mu rhythm suppression demonstrates action representation in pianists during passive listening of piano melodies. Experimental brain research. 2016. 234 (8): 2133–2139.

  168. Wu C.C., Hamm J.P., Lim V.K., Kirk I.J. Musical training increases functional connectivity, but does not enhance mu suppression. Neuropsychologia. 2017. 104: 223–233.

  169. Yang C.Y., Decety J., Lee S., Chen C., Cheng Y. Gender differences in the mu rhythm during empathy for pain: an electroencephalographic study. Brain research. 2009. 1251: 176–184.

  170. Yin J., Ding X., Xu H., Zhang F., Shen M. Social coordination information in dynamic chase modulates EEG mu rhythm. Scientific reports. 2017. 7 (1): 1–9.

  171. Yin S., Liu Y., Ding M. Amplitude of sensorimotor mu rhythm is correlated with BOLD from multiple brain regions: a simultaneous EEG-fMRI study. Frontiers in Human Neuroscience. 2016. 10: 364.

  172. Yordanova J., Kolev V., Rothenberger A. Event-related oscillations reflect functional asymmetry in children with attention deficit/hyperactivity disorder. Supplements to Clinical neurophysiology. 2013. 62: 289–301.

  173. Zaytseva Y., Morozova A., Bendova M., Garakh Z. Is motor imagery different in catatonic schizophrenia? PsyCh journal. 2017. 6 (2): 137–138.

  174. Zhang D., Gu R. Behavioral preference in sequential decision-making and its association with anxiety. Human brain mapping. 2018. 39 (6): 2482–2499.

  175. Zhang K., Xu G., Zheng X., Li H., Zhang S., Yu Y., Liang R. Application of Transfer Learning in EEG Decoding Based on Brain-Computer Interfaces: A Review. Sensors (Basel). 2020. 20 (21): 6321.

Дополнительные материалы отсутствуют.