Журнал высшей нервной деятельности им. И.П. Павлова, 2021, T. 71, № 6, стр. 735-759

Посттравматическое стрессовое расстройство: теоретические подходы и пути моделирования на животных

К. А. Торопова 1234*, О. И. Ивашкина 124, К. В. Анохин 234

1 Национальный исследовательский центр “Курчатовский институт”
Москва, Россия

2 Институт перспективных исследований мозга, Московский государственный университет имени М.В. Ломоносова
Москва, Россия

3 Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия

4 Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт нормальной физиологии имени П.К. Анохина
Москва, Россия

* E-mail: xen.alexander@gmail.com

Поступила в редакцию 02.12.2020
После доработки 22.12.2020
Принята к публикации 22.12.2020

Аннотация

Посттравматическое стрессовое расстройство (ПТСР) согласно международной классификации является нарушением эмоционального статуса человека и реакций на стрессорные ситуации. Симптомы ПТСР включают тревожные и навязчивые воспоминания о травмирующем событии, ночные кошмары, раздражительность, повышенную настороженность к опасности или озабоченность потенциальной опасностью, нарушения внимания, эмоциональную тупость. Причиной развития ПТСР является острая психологическая травма, вызванная сильным стрессорным воздействием, таким как участие в военных действиях или пребывание на территории военных действий; террористические акты; природные или техногенные катастрофы; семейное или сексуальное насилие, а также внезапная смерть близкого человека или даже проблемы со здоровьем. Механизмы ПТСР в последние годы привлекают все большее внимание исследователей. При этом, несмотря на большие успехи в изучении ПТСР как на поведенческом и психологическом, так и на физиологическом уровне у людей, а также на большое количество моделей ПТСР на лабораторных животных, в теоретическом плане феномен посттравматического синдрома остается в большой степени непонятным. Данная статья посвящена обзору современных представлений о механизмах развития ПТСР, теоретических подходов к пониманию этого расстройства и полученных в их подтверждение экспериментальных данных.

Ключевые слова: посттравматическое стрессовое расстройство, травматический опыт, модели на животных, симптомы, теоретические подходы, нейрональные механизмы, тревожность, электрокожное раздражение, хищник, однократный продолжительный стресс

Список литературы

  1. Анохин К.В. Молекулярные сценарии консолидации долговременной памяти. Журн. высш. нервн. деят. им. И.П. Павлова. 1997. 47: 261–279.

  2. Вайдо A.И., Дюжикова Н.A., Ширяева Н.В., Соколова Н.Е., Вшивцева В.В., Савенко И.Н. Системный контроль молекулярно-клеточных и эпигенетических механизмов долгосрочных последствий стресса. Генетика. 2009. 45: 342–348.

  3. Дюжикова Н.A., Савенко И.Н., Миронов С.В., Дубкин К.Н., Вайдо A.И. Характеристики гетерохроматина в нейронах гиппокампа крыс с различной возбудимостью нервной системы в условиях моделирования посттравматического стрессового расстройства. Морфология. 2007. 131: 43–45.

  4. Кекелидзе Ж.И., Портнова A.A. Диагностические критерии посттравматического стрессового расстройства. Журн. неврол. психиатр. им. С.С. Корсакова. 109: 4–7.

  5. Кекелидзе Ж.И., Портнова A.A. Посттравматическое стрессовое расстройство у детей и подростков. Журн. неврол. психиатр. 2002. 102: 56–61.

  6. Колов С.A. Взаимосвязь клинических симптомов в структуре психической патологии у участников боевых действий. Журн. неврол. психиатр. 2010. 110: 20–23.

  7. Миронова В.И., Рыбникова E.A. Устойчивые модификации экспрессии нейрогормонов в гипоталамусе крыс в модели посттравматического стрессового расстройства. Росс. физиол. журн. 2008. 94: 1277–1284.

  8. Рыбникова E.A., Миронова В.И., Пивина С.Г. Методика оценки дисрегуляции гипоталамо-гипофизарно-надпочечниковой системы. Журн. высш. нерв. деят. им. И.П. Павлова. 2010. 60: 500–506.

  9. Рыбникова E.A., Миронова В.И., Тюлькова E.И., Самойлов M.O. Анксиолитический эффект легкой гипобарической гипоксии в модели посттравматического стрессового расстройства у крыс. Журн. высш. нерв. деят. им. И.П. Павлова. 2008. 58: 486–492.

  10. Шамрей В.K., Литкин В.M., Колов С.A., Дрыга Б.В. Клинико-диагностические аспекты боевых посттравматических стрессовых расстройств. Воен. мед. журн. 2011. 332: 28–35.

  11. Adamec R. Does long term potentiation in periacqueductal gray (PAG) mediate lasting changes in rodent anxiety-like behavior (ALB) produced by predator stress?–Effects of low frequency stimulation (LFS) of PAG on place preference and changes in ALB produced by predator stress. Behav. Brain Res. 2001. 120: 111–135.

  12. Adamec R.E., Blundell J., Burton P. Phosphorylated cyclic AMP response element binding protein expression induced in the periaqueductal gray by predator stress: its relationship to the stress experience, behavior and limbic neural plasticity. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2003. 27: 1243–1267.

  13. Adamec R.E., Blundell J., Collins A. Neural plasticity and stress induced changes in defense in the rat. Neurosci. Biobehav. Rev. 2001. 25: 721–744.

  14. Adamec R.E., Burton P., Shallow T., Budgell J. NMDA receptors mediate lasting increases in anxiety-like behavior produced by the stress of predator exposure–implications for anxiety associated with posttraumatic stress disorder. Physiol. Behav. 1999. 65: 723–737.

  15. Adamec R.E., Shallow T. Lasting effects on rodent anxiety of a single exposure to a cat. Physiol. Behav. 1993. 54: 101–109.

  16. Adamec R. Transmitter systems involved in neural plasticity underlying increased anxiety and defense–implications for understanding anxiety following traumatic stress. Neurosci. Biobehav. Rev. 1997. 21: 755–765.

  17. Adamec R., Kent P., Anisman H., Shallow T., Merali Z. Neural plasticity, neuropeptides and anxiety in animals – implications for understanding and treating affective disorder following traumatic stress in humans. Neurosci. Biobehav. Rev. 1998. 23: 301–318.

  18. Adamec R., Muir C., Grimes M., Pearcey K. Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress. Behav. Brain Res. 2007. 179: 192–207.

  19. Adamec R., Strasser K., Blundell J., Burton P., McKay D.W. Protein synthesis and the mechanisms of lasting change in anxiety induced by severe stress. Behav. Brain Res. 2006. 167: 270–286.

  20. Albucher R.C., Liberzon I. Psychopharmacological treatment in PTSD: a critical review. J. Psychiatr. Res. 2002. 36: 355–367.

  21. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Arlington: American Psychiatric Association Publishing, 2013. 992 p.

  22. Anisman H., Beauchamp C., Zacharko R.M. Effects of inescapable shock and norepinephrine depletion induced by DSP4 on escape performance. Psychopharmacology (Berl). 1984. 83: 56–61.

  23. Apfel B.A., Ross J., Hlavin J., Meyerhoff D.J., Metzler T.J., Marmar C.R., Weiner M.W., Schuff N., Neylan T. C. Hippocampal volume differences in Gulf War veterans with current versus lifetime posttraumatic stress disorder symptoms. Biol. Psychiatry. 2011. 69: 541–548.

  24. Balogh S.A., Radcliffe R.A., Logue S.F., Wehner J.M. Contextual and cued fear conditioning in C57BL/6J and DBA/2J mice: context discrimination and the effects of retention interval. Behav. Neurosci. 2002. 116: 947–957.

  25. Balogh S.A., Wehner J.M. Inbred mouse strain differences in the establishment of long-term fear memory. Behav. Brain Res. 2003. 140: 97–106.

  26. Belda X., Fuentes S., Nadal R., Armario A. A single exposure to immobilization causes long-lasting pituitary-adrenal and behavioral sensitization to mild stressors. Horm. Behav. 2008. 54: 654–661.

  27. Belzung C., Griebel G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 2001.125: 141–149.

  28. Blanchard R.J., Blanchard D.C. Antipredator defensive behaviors in a visible burrow system. J. Comp. Psychol. 1989. 103: 70–82.

  29. Blanchard R.J., Nikulina J.N., Sakai R.R., McKittrick C., McEwen B., Blanchard D.C. Behavioral and endocrine change following chronic predatory stress. Physiol. Behav. 1998. 63: 561–569.

  30. Blundell J., Adamec R. Elevated pCREB in the PAG after exposure to the elevated plus maze in rats previously exposed to a cat. Behav. Brain Res. 2006. 175: 285–295.

  31. Brandão M.L., Anseloni V.Z., Pandóssio J.E., Araújo J.E.D., Castilho V.M. Neurochemical mechanisms of the defensive behavior in the dorsal midbrain. Neurosci. Biobehav. Rev. 1999. 23: 863–875.

  32. Bremner J.D. Neuroimaging studies in post-traumatic stress disorder. Curr. Psychiatry Rep. 2002. 4: 254–263.

  33. Bremner J.D., Licinio J., Darnell A., Krystal J.H., Owens M.J., Southwick S.M., Nemeroff C.B., Charney D.S. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am. J. Psychiatry. 1997. 154: 624–629.

  34. Bremner J.D., Randall P., Scott T.M., Bronen R.A., Seibyl J.P., Southwick S.M., Delaney R.C., McCarthy G., Charney D.S., Innis R.B. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am. J. Psychiatry. 1995. 152: 973–981.

  35. Bremner J.D., Vermetten E., Schmahl C., Vaccarino V., Vythilingam M., Afzal N., Grillon C., Charney D.S. Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol. Med. 2005. 35: 791–806.

  36. Breslau N., Chilcoat H.D., Kessler R.C., Peterson E.L., Lucia V.C. Vulnerability to assaultive violence: further specification of the sex difference in post-traumatic stress disorder. Psychol. Med. 1999. 29: 813–821.

  37. Breslau N., Davis G.C., Andreski P., Peterson E. Traumatic events and posttraumatic stress disorder in an urban population of young adults. Arch. Gen. Psychiatry. 1991. 48: 216–222.

  38. Breslau N., Kessler R.C., Chilcoat H.D., Schultz L.R., Davis G.C., Andreski P. Trauma and posttraumatic stress disorder in the community: the 1996 Detroit Area Survey of Trauma. Arch. Gen. Psychiatry. 1998. 55: 626–632.

  39. Bruijnzeel A.W., Stam R., Wiegant V.M. Effect of a benzodiazepine receptor agonist and corticotropin-releasing hormone receptor antagonists on long-term foot-shock-induced increase in defensive withdrawal behavior. Psychopharmacology (Berl). 2001. 158: 132–139.

  40. Calvo-Torrent A., Brain P.F., Martinez M. Effect of predatory stress on sucrose intake and behavior on the plus-maze in male mice. Physiol. Behav. 1999. 67: 189–196.

  41. Canteras N.S., Goto M. Fos-like immunoreactivity in the periaqueductal gray of rats exposed to a natural predator. Neuroreport. 1999. 10: 413–418.

  42. Careaga M.B.L., Girardi C.E.N., Suchecki D. Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation. Neurosci. Biobehav. Rev. 2016. 71: 48–57.

  43. Chambers R.A., Bremner J.D., Moghaddam B., Southwick S.M., Charney D.S., Krystal J. H. Glutamate and post-traumatic stress disorder: toward a psychobiology of dissociation. Semin. Clin. Neuropsychiatry. 1999. 4: 274–281.

  44. Charney D.S. Neuroanatomical circuits modulating fear and anxiety behaviors. Acta Psychiatr. Scand. Suppl. 2003. 417: 38–50.

  45. Cirulli F., Santucci D., Laviola G., Alleva E., Levine S. Behavioral and hormonal responses to stress in the newborn mouse: effects of maternal deprivation and chlordiazepoxide. Dev. Psychobiol. 1994. 27: 301–316.

  46. Cohen D., Horiuchi K., Kemper M., Weissman C. Modulating effects of propofol on metabolic and cardiopulmonary responses to stressful intensive care unit procedures. Crit. Care Med. 1996. 24: 612–617.

  47. Cohen H., Benjamin J., Kaplan Z., Kotler M. Administration of high-dose ketoconazole, an inhibitor of steroid synthesis, prevents posttraumatic anxiety in an animal model. Eur. Neuropsychopharmacol. 2000. 10: 429–435.

  48. Cohen H., Kaplan Z., Kotler M. CCK-antagonists in a rat exposed to acute stress: implication for anxiety associated with post-traumatic stress disorder. Depress. Anxiety. 1999. 10: 8–17.

  49. Cohen H., Kaplan Z., Matar M.A., Loewenthal U., Kozlovsky N., Zohar J. Anisomycin, a protein synthesis inhibitor, disrupts traumatic memory consolidation and attenuates posttraumatic stress response in rats. Biol. Psychiatry. 2006. 60: 767–776.

  50. Cohen H., Kozlovsky N., Alona C., Matar M.A., Joseph Z. Animal model for PTSD: from clinical concept to translational research. Neuropharmacology. 2012. 62: 715–724.

  51. Cohen H., Kozlovsky N., Matar M.A., Kaplan Z., Zohar J. Mapping the brain pathways of traumatic memory: inactivation of protein kinase M zeta in different brain regions disrupts traumatic memory processes and attenuates traumatic stress responses in rats. Eur. Neuropsychopharmacol. 2010. 20: 253–271.

  52. Cohen H., Zohar J. An animal model of posttraumatic stress disorder: the use of cut-off behavioral criteria. Ann. N. Y. Acad. Sci. 2004. 1032: 167–178.

  53. Cohen H., Zohar J., Matar M. A., Zeev K., Loewenthal U., Richter-Levin G. Setting apart the affected: the use of behavioral criteria in animal models of post traumatic stress disorder. Neuropsychopharmacology. 2004. 29: 1962–1970.

  54. Cohen H., Zohar J., Matar M. The relevance of differential response to trauma in an animal model of posttraumatic stress disorder. Biol. Psychiatry. 2003. 53: 463–473.

  55. Cubelli R., Sala S.D. Flashbulb memories: special but not iconic. Cortex. 2008. 44: 908–909.

  56. Curtis A.L., Pavcovich L.A., Valentino R.J. Long-term regulation of locus ceruleus sensitivity to corticotropin-releasing factor by swim stress. J. Pharmacol. Exp. Ther. 1999. 289: 1211–1219.

  57. Dahlhoff M., Siegmund A., Golub Y., Wolf E., Holsboer F., Wotjak C.T. AKT/GSK-3beta/beta-catenin signalling within hippocampus and amygdala reflects genetically determined differences in posttraumatic stress disorder like symptoms. Neuroscience. 2010. 169: 1216–1226.

  58. Davidson J.R., Hughes D., Blazer D.G., George L.K. Post-traumatic stress disorder in the community: an epidemiological study. Psychol. Med. 1991. 21: 713–721.

  59. Deslauriers J., Toth M., Der-Avakian A., Risbrough V.B. Current Status of Animal Models of Posttraumatic Stress Disorder: Behavioral and Biological Phenotypes, and Future Challenges in Improving Translation. Biol Psychiatry. 2018. 83: 895–907.

  60. Edwards E., King J.A., Fray J. Hypertension and insulin resistant models have divergent propensities to learned helpless behavior in rodents. Am. J. Hypertens. 2000. 13: 659–665.

  61. Ehlers A., Hackmann A., Michael T. Intrusive re-experiencing in post-traumatic stress disorder: phenomenology, theory, and therapy. Memory. 2004. 12: 403–415.

  62. Elzinga B.M., Bremner J.D. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)? J. Affect. Disord. 2002. 70: 1–17.

  63. Flandreau E.I., Toth M. Animal Models of PTSD: A Critical Review. Curr. Top. Behav. Neurosci. 2018. 38: 47–68.

  64. Foa E.B., Zinbarg R., Rothbaum B.O. Uncontrollability and unpredictability in post-traumatic stress disorder: an animal model. Psychol. Bull. 1992. 112: 218–238.

  65. Germain A., Buysse D.J., Nofzinger E. Sleep-specific mechanisms underlying posttraumatic stress disorder: integrative review and neurobiological hypotheses. Sleep Med. Rev. 2008. 12: 185–195.

  66. Gesing A., Bilang-Bleuel A., Droste S.K., Linthorst A.C., Holsboer F., Reul J.M. Psychological stress increases hippocampal mineralocorticoid receptor levels: involvement of corticotropin-releasing hormone. J. Neurosci. 2001. 21: 4822–4829.

  67. Gilbertson M.W., Shenton M.E., Ciszewski A., Kasai K., Lasko N.B., Orr S.P., Pitman R.K. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci. 2002. 5: 1242–1247.

  68. Goenjian A.K., Yehuda R., Pynoos R.S., Steinberg A.M., Tashjian M., Yang R.K., Najarian L.M., Fairbanks L.A. Basal cortisol, dexamethasone suppression of cortisol, and MHPG in adolescents after the 1988 earthquake in Armenia. Am. J. Psychiatry. 1996. 153: 929–934.

  69. Gold P.E. Protein synthesis inhibition and memory: formation vs amnesia. Neurobiol. Learn. Mem. 2008. 89: 201–211.

  70. Golub Y., Kaltwasser S.F., Mauch C.P., Herrmann L., Schmidt U., Holsboer F., Czisch M., Wotjak C.T. Reduced hippocampus volume in the mouse model of Posttraumatic Stress Disorder. J. Psychiatr. Res. 2011. 45: 650–659.

  71. Golub Y., Mauch C.P., Dahlhoff M., Wotjak C.T. Consequences of extinction training on associative and non-associative fear in a mouse model of Posttraumatic Stress Disorder (PTSD). Behav. Brain Res. 2009. 205: 544–549.

  72. Gulyaeva N.V. Biochemical Mechanisms and Translational Relevance of Hippocampal Vulnerability to Distant Focal Brain Injury: The Price of Stress Response. Biochemistry (Moscow). 2019. 84: 1306–1328.

  73. Gurvits T.V., Lasko N.B., Schachter S.C., Kuhne A.A., Orr S.P., Pitman R.K. Neurological status of Vietnam veterans with chronic posttraumatic stress disorder. J. Neuropsychiatry Clin. Neurosci. 1993. 5: 183–188.

  74. Gurvits T.V., Shenton M.E., Hokama H., Ohta H., Lasko N.B., Gilbertson M.W., Orr S.P., Kikinis R., Jolesz F.A., McCarley R.W., Pitman R.K. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry. 1996. 40: 1091–1099.

  75. Hammack S.E., Cooper M.A., Lezak K.R. Overlapping neurobiology of learned helplessness and conditioned defeat: implications for PTSD and mood disorders. Neuropharmacology. 2012. 62: 565–575.

  76. Harvey B.H., Naciti C., Brand L., Stein D.J. Endocrine, cognitive and hippocampal/cortical 5HT 1A/2A receptor changes evoked by a time-dependent sensitisation (TDS) stress model in rats. Brain Res. 2003. 983: 97–107.

  77. Harvey B.H., Oosthuizen F., Brand L., Wegener G., Stein D.J. Stress-restress evokes sustained iNOS activity and altered GABA levels and NMDA receptors in rat hippocampus. Psychopharmacology (Berl). 2004. 175: 494–502.

  78. Hawley W., Grissom E., Keskitalo L., Hastings T., Dohanich G. Sexual motivation and anxiety-like behaviors of male rats after exposure to a trauma followed by situational reminders. Physiol. Behav. 2011. 10: 181–187.

  79. Heim C., Owens M.J., Plotsky P.M., Nemeroff C.B. The role of early adverse life events in the etiology of depression and posttraumatic stress disorder. Focus on corticotropin-releasing factor. Ann. N. Y. Acad. Sci. 1997. 821: 194–207.

  80. Herman J.P., Prewitt C.M., Cullinan W.E. Neuronal circuit regulation of the hypothalamo-pituitary-adrenocortical stress axis. Crit. Rev. Neurobiol. 1996. 10: 371–394.

  81. Ikin J.F., Sim M.R., Creamer M.C., Forbes A.B., McKenzie D.P., Kelsall H.L., Glass D.C., McFarlane A.C., Abramson M.J., Ittak P., Dwyer T., Blizzard L., Delaney K.R., Horsley K.W.A., Harrex W.K., Schwarz H. War-related psychological stressors and risk of psychological disorders in Australian veterans of the 1991 Gulf War. Br. J. Psychiatry. 2004. 185: 116–126.

  82. Imanaka A., Morinobu S., Toki S., Yamawaki S. Importance of early environment in the development of post-traumatic stress disorder-like behaviors. Behav. Brain Res. 2006. 173: 129–137.

  83. Irwin J., Ahluwalia P., Zacharko R.M., Anisman H. Central norepinephrine and plasma corticosterone following acute and chronic stressors: influence of social isolation and handling. Pharmacol. Biochem. Behav. 1986. 24: 1151–1154.

  84. Job R.F., Barnes B.W. Stress and consumption: inescapable shock, neophobia, and quinine finickiness in rats. Behav. Neurosci. 1995. 109: 106–116.

  85. Johnson L.R., McGuire J., Lazarus R., Palmer A.A. Pavlovian fear memory circuits and phenotype models of PTSD. Neuropharmacology. 2012. 62: 638–646.

  86. Jovanovic T., Ressler K.J. How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am. J. Psychiatry. 2010. 167: 648–662.

  87. Kamprath K., Wotjak C.T. Nonassociative learning processes determine expression and extinction of conditioned fear in mice. Learn. Mem. 2004. 11: 770–786.

  88. Kessler R.C., Sonnega A., Bromet E., Hughes M., Nelson C.B. Posttraumatic stress disorder in the National Comorbidity Survey. Arch. Gen. Psychiatry. 1995. 52: 1048–1060.

  89. Khan S., Liberzon I. Topiramate attenuates exaggerated acoustic startle in an animal model of PTSD. Psychopharmacology (Berl). 2004. 172: 225–229.

  90. Kozlovsky N., Matar M.A., Kaplan Z., Kotler M., Zohar J., Cohen H. The immediate early gene Arc is associated with behavioral resilience to stress exposure in an animal model of posttraumatic stress disorder. Eur. Neuropsychopharmacol. 2008. 18: 107–116.

  91. Krystal S., Zweben J.E. The use of visualization as a means of integrating the spiritual dimension into treatment: Part II. Working with emotions. J. Subst. Abuse. Treat. 1989. 6: 223–228.

  92. Kuhn C.M., Pauk J., Schanberg S.M. Endocrine responses to mother-infant separation in developing rats. Dev. Psychobiol. 1990. 23: 395–410.

  93. Kulka P.J., Lauven P.M., Schüttler J., Apffelstaedt C. Methohexital vs midazolam/flumazenil anaesthesia during laryngoscopy under jet ventilation. Acta Anaesthesiol. Scand. Suppl. 1990. 92: 90–95, discussion107.

  94. Kung J.-C., Chen T.-C., Shyu B.-C., Hsiao S., Huang A.C.W. Anxiety- and depressive-like responses and c-fos activity in preproenkephalin knockout mice: oversensitivity hypothesis of enkephalin deficit-induced posttraumatic stress disorder. J. Biomed. Sci. 2010. 17: 29.

  95. Ladd C.O., Huot R.L., Thrivikraman K.V., Nemeroff C.B., Meaney M.J., Plotsky P.M. Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog. Brain Res. 2000. 122: 81–103.

  96. Ladd C.O., Owens M.J., Nemeroff C.B. Persistent changes in corticotropin-releasing factor neuronal systems induced by maternal deprivation. Endocrinology. 1996. 137: 1212–1218.

  97. Lanuza E., Novejarque A., Martínez-Ricós J., Martínez-Hernández J., Agustín-Pavón C., Martínez-García F. Sexual pheromones and the evolution of the reward system of the brain: the chemosensory function of the amygdala. Brain Res. Bull. 2008. 75: 460–466.

  98. LeDoux J. The emotional brain, fear, and the amygdala. Cell Mol. Neurobiol. 2003. 23: 727–738.

  99. Li S., Murakami Y., Wang M., Maeda K., Matsumoto K. The effects of chronic valproate and diazepam in a mouse model of posttraumatic stress disorder. Pharmacol. Biochem. Behav. 2006. 85: 324–331.

  100. Liberzon I., Abelson J.L., Flagel S.B., Raz J., Young E.A. Neuroendocrine and psychophysiologic responses in PTSD: a symptom provocation study. Neuropsychopharmacology. 1999b. 21: 40–50.

  101. Liberzon I., Khan S., Young E. Animal models of posttraumatic stress disorder // Handbook of stress and the brain. Eds. Steckler T., Kalin N., Reul J. Amsterdam: Elsevier, 2005. V.15. Part 2. 231–250.

  102. Liberzon I., Krstov M., Young E.A. Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinology. 1997. 22: 443–453.

  103. Liberzon I., López J.F., Flagel S.B., Vázquez D.M., Young E.A. Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. J. Neuroendocrinol. 1999a. 11: 11–17.

  104. Louvart H., Maccari S., Ducrocq F., Thomas P., Darnaudéry M. Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinology. 2005. 30: 316–324.

  105. Louvart H., Maccari S., Lesage J., Léonhardt M., Dickes-Coopman A., Darnaudéry M. Effects of a single footshock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats. Psychoneuroendocrinology. 2006. 31: 92–99.

  106. Mahan A.L., Ressler K.J. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci. 2012. 35: 24–35.

  107. Maier S.F. Diazepam modulation of stress-induced analgesia depends on the type of analgesia. Behav. Neurosci. 1990. 104: 339–347.

  108. Malikowska-Racia N., Salat K. Recent advances in the neurobiology of posttraumatic stress disorder: A review of possible mechanisms underlying an effective pharmacotherapy. Pharmacol. Res. 2019. 142: 30–49.

  109. Malloy P.F., Fairbank J.A., Keane T.M. Validation of a multimethod assessment of posttraumatic stress disorders in Vietnam veterans. J. Consult. Clin. Psychol. 1983. 51: 488–494.

  110. Maren S., Fanselow M.S. Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. J. Neurosci. 1995. 15: 7548–7564.

  111. Marmar C.R., Weiss D.S., Schlenger W.E., Fairbank J.A., Jordan B.K., Kulka R.A., Hough R.L. Peritraumatic dissociation and posttraumatic stress in male Vietnam theater veterans. Am. J. Psychiatry. 1994. V. 151: 902–907.

  112. Martí O., García A., Vallès A., Harbuz M.S., Armario A., Vellès A. Evidence that a single exposure to aversive stimuli triggers long-lasting effects in the hypothalamus-pituitary-adrenal axis that consolidate with time. Eur. J. Neurosci. 2001. 13: 129–136.

  113. Martínez-Rivera F.J., Bravo-Rivera C., Velázquez-Díaz C.D., Montesinos-Cartagena M., Quirk G.J. Prefrontal circuits signaling active avoidance retrieval and extinction. Psychopharmacology (Berl). 2019. 236: 399–406.

  114. Mason J.W., Wang S., Yehuda R., Lubin H., Johnson D., Bremner J.D., Charney D., Southwick S. Marked lability in urinary cortisol levels in subgroups of combat veterans with posttraumatic stress disorder during an intensive exposure treatment program. Psychosom. Med. 2002. 64: 238–246.

  115. McDougle C.J., Southwick S.M., Charney D.S., James R.L.S. An open trial of fluoxetine in the treatment of posttraumatic stress disorder. J. Clin. Psychopharmacol. 1991. 11: 325–327.

  116. McGregor M., Tutty L.M., Babins-Wagner R., Gill M. The long-term impacts of group treatment for partner abuse. Can. J. Commun. Ment. Health. 2002. 21: 67–84.

  117. Milad M.R., Orr S.P., Lasko N.B., Chang Y., Rauch S.L., Pitman R.K. Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. J. Psychiatr. Res. 2008. 42: 515–520.

  118. Morgan C.A., Grillon C., Southwick S.M., Nagy L.M., Davis M., Krystal J.H., Charney D.S. Yohimbine facilitated acoustic startle in combat veterans with post-traumatic stress disorder. Psychopharmacology (Berl). 1995. 117: 466–471.

  119. Murison R., Overmier J.B. Comparison of different animal models of stress reveals a non-monotonic effect. Stress. 1998. 2: 227–230.

  120. Nadel L., Hupbach A., Gomez R., Newman-Smith K. Memory formation, consolidation and transformation. Neurosci. Biobehav. Rev. 2012. 36: 1640–1645.

  121. Orr S.P., Lasko N.B., Shalev A.Y., Pitman R.K. Physiologic responses to loud tones in Vietnam veterans with posttraumatic stress disorder. J. Abnorm. Psychol. 1995. 104: 75–82.

  122. Paez-Pereda M., Hausch F., Holsboer F. Corticotropin releasing factor receptor antagonists for major depressive disorder. Expert. Opin. Investig. Drugs. 2011. 20: 519–535.

  123. Pihoker C., Owens M.J., Kuhn C.M., Schanberg S.M., Nemeroff C.B. Maternal separation in neonatal rats elicits activation of the hypothalamic-pituitary-adrenocortical axis: a putative role for corticotropin-releasing factor. Psychoneuroendocrinology. 1993. 18: 485–493.

  124. Pijlman F.T.A., van Ree J.M. Physical but not emotional stress induces a delay in behavioural coping responses in rats. Behav. Brain Res. 2002. 136: 365–373.

  125. Pijlman F.T.A., Wolterink G., van Ree J.M. Cueing unavoidable physical but not emotional stress increases long-term behavioural effects in rats. Behav. Brain Res. 2002. 134: 393–401.

  126. Plotsky P.M., Meaney M.J. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res. Mol. Brain Res. 1993. 18: 195–200.

  127. Pryce C.R., Azzinnari D., Spinelli S., Seifritz E., Tegethoff M., Meinlschmidt G. Helplessness: a systematic translational review of theory and evidence for its relevance to understanding and treating depression. Pharmacol. Ther. 2011. 132: 242–267.

  128. Pynoos R.S., Ritzmann R.F., Steinberg A.M., Goenjian A., Prisecaru I. A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders. Biol. Psychiatry. 1996. 39: 129–134.

  129. Rasmussen D.D., Crites N.J., Burke B.L. Acoustic startle amplitude predicts vulnerability to develop post-traumatic stress hyper-responsivity and associated plasma corticosterone changes in rats. Psychoneuroendocrinology. 2008. 33: 282–291.

  130. Rauch S.L., Shin L.M., Phelps E.A. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research–past, present, and future. Biol. Psychiatry. 2006. 60: 376–382.

  131. Richter-Levin G., Stork O., Schmidt M.V. Animal models of PTSD: a challenge to be met. Mol. Psychiatry. 2019. 24: 1135–1156.

  132. Risbrough V.B., Stein M.B. Neuropharmacology special issue on posttraumatic stress disorder (PTSD): current state of the art in clinical and preclinical PTSD research. Neuropharmacology. 2012. 62: 539–541.

  133. Roozendaal B. Systems mediating acute glucocorticoid effects on memory consolidation and retrieval. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2003. 27: 1213–1223.

  134. Rothbaum B.O., Davis M. Applying learning principles to the treatment of post-trauma reactions. Ann. N. Y. Acad. Sci. 2003. 1008: 112–121.

  135. Sautter F.J., Bissette G., Wiley J., Manguno-Mire G., Schoenbachler B., Myers L., Johnson J.E., Cerbone A., Malaspina D. Corticotropin-releasing factor in posttraumatic stress disorder (PTSD) with secondary psychotic symptoms, nonpsychotic PTSD, and healthy control subjects. Biol. Psychiatry. 2003. 54: 1382–1388.

  136. Seligman M.E., Weiss J., Weinraub M., Schulman A. Coping behavior: learned helplessness, physiological change and learned inactivity. Behav. Res. Ther. 1980. 18: 459–512.

  137. Servatius R.J., Ottenweller J.E., Natelson B.H. Delayed startle sensitization distinguishes rats exposed to one or three stress sessions: further evidence toward an animal model of PTSD. Biol. Psychiatry. 1995. 38: 539–546.

  138. Shalev A.Y., Peri T., Brandes D., Freedman S., Orr S.P., Pitman R.K. Auditory startle response in trauma survivors with posttraumatic stress disorder: a prospective study. Am. J. Psychiatry. 2000. 157: 255–261.

  139. Shi C., Davis M. Visual pathways involved in fear conditioning measured with fear-potentiated startle: behavioral and anatomic studies. J. Neurosci. 2001. 21: 9844–9855.

  140. Shin L.M., Wright C.I., Cannistraro P.A., Wedig M.M., McMullin K., Martis B., Macklin M.L., Lasko N.B., Cavanagh S.R., Krangel T.S., Orr S.P., Pitman R.K., Whalen P.J., Rauch S.L. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch. Gen. Psychiatry. 2005. 62: 273–281.

  141. Shinba T., Shinozaki T., Mugishima G. Clonidine immediately after immobilization stress prevents long-lasting locomotion reduction in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2001. 25: 1629–1640.

  142. Short K.R., Maier S.F. Stressor controllability, social interaction, and benzodiazepine systems. Pharmacol. Biochem. Behav. 1993. 45: 827–835.

  143. Siegmund A., Dahlhoff M., Habersetzer U., Mederer A., Wolf E., Holsboer F., Wotjak C.T. Maternal inexperience as a risk factor of innate fear and PTSD-like symptoms in mice. J. Psychiatr. Res. 2009. 43: 1156–1165.

  144. Siegmund A., Wotjak C.T. A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J. Psychiatr. Res. 2007. 41: 848–860.

  145. Siegmund A., Wotjak C.T. Toward an animal model of posttraumatic stress disorder. Ann. N. Y. Acad. Sci. 2006. 1071: 324–334.

  146. Stam R. PTSD and stress sensitisation: a tale of brain and body Part 2: animal models. Neurosci. Biobehav. Rev. 2007. 31: 558–584.

  147. Stam R., van Laar T.J., Akkermans L.M.A., Wiegant V.M. Variability factors in the expression of stress-induced behavioural sensitisation. Behav. Brain. Res. 2002. 132: 69–76.

  148. Stone E.A., Lin Y. Open-space forced swim model of depression for mice. Curr. Protoc. Neurosci. 2011. Chapter 9: Unit9.36.

  149. Sun M., Marquardt C.A., Disner S.G., Burton P.C., Davenport N.D., Lissek S., Sponheim S.R. Posttraumatic stress symptomatology and abnormal neural responding during emotion regulation under cognitive demands: mediating effects of personality. Personal Neurosci. 2020. 3: e9.

  150. Takahashi T., Morinobu S., Iwamoto Y., Yamawaki S. Effect of paroxetine on enhanced contextual fear induced by single prolonged stress in rats. Psychopharmacology (Berl). 2006. 189: 165–173.

  151. Thoeringer C.K., Henes K., Eder M., Dahlhoff M., Wurst W., Holsboer F., Deussing J.M., Moosmang S., Wotjak C.T. Consolidation of remote fear memories involves Corticotropin-Releasing Hormone (CRH) receptor type 1-mediated enhancement of AMPA receptor GluR1 signaling in the dentate gyrus. Neuropsychopharmacology. 2012. 37: 787–796.

  152. Ursano R.J., Li H., Zhang L., Hough C.J., Fullerton C.S., Benedek D.M., Grieger T.A., Holloway H.C. Models of PTSD and traumatic stress: the importance of research “from bedside to bench to bedside”. Prog. Brain Res. 2008. 167: 203–215.

  153. van der Kolk B.A. The body keeps the score: memory and the evolving psychobiology of posttraumatic stress. Harv. Rev. Psychiatry. 1994. 1: 253–265.

  154. van Dijken H.H., de Goeij D.C., Sutanto W., Mos J., de Kloet E.R., Tilders F.J. Short inescapable stress produces long-lasting changes in the brain-pituitary-adrenal axis of adult male rats. Neuroendocrinology. 1993. 58: 57–64.

  155. van Dijken H.H., Mos J., van der Heyden J.A., Tilders F.J. Characterization of stress-induced long-term behavioural changes in rats: evidence in favor of anxiety. Physiol. Behav. 1992. 52: 945–951.

  156. Vollmayr B., Henn F.A. Learned helplessness in the rat: improvements in validity and reliability. Brain Res. Brain Res. Protoc. 2001. 8: 1–7.

  157. Wang W., Liu Y., Zheng H., Wang H.N., Jin X., Chen Y.C., Zheng L.N., Luo X.X., Tan Q.R. A modified single-prolonged stress model for post-traumatic stress disorder. Neurosci. Lett. 2008. 441: 237–241.

  158. World Health Organization. ICD-11 for mortality and morbidity statistics (ICD-11 MMS), 2018.

  159. World Health Organization. International statistical classification of diseases and related health problems, 10th revision (IDC-10). Fifth edition. Geneva: WHO Press, 2016. 1075 p.

  160. Yamamoto S., Morinobu S., Fuchikami M., Kurata A., Kozuru T., Yamawaki S. Effects of single prolonged stress and D-cycloserine on contextual fear extinction and hippocampal NMDA receptor expression in a rat model of PTSD. Neuropsychopharmacology. 2008. 33: 2108–2116.

  161. Yamamoto S., Morinobu S., Takei S., Fuchikami M., Matsuki A., Yamawaki S., Liberzon I. Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress. Anxiety. 2009. 26: 1110–1117.

  162. Yan H.-C., Cao X., Das M., Zhu X.-H., Gao T.-M. Behavioral animal models of depression. Neurosci. Bull. 2010. 26: 327–337.

  163. Yehuda R., Antelman S.M. Criteria for rationally evaluating animal models of posttraumatic stress disorder. Biol. Psychiatry. 1993. 33: 479–486.

  164. Yehuda R., Boisoneau D., Lowy M.T., Giller E.L. Dose-response changes in plasma cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder. Arch. Gen. Psychiatry. 1995. 52: 583–593.

  165. Yehuda R., Levengood R.A., Schmeidler J., Wilson S., Guo L.S., Gerber D. Increased pituitary activation following metyrapone administration in post-traumatic stress disorder. Psychoneuroendocrinology. 1996. 21: 1–16.

  166. Yehuda R., Southwick S.M., Krystal J.H., Bremner D., Charney D.S., Mason J.W. Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. Am. J. Psychiatry. 1993. 150: 83–86.

  167. Zhang L., Hu X.Z., Li H., Li X., Yu T., Dohl J., Ursano R.J. Updates in PTSD Animal Models Characterization. Methods Mol Biol. 2019. V. 2011. P. 331–344.

  168. Zhang L., Zhou R., Xing G., Hough C.J., Li X., Li H. Identification of gene markers based on well validated and subcategorized stressed animals for potential clinical applications in PTSD. Med. Hypotheses. 2006. 66: 309–314.

  169. Zohar J., Yahalom H., Kozlovsky N., Cwikel-Hamzany S., Matar M.A., Kaplan Z., Yehuda R., Cohen H. High dose hydrocortisone immediately after trauma may alter the trajectory of PTSD: interplay between clinical and animal studies. Eur. Neuropsychopharmacol. 2011. 21: 796–809.

Дополнительные материалы отсутствуют.