Журнал высшей нервной деятельности им. И.П. Павлова, 2020, T. 70, № 4, стр. 543-576

ПОТЕНЦИАЛЬНОЕ РЕШЕНИЕ “ТРУДНОЙ ПРОБЛЕМЫ” СОЗНАНИЯ

Игумен Феофан (В. И. Крюков) *

Данилов монастырь
Москва, Россия

* E-mail: kryukov@msdm.ru

Поступила в редакцию 15.02.2020
После доработки 02.03.2020
Принята к публикации 03.03.2020

Аннотация

Эта статья является продолжением и развитием нашей статьи, посвященной модели памяти и внимания [Игумен Феофан, 2004]. После краткого напоминания результатов этой статьи описаны шесть взаимосвязанных проблем сознания, которые не имеют пока удовлетворительного решения. Показано, что четыре из них могут быть решены с помощью теории внимания О.С. Виноградовой, доминанты А.А. Ухтомского и небольшой модификации ранее опубликованной модели “Нейролокатор”. Приведено большое количество новых данных, согласных с этой моделью или ее подтверждающих. В рамках новой модели так называемая “трудная проблема” не имеет решения, однако наша модель помогает понять, почему эта проблема трудная, а также какие дополнительные свойства памяти необходимо учесть для объяснения субъективного опыта, и почему учение А.А. Ухтомского о доминанте на лицо другого дает решение так называемой “более трудной проблемы” сознания. Статья посвящена памяти О.С. Виноградовой, результаты и идеи которой оказались решающими для настоящей статьи.

Ключевые слова: “трудная проблема” сознания, мета-проблема сознания, внимание, доминанта А.А. Ухтомского, нейронные корреляты сознания, интеграция и сегрегация, Глобальный Сигнал, функциональные связи, критический режим, метастабильность

DOI: 10.31857/S004446772003003X

Список литературы

  1. Анохин К.В. Коды вавилонской библиотеки мозга. В мире науки. 2013. 5: 83–89.

  2. Воронов Н.А. Что такое новое мистерианство. Вестник МГУ. Сер. 7. Философия. 2010. 5: 18–33.

  3. Иваницкий А.М. Наука о мозге на пути к решению проблемы сознания. Вестник РАН. 2010. 80 (5): 447–455.

  4. Игумен Феофан. Модель внимания и памяти, основанная на принципе доминанты и компараторной функции гиппокампа. М.: Журн. высш. нервн. деят. им. И.П. Павлова. 2004. 54 (1): 10–29.

  5. Игумен Феофан. Принципы сенсорной интеграции: иерархичность и синхронизация. М.: Журн. высш. нервн. деят. им. И.П. Павлова. 2005. 55 (2): 163–169.

  6. Игумен Феофан. Роль гиппокампа в долговременной памяти: системно-динамический подход. 2007. 57 (3): 1–278.

  7. Крюков В.И., Борисюк Г.Н., Борисюк Р.М., Кириллов А.Б., Коваленко Е.И. Метастабильные и неустойчивые состояния в мозге. Ред. А.М. Молчанов. Пущино: ОНТИ НЦБИ АН СССР. 1986. 114 с.

  8. Линдсей В. Системы синхронизации в связи и управлении. М.: “Советское радио”, 1978. 600 с.

  9. Сергин В.Я., Сергин А.В. Иерархическая модель восприятия без комбинаторного взрыва. Журн. высш. нервн. деят. им. И.П. Павлова. 2019. 69 (5): 629–654.

  10. Симонов П.В. Эмоциональный мозг. М.: Наука, 1981. 215 с.

  11. Торопова К.А., Трошев Д.В., Ивашкина О.И., Анохин К.В. Активация экспрессии c-fos в ретросплениальной коре, но не гиппокампе, сопровождает формирование ассоциации между обстановкой и безусловным стимулом и ее последующее извлечение у мышей. 2018. 68 (6): 756–770.

  12. Ухтомский A.A. Доминанта. М.-Л.: Наука, 1966. 273 с.

  13. Adachi Y., Osada T., Sporns O., Watanabe T., Matsui T., Miyamoto K., Miyashita Y. Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. Cereb. Cortex. 2012. 22 (7): 1586–1592.

  14. Alnæs D., Kaufmann T., Richard G., Duff E.P., Sneve M.H., Endestad T., Nordvik J.E., Andreassen O.A., Smith S.M., Westlye L.T. Attentional load modulates large-scale functional brain connectivity beyond the core attention networks. Neuroimage. 2015. 109: 260–272.

  15. Amaral D.G., Witter M.P. Hippocampal formation. In: G. Paxinos, Editor, The Rat NervousSystem (2nd edition ed.) Academic Press, San Diego, 2004. pp. 635–704.

  16. Amico E., Marinazzo D., Di Perri C., Heine L., Annen J., Martial C., Dzemidzic M., Kirsch M., Bonhomme V., Laureys S., Goñi J. Mapping the functional connectome traits of levels of consciousness. Neuroimage. 2017. 148: 201–211.

  17. Anokhin K.V., Tiunova A.A., Rose S.P. Reminder effects – reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur. J. Neurosci. 2002. 15 (11): 1759–1765.

  18. Attardo A., Fitzgerald J.E., Schnitzer M.J. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature. 2015. 523 (7562): 592–596.

  19. Avena-Koenigsberger A., Misic B., Sporns O. Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 2017. 19 (1): 17–33.

  20. Baars B.J. A scientific approach to silent consciousness. Front Psychol. 2013. 4: 678.

  21. Baars B.J., Franklin S., Ramsoy T.Z. Global workspace dynamics: cortical “binding and propagation” enables conscious contents. Front. Psychol. 2013. 4: 200.

  22. Baker K.D., McNally G.P., Richardson R. Memory retrieval before or after extinction reduces recovery of fear in adolescent rats. Learn. Mem. 2013. 20 (9): 467–473.

  23. Bannerman D.M., Sprengel R., Sanderson D.J., McHugh S.B., Rawlins J.N., Monyer H., Seeburg P.H. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 2014. 15 (3): 181–192.

  24. Baria A.T., Maniscalco B., He B.J. Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception. PLoS Comput. Biol. 2017. 13 (11): e1005806.

  25. Barttfeld P., Uhrig L., Sitt J.D., Sigman M., Jarraya B., Dehaene S. Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl. Acad. Sci. U. S. A. 2015. 112 (3): 887–892.

  26. Bassett D.S., Yang M., Wymbs N.F., Grafton S.T. Learning-induced autonomy of sensorimotor systems. 2015. Nat. Neurosci. 2015. (5): 744–751.

  27. Behrendt R.P. Hippocampus as a wormhole: gateway to consciousness. Wiley Interdiscip. Rev. Cogn. Sci. 2017. 8 (5): e1446.

  28. Bell P.T., Shine J.M. Subcortical contributions to large-scale network communication. Neurosci. Biobehav. Rev. 2016. 71: 313–322.

  29. Bennett M.R., Farnell L., Gibson W.G., Lagopoulos J. Cortical network models of firing rates in the resting and active states predict BOLD responses. PLoS One. 2015. 10 (12): e0144796.

  30. Bennett M.R., Farnell L., Gibson W., Lagopoulos J. On the origins of the 'global signal' determined by functional magnetic resonance imaging in the resting state. J. Neural. Eng. 2016. 13 (1): 016012.

  31. Berkovich-Ohana A., Glicksohn J. The consciousness state space (CSS) – a unifying model for consciousness and self. Front. Psychol. 2014. 5: 341.

  32. Berkovitch L., Dehaene S., Gaillard R. Disruption of conscious access in schizophrenia. Trends Cogn. Sci. 2017. 21 (11): 878–892.

  33. Bettinger J.S. Comparative approximations of criticality in a neural and quantum regime. Prog. Biophys. Mol. Biol. 2017. 131: 445–462.

  34. Billings J., Keilholz S. The not-so-global blood oxygen level-dependent signal. Brain Connect. 2018. 8 (3): 121–128.

  35. Biswal B.B., Mennes M., Zuo X.N. Gohel S., Kelly C., Smith S.M., Beckmann C.F., Adelstein J.S., Buckner R.L., Colcombe S., Dogonowski A.M., Ernst M., Fair D., Hampson M., Hoptman M.J., Hyde J.S., Kiviniemi V.J., Kötter R., Li S.J., Lin C.P., Lowe M.J., Mackay C., Madden D.J., Madsen K.H., Margulies D.S., Mayberg H.S., McMahon K., Monk C.S., Mostofsky S.H., Nagel B.J., Pekar J.J., Peltier S.J., Petersen S.E., Riedl V., Rombouts S.A., Rypma B., Schlaggar B.L., Schmidt S., Seidler R.D., Siegle G.J., Sorg C., Teng G.J., Veijola J., Villringer A., Walter M., Wang L., Weng X.C., Whitfield-Gabrieli S., Williamson P., Windischberger C., Zang Y.F., Zhang H.Y., Castellanos F.X., Milham M.P. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U. S. A. 2010. 107 (10): 4734–4739.

  36. Block N. The harder problem of consciousness. 2002. Journal of Philosophy. 99 (8): 391–425.

  37. Block N. Two neural correlates of consciousness. Trends Cogn. Sci. 2005. 9 (2): 46–52.

  38. Block N. If perception is probabilistic, why does it not seem probabilistic? Philos. Trans. R Soc. Lond. B Biol. Sci. 2018. 373 (1755).

  39. Bola M., Sabel B.A. Dynamic reorganization of brain functional networks during cognition. Neuroimage. 2015. 114: 398–413.

  40. Bor D., Seth A.K. Consciousness and the prefrontal parietal network: insights from attention, working memory, and chunking. Front Psychol. 2012. 3: 63.

  41. Brier M.R., Thomas J.B., Fagan A.M., Hassenstab J., Holtzman D.M., Benzinger T.L., Morris J.C., Ances B.M. Functional connectivity and graph theory in preclinical Alzheimer’s disease. Neurobiol. Aging. 2014. 35 (4): 757–768.

  42. Brovelli A., Badier J.M., Bonini F., Bartolomei F., Coulon O., Auzias G. Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks. J. Neurosci. 2017. 37 (4): 839–853.

  43. Buehler D. The central executive system. Synthese. 2018. 195 (5): 1969–1991.

  44. Bullmore E., Sporns O. The economy of brain network organization. Nat. Rev. Neurosci. 2012. 13 (5): 336–349.

  45. Buschman T.J., Kastner S. From Behavior to Neural Dynamics: An integrated theory of attention. Neuron. 2015. 88 (1): 127–144.

  46. Cabral J., Kringelbach M.L., Deco G. Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms. Neuroimage. 2017. 160: 84–96.

  47. Cahill E.N., Wood M.A., Everitt B.J., Milton A.L. The role of prediction error and memory destabilization in extinction of cued-fear within the reconsolidation window. Neuropsychopharmacology. 2019. 44 (10): 1762–1768.

  48. Carter O.L., Presti D.E., Callistemon C., Ungerer Y., Liu G.B., Pettigrew J.D. Meditation alters perceptual rivalry in Tibetan Buddhist monks. 2005. Current Biology. 15 (11): R412-3.

  49. Casali A.G., Gosseries O., Rosanova M., Boly M., Sarasso S., Casali K.R., Casarotto S., Bruno M.A., Laureys S., Tononi G., Massimini M. A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 2013. 5 (198): 198ra105.

  50. Chalmers D.J. Facing up to the problem of consciousness. Journal of Consciousness Studies. 1995. 2 (3): 200–219.

  51. Chalmers D.J. Availability: The Cognitive Basis of Experience? Behavioral and Brain Sciences. 1997. 20 (1): 148–149.

  52. Chalmers D.J. The Meta-problem of consciousness. Journal of Consciousness Studies. 2018. 25 (9–10): 6–61.

  53. Chan M.Y., Park D.C., Savalia N.K., Petersen S.E., Wig G.S. Decreased segregation of brain systems across the healthy adult lifespan. Proc. Natl. Acad. Sci. U. S. A. 2014. 111 (46): E4997–E5006.

  54. Chan W.Y., Leung H.T., Westbrook R.F., McNally G.P. Effects of recent exposure to a conditioned stimulus on extinction of Pavlovian fear conditioning. Learn. Mem. 2010. 17 (10): 512–521.

  55. Chaudhuri R., Knoblauch K., Gariel M.A., Kennedy H., Wang X.J. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron. 2015. 88 (2): 419–431.

  56. Chen J.E., Glover G.H., Greicius M.D., Chang C. Dissociated patterns of anti-correlations with dorsal and ventral default-mode networks at rest. Hum. Brain Mapp. 2017. 38 (5): 2454–2465.

  57. Cocchi L., Gollo L.L., Zalesky A., Breakspear M. Criticality in the brain: a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 2017. 158: 132–152.

  58. Cohen J.R., D’Esposito M. The segregation and integration of distinct brain networks and their relationship to cognition. J. Neurosci. 2016. 36 (48): 12083–12094.

  59. Cohen M.A., Cavanagh P., Chun M.M., Nakayama K. The attentional requirements of consciousness. Trends Cogn. Sci. 2012. 16 (8): 411–417.

  60. Colgin L.L. Theta-gamma coupling in the entorhinal-hippocampal system. Curr. Opin. Neurobiol. 2015. 31: 45–50.

  61. Combs A., Kripner S. Collective consciousness and the social brain. Journal of Consciousness Studies. 2008. 15 (10–11): 264–276.

  62. Cowan N. Attention and memory: an integrated framework. Oxford Psychol. Ser. № 26. N.Y.: Oxford Univ. Press, 1995 (Paperback edition: 1997). xv. 321 p.

  63. Cowan N. Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol. Bull. 1988. 104 (2): 163–191.

  64. Crick F., Koch C. Consciousness and Neuroscience. Cereb. Cortex. 1998. 8: 97–107.

  65. Dalpe J., Demers M., Verner-Filion J., Vallerand R.J. From personality to passion: The role of the Big Five factors. Personality and Individual Differences. 2019. 138: 280–285.

  66. D’Andola M., Rebollo B., Casali A.G., Weinert J.F., Pigorini A., Villa R., Massimini M., Sanchez-Vives M.V. Bistability, causality, and complexity in cortical networks: an in vitro perturbational study. Cereb. Cortex. 2017. 28 (7): 2233–2242.

  67. Davison E.N., Schlesinger K.J., Bassett D.S., Lynall M.E., Miller M.B., Grafton S.T., Carlson J.M. Brain network adaptability across task states. PLoS Comput. Biol. 2015. 11 (1): e1004029.

  68. Deco G., Jirsa V.K., McIntosh A.R. Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci. 2013. 36 (5): 268–274.

  69. Deco G., Kringelbach M.L., Jirsa V.K., Ritter P. The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Sci. Rep. 2017. 7 (1): 3095.

  70. Deco G., Tononi G., Boly M., Kringelbach M.L. Rethinking segregation and integration: contributions of whole-brain modeling. Nat. Rev. Neurosci. 2015. 16 (7): 430–439.

  71. Del Cul A., Dehaene S., Reyes P., Bravo E., Slachevsky A. Causal role of prefrontal cortex in the threshold for access to consciousness. Brain. 2009. 132 (Pt 9): 2531–2540.

  72. Delamater A.R., Westbrook R.F. Psychological and neural mechanisms of experimental extinction: a selective review. Neurobiol. Learn. Mem. 2014. 108: 38–51.

  73. Demertzi A., Tagliazucchi E., Dehaene S., Deco G., Barttfeld P., Raimondo F., Martial C., Fernández-Espejo D., Rohaut B., Voss H.U., Schiff N.D., Owen A.M., Laureys S., Naccache L., Sitt J.D. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci. Adv. 2019. 5 (2): eaat7603.

  74. Dennett D.C. Facing up to the hard question of consciousness. Philos. Trans. R Soc. Lond. B Biol. Sci. 2018. 373 (1755).

  75. Denton D.A., McKinley M.J., Farrell M., Egan G.F. The role of primordial emotions in the evolutionary origin of consciousness. Conscious Cogn. 2009. 18 (2): 500–514.

  76. De Ridder D., van der Loo E., Vanneste S., Gais S., Plazier M., Kovacs S., Sunaert S., Menovsky T., van de Heyning P. Theta-gamma dysrhythmia and auditory phantom perception. J. Neurosurg. 2011. 114 (4): 912–921.

  77. Dixon M.L., Andrews-Hanna J.R., Spreng R.N., Irving Z.C., Mills C., Girn M., Christoff K. Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. Neuroimage. 2017. 147: 632–649.

  78. Doesburg S.M., Green J.J., McDonald J.J., Ward L.M. Rhythms of consciousness: binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception. PLoS One. 2009. 4 (7): e6142.

  79. Droste F., Do A.L., Gross T. Analytical investigation of self-organized criticality in neural networks. J. R. Soc. Interface. 2013. 10: 20120558.

  80. Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping memories. Nat. Rev. Neurosci. 2014. 15 (11): 732–744.

  81. Engel A.K., Fries P. Neuronal oscillations, coherence, and consciousness. In The Neurology of Conciousness. Cognitive Neuroscience and Neuropathology. 2016. pp. 49–60.

  82. Esghaei M., Daliri M.R., Treue S. Attention decreases phase-amplitude coupling, enhancing stimulus discriminability in cortical area MT. Front Neural Circuits. 2015. 9: 82.

  83. Esposito R., Cieri F., Chiacchiaretta P., Cera N., Lauriola M., Di Giannantonio M., Tartaro A., Ferretti A. Modifications in resting state functional anticorrelation between default mode network and dorsal attention network: comparison among young adults, healthy elders and mild cognitive impairment patients. Brain Imaging Behav. 2017. 12 (1): 127–141.

  84. Fahrenfort J.J., van Leeuwen J., Olivers C.N., Hogendoorn H. Perceptual integration without conscious access. Proc. Natl. Acad. Sci. U. S. A. 2017. 114 (14): 3744–3749.

  85. Faw M., Faw B. Neurotypical subjective experience is caused by a hippocampal simulation. Wiley Interdiscip. Rev. Cogn. Sci. 2016. 8 (5): e1412.

  86. Fernandez-Espejo D., Soddu A., Cruse D., Palacios E.M., Junque C., Vanhaudenhuyse A., Rivas E., Newcombe V., Menon D.K., Pickard J.D., Laureys S., Owen A.M. A role for the default mode network in the bases of disorders of consciousness. Ann. Neurol. 2012. 72 (3): 335–343.

  87. Fingelkurts A.A., Fingelkurts A., Bagnato S., Boccagni C., Galardi G. DMN operational synchrony relates to self-consciousness: evidence from patients in vegetative and minimally conscious states. Open. Neuroimag. J. 2012. 6: 55–68.

  88. Fingelkurts A.A., Fingelkurts A., Bagnato S., Boccagni C., Galardi G. The chief role of frontal operational module of the brain default mode network in the potential recovery of consciousness from the vegetative state: a preliminary comparison of three case reports. Open. Neuroimag. J. 2016. 10: 41–51.

  89. Forcato C., Bavassi L., De Pino G., Fernández R.S., Villarreal M.F., Pedreira M.E. Differential left hippocampal activation during retrieval with different types of reminders: an fmri study of the reconsolidation process. PLoS One. 2016. 11 (3): e0151381.

  90. Foster B.L., He B.J., Honey C.J., Jerbi K., Maier A., Saalmann Y.B. Spontaneous neural dynamics and multi-scale network organization. Front. Syst. Neurosci. 2016. 10: 17.

  91. Fox M.D., Snyder A.Z., Vincent J.L., Corbetta M., Van Essen D.C., Raichle M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 2005. 102 (27): 9673–9678.

  92. Freeman W.J., Holmes M.D. Metastability, instability, and state transition in neocortex. Neural. Netw. 2005. 18 (5–6): 497–504.

  93. Freeman W.J., Vitiello G. Matter and mind are entangled in two streams of images guiding behavior and informing the subject through awareness. Imprint. Academic. 2016. 14 (1): 7–24.

  94. Freeman W.J. Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clin. Neurophysiol. 2004a. 115 (9): 2077–2088.

  95. Freeman W.J. Origin, structure, and role of background EEG activity. Part 2. Analytic amplitude. Clin. Neurophysiol. 2004b. 115 (9): 2089–2107.

  96. Freeman W.J. Indirect biological measures of consciousness from field studies of brains as dynamical systems. Neural Netw. 2007. 20 (9): 1021–1031.

  97. Friedman E.B., Sun Y., Moore J.T., Hung H.T., Meng Q.C., Perera P., Joiner W.J., Thomas S.A., Eckenhoff R.G., Sehgal A., Kelz M.B. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One. 2010. 5 (7): e11903.

  98. Friese U., Köster M., Hassler U., Martens U., Trujillo-Barreto N., Gruber T. Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. Neuroimage. 2013. 66: 642–647.

  99. Frith C.D., Frith U. Social cognition in humans. Curr. Biol. 2007. 17 (16): R724–R732.

  100. Frith C.D., Metzinger T. What’s the use of consciousness? How the stab of conscience made us really conscious, in Engel, A.K., Friston, K.J., Kragic. D. (eds.) The Pragmatic Turn: Toward Action-Oriented Views in Cognitive Science, Strungmann Forum Reports, 2016. vol. 18, Lupp, J. (series ed.), Cambridge, MA: MIT Press.

  101. Fuertinger S., Horwitz B., Simonyan K. The functional connectome of speech control. PLoS Biol. 2015. 13 (7): e1002209.

  102. Gardner F.M. Phaselock Techniques. John Wiley and Sons. New York, 2nd edition. 1979. 426 p.

  103. Geerligs L., Renken R.J., Saliasi E., Maurits N.M., Lorist M.M. A brain-wide study of age-related changes in functional connectivity. Cereb. Cortex. 2015. 25 (7): 1987–1999.

  104. Gershman S.J., Monfils M.H., Norman K.A., Niv Y. The computational nature of memory reconsolidation. eLife. 2016. bioRxiv

  105. Gershman S.J., Monfils M.H., Norman K.A., Niv Y. The computational nature of memory modification. eLife. 2017. 6: e23763.

  106. Girardeau G., Benchenane K., Wiener S.I., Buzsáki G., Zugaro M.B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 2009. 12 (10): 1222–1223.

  107. Godwin D., Barry R.L., Marois R. Breakdown of the brain’s functional network modularity with awareness. Proc. Natl. Acad. Sci. U. S. A. 2015. 112 (12): 3799–3804.

  108. Gonzalez-Castillo J., Hoy C.W., Handwerker D.A., Robinson M.E., Buchanan L.C., Saad Z.S., Bandettini P.A. Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proc Natl. Acad. Sci. USA. 2015. 112 (28): 8762–8767.

  109. Graziano M.S., Kastner S. Human consciousness and its relationship to social neuroscience: A novel hypothesis. Cogn. Neurosci. 2011. 2 (2): 98–113.

  110. Graziano M.S. Attributing awareness to others: The attention schema theory and its relationship to behavioural prediction. Journal of Consciousness Studies. 2019. 26 (3–4): 17–37.

  111. Gross S., Flombaum J. Does perceptual consciousness overflow cognitive access? The challenge from probabilistic, hierarchical processes. Mind and Language. 2017. 32 (3): 358–391.

  112. Guevara Erra R., Mateos D.M., Wennberg R., Perez Velazquez J.L. Statistical mechanics of consciousness: Maximization of information content of network is associated with conscious awareness. Phys. Rev. E. 2016. 94 (5-1): 052402.

  113. Gutierrez-Barragan D., Basson M.A., Panzeri S., Gozzi A. Oscillatory brain states govern spontaneous fMRI network dynamics. 2018. bioRxiv preprint first posted online Aug. 20, 2018; https://doi.org/10.1101/393389

  114. Hangya B., Borhegyi Z., Szilágyi N., Freund T.F., Varga V. GABAergic neurons of the medial septum lead the hippocampal network during theta activity. J. Neurosci. 2009. 29 (25): 8094–8102.

  115. Hannawi Y., Lindquist M.A., Caffo B.S., Sair H.I., Stevens R.D. Resting brain activity in disorders of consciousness: a systematic review and meta-analysis. Neurology. 2015. 84 (12): 1272–1280.

  116. Hannula D.E., Greene A.J. The hippocampus reevaluated in unconscious learning and memory: at a tipping point? Front. Hum. Neurosci. 2012. 6: 80.

  117. Hari R., Parkkonen L. The brain timewise: how timing shapes and supports brain function. Philos. Trans. R Soc. Lond. B Biol. Sci. 2015. 370 (1668).

  118. Hasselmo M.E. What is the function of hippocampal theta rhythm? Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus. 2005. 15 (7): 936–949.

  119. Havlík M. From Anomalies to essential scientific revolution? Intrinsic brain activity in the light of kuhn’s philosophy of science. Front. Syst. Neurosci. 2017. 11: 17.

  120. Headley D.B., Paré D. Common oscillatory mechanisms across multiple memory systems. NPJ Sci. Learn. 2017. 2.

  121. Hearne L.J., Cocchi L., Zalesky A., Mattingley J.B. Reconfiguration of brain network architectures between resting-state and complexity-dependent cognitive reasoning. J. Neurosci. 2017. 37 (35): 8399–8411.

  122. Hegumen Theophan (V.I. Kryukov). The problem of non-invasive memory erasure and its solution. Annual Pavlovian Society Meeting. Sept 1820. 2014. Hilton Seattle. Seattle WA https://campus.albion.edu/pavlovian/files/2014/09/2014programAbs.pdf

  123. Heleven E., Van Overwalle F. The neural representation of the self in relation to close others using fMRI repetition suppression. Soc. Neurosci. 2019a. 13: 1–12.

  124. Heleven E., Van Overwalle F. Neural representations of others in the medial prefrontal cortex do not depend on our knowledge about them. Soc. Neurosci. 2019b. 14 (3): 286–299.

  125. Hernandez-Urbina V., Herrmann J.M. Self-organized criticality via retro-synaptic signals. Front. Phys. 2017. 4 (54): 1–12.

  126. Hesse J., Gross T. Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 2014. 8 (166): 1–14.

  127. Heusser A.C., Poeppel D., Ezzyat Y., Davachi L. Episodic sequence memory is supported by a theta-gamma phase code. Nat. Neurosci. 2016. 19 (10): 1374–1380.

  128. Hodgson D. Nonlocality, local indeterminism and consciousness. Ratio. 1996. 9 (1): 1–22.

  129. Huang Z., Zhang J., Wu J., Qin P., Wu X., Wang Z., Dai R., Li Y., Liang W., Mao Y., Yang Z., Zhang J., Wolff A., Northoff G. Decoupled temporal variability and signal synchronization of spontaneous brain activity in loss of consciousness: An fMRI study in anesthesia. Neuroimage. 2016. 124 (Pt A): 693–703.

  130. Hudetz A.G., Liu X., Pillay S. Dynamic repertoire of intrinsic brain states is reduced in propofol-induced unconsciousness. Brain Connect. 2015. 5 (1): 10–22.

  131. Hudson A.E., Calderon D.P., Pfaff D.W., Proekt A. Recovery of consciousness is mediated by a network of discrete metastable activity states. Proc. Natl. Acad. Sci. U. S. A. 2014. 111 (25): 9283–9288.

  132. Hunsaker M.R., Kesner R.P. The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory. Neurosci. Biobehav. Rev. 2013 37 (1): 36–58.

  133. Hunsaker M.R., Mooy G.G., Swift J.S., Kesner R.P. Dissociations of the medial and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatialand nonspatial (visual object) information processing. Behav. Neurosci. 2007. 121 (4): 742–750.

  134. Hutchison R.M., Hutchison M., Manning K.Y., Menon R.S., Everling S. Isoflurane induces dose-dependent alterations in the cortical connectivity profiles and dynamic properties of the brain’s functional architecture. Hum Brain Mapp. 2014. 35 (12): 5754–5775.

  135. Hutchison R.M., Womelsdorf T., Allen E.A., Bandettini P.A., Calhoun V.D., Corbetta M., Della Penna S., Duyn J.H., Glover G.H., Gonzalez-Castillo J., Handwerker D.A., Keilholz S., Kiviniemi V., Leopold D.A., de Pasquale F., Sporns O., Walter M., Chang C. Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage. 2013. 80: 360–378.

  136. Hutchinson B.T. Toward a theory of consciousness: A review of the neural correlates of inattentional blindness. 2019. Neurosci. Biobehav. Rev. 104: 87–99.

  137. Jacob J., Jacobs C., Silvanto J. Attention, working memory, and phenomenal experience of WM content: memory levels determined by different types of top-down modulation. Front. Psychol. 2015. 6: 1603.

  138. Jenkins A.C., Macrae C.N., Mitchell J.P. Repetition suppression of ventromedial prefrontal activity during judgments of self and others. Proc. Natl. Acad. Sci. U. S. A. 2008. 105 (11): 4507–4512.

  139. Jiang H., Bahramisharif A., van Gerven M.A., Jensen O. Measuring directionality between neuronal oscillations of different frequencies. Neuroimage. 2015. 118: 359–367.

  140. John E.R. Mechanisms of memory. New York: Academic press, 1967.

  141. John E.R. A Field Theory of Consciousness. Conscious Cogn. 2001. 10 (2): 184–213.

  142. Johnson S., Marro J., Torres J.J. Robust short-term memory without synaptic learning. PLoS One. 2013. 8 (1): e50276.

  143. Kang D., Ding M., Topchiy I., Kocsis B. Reciprocal interactions between medial septum and hippocampus in theta generation: granger causality decomposition of mixed spike-field recordings. Front. Neuroanat. 2017. 11: 120.

  144. Kaplan A.Y., Fingelkurts A.A., Fingelkurts A.A., Borisov S.V., Darkhovsky B.S. Nonstationary nature of the brain activity as revealed by EEG/MEG: Methodological, practical and conceptual challenges. Signal Processing. 2005. 85 (11): 2190–2212.

  145. Kaplan R., Horner A.J., Bandettini P.A., Doeller C.F., Burgess N. Human hippocampal processing of environmental novelty during spatial navigation. Hippocampus. 2014. 24 (7): 740–750.

  146. Kazanovich Y. Modelling brain cognitive functions by oscillatory neural networks. Optical Memory and Neural Networks. 2019. 28 (3): 175–184.

  147. Kendrick K.M., Zhan Y., Fischer H., Nicol A.U., Zhang X., Feng J. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex. BMC Neurosci. 2011. 12: 55.

  148. Keppler J. A conceptual framework for consciousness based on a deep understanding of matter. Open Journal of Philosophy. 2012. 6 (4): 689–703.

  149. Keppler J. On the universal mechanism underlying conscious systems and the foundations for a theory of consciousness. Open Journal of Philosophy. 2016. 6: 346–367.

  150. Keppler J. The role of the brain in conscious processes: a new way of looking at the neural correlates of consciousness. Front. Psychol. 2018. 9: 1346.

  151. Kim K., Johnson M.K. Activity in ventromedial prefrontal cortex during self-related processing: positive subjective value or personal significance? Soc. Cogn. Affect. Neurosci. 2015. 10 (4): 494–500.

  152. Kim M., Kim S., Mashour G.A., Lee U. Relationship of topology, multiscale phase synchronization, and state transitions in human brain networks. Front. Comput. Neurosci. 2017. 11: 55.

  153. Kinnison J., Padmala S., Choi J.M., Pessoa L. Network analysis reveals increased integration during emotional and motivational processing. J. Neurosci. 2012. 32 (24): 8361–8372.

  154. Kirillov A.B., Borisyuk G.N., Borisyuk R.M., Kovalenko Ye.I., Kryukov V.I. Short-term memory as a metastable state. III. Diffusion approximation. Cybernetics and Systems: Int. J. 1986. 17: 2–3, 169–182.

  155. Koch C., Massimini M., Boly M., Tononi G. Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 2016. 17 (5): 307–321.

  156. Koch C., Tsuchiya N. Attention and consciousness: two distinct brain processes. Trends Cogn. Sci. 2007. 11 (1): 16–22.

  157. Koch C. What Is Consciousness? Nature. 2018. 557 (7704): S8–S12.

  158. Kozma R., Freeman W.J. Interpretation of experimental results as cortical phase transitions. In: Cognitive phase transitions in the cerebral cortex – enhancing the neuron doctrine by modeling neural fields. Studies in Systems, Decision and Control. Springer. New York. 2016. 262 p.

  159. Kryukov V.I., Borisyuk G.N., Borisyuk R.M., Kirillov A.B., Kovalenko Ye.I. “Metastable and unstable states in the brain,”in: Stochastic Systems: Ergodicity, Memory, Morphogenesis, R.L. Dobrushin, V.I. Kryukov, an A.L. Toom (eds.), Manchester University Press, Manchester, UK, 1990. 226–357.

  160. Kryukov V.I. The role of the hippocampus in long-term memory: is it memory store or comparator? J. Integr. Neurosci. 2008. 7 (1): 117–184.

  161. Kryukov V.I. (Hegumen Theophan). Towards a unified model of Pavlovian conditioning: A solution to the reconsolidation problem. In: Mastarakis N., Mladenov V., Bojkovic Z., Topalis F., Psarris K., Barbulescu A., Karimi H.R., Tsekouras G.J., Salem A-B.M., Vladareanu L., Nikolic., Simian D., Hausnerova B., Berber S, Bardis N, Zaharim A., Subramaniam C. (eds.) Recent researches in geography, geology, energy, evironment and biomedicine: 193–202, Proceedings of the 5th International conference on energy and Development – Environment – Biomedicine (EDEB ‘11), WSEAS Press, Greece. 2011a.

  162. Kryukov V.I. (Hegumen Theophan). Towards a unified model of Pavlovian conditioning: Solution to the extinction problem. In Braissant O. et al. (eds.) Recent researches in modern medicine: 330–340, 2nd International conference on MEDICAL PHYSIOLOGY (PHYSIOLOGY ‘11), WSEAS Press, Cambridge, UK. 2011в.

  163. Kryukov V.I. Towards a unified model of Pavlovian conditioning: short review of trace conditioning models. Cogn. Neurodyn. 2012. 6 (5): 377–398.

  164. Lau H., Rosenthal D. Empirical support for higher-order theories of conscious awareness. Trends Cogn. Sci. 2011. 15 (8): 365–373.

  165. Lee I., Hunsaker M.R., Kesner R.P. The role of hippocampal subregions in detecting spatial novelty. Behav. Neurosci. 2005. 119 (1): 145–153.

  166. Lee H., Golkowski D., Jordan D., Berger S., Ilg R., Lee J., Mashour G.A., Lee U.; ReCCognition. Study Group. Relationship of critical dynamics, functional connectivity, and states of consciousness in large-scale human brain networks. Neuroimage. 2019. 188: 228–238.

  167. Lega B., Burke J., Jacobs J., Kahana M.J. Slow-theta-to-gamma phase–amplitude coupling in human hippocampus supports the formation of new episodic memories. Cereb. Cortex. 2016. 26 (1): 268–278.

  168. Lehmann H., McNamara K.C. Repeatedly reactivated memories become more resistant to hippocampal damage. Learn. Mem. 2011. 18 (3): 132–135.

  169. Liang Z., Liu X., Zhang N. Dynamic resting state functional connectivity in awake and anesthetized rodents. Neuroimage. 2015. 104: 89–99.

  170. Libet B. Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav. and Brain Sci. 1985. 8: 529–566.

  171. Liu X., de Zwart J.A., Schölvinck M.L., Chang C., Ye F.Q., Leopold D.A., Duyn J.H. Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. Nat. Commun. 2018. 9 (1): 395.

  172. Long L.L., Bunce J.G., Chrobak J. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus. Front. Syst. Neurosci. 2015. 9: 37.

  173. Lord L.D., Expert P., Fernandes H.M., Petri G., Van Hartevelt T.J., Vaccarino F., Deco G., Turkheimer F., Kringelbach M.L. Insights into brain architectures from the homological scaffolds of functional connectivity networks. Front. Syst. Neurosci. 2016. 10: 85.

  174. Lou H.C., Changeux J.P., Rosenstand A. Towards a cognitive neuroscience of self-awareness. Neurosci. Biobehav. Rev. 2017. 83:765–773.

  175. Malekmohammadi M., Elias W.J., Pouratian N. Human thalamus regulates cortical activity via spatially specific and structurally constrained phase-amplitude coupling. Cereb. Cortex. 2015. 25 (6): 1618–1628.

  176. Malerba P., Kopell N. Phase resetting reduces theta-gamma rhythmic interaction to a one-dimensional map. J. Math. Biol. 2013. 66 (7): 1361–1386.

  177. Mashour G.A. The controversial correlates of consciousness. Science. 2018. 360 (6388): 493–494.

  178. Mashour G.A., Hudetz A.G. Neural correlates of unconsciousness in large-scale brain networks. Trends Neurosci. 2018. 41 (3): 150–160.

  179. Mattar M.G., Cole M.W., Thompson-Schill S.L., Bassett D.S. A functional cartography of cognitive systems. PLoS Comput. Biol. 2015. 11 (12): e1004533.

  180. Mattar M.G., Kahn D.A., Thompson-Schill S.L., Aguirre G.K. Varying timescales of stimulus integration unite neural adaptation and prototype formation. Curr. Biol. 2016. 26 (13): 1669–1676.

  181. Mazzucato L., Fontanini A., La Camera G. Dynamics of multistable states during ongoing and evoked cortical activity. J. Neurosci. 2015. 35 (21): 8214–8231.

  182. Merker B. Consciousness without a cerebral cortex: a challenge for neuroscience and medicine. Behav. Brain Sci. 2007. 30 (1): 63–81.

  183. Millan E.Z., Milligan-Saville J., McNally G.P. Memory retrieval, extinction, and reinstatement of alcohol seeking. Neurobiol. Learn. Mem. 2013. 101: 26–32.

  184. Misic B., Goñi J., Betzel R.F., Sporns O., McIntosh A.R. A network convergence zone in the hippocampus. PLoS Comput. Biol. 2014. 10 (12): e1003982.

  185. Mitra A., Snyder A.Z., Hacker C.D., Pahwa M., Tagliazucchi E., Laufs H., Leuthardt E.C., Raichle M.E. Human cortical-hippocampal dialogue in wake and slow-wave sleep. Proc. Natl. Acad. Sci. U.S.A. 2016. 113 (44): E6868–E6876.

  186. Mohr H., Wolfensteller U., Betzel R.F., Mišić B., Sporns O., Richiardi J., Ruge H. Integration and segregation of large-scale brain networks during short-term task automatization. Nat. Commun. 2016. 7: 13217.

  187. Monfils M.H., Cowansage K.K., Klann E., LeDoux J.E. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science. 2009. 324 (5929): 951–955.

  188. Montijn J.S., Meijer G.T., Lansink C.S., Pennartz C.M. Population-level neural codes are robust to single-neuron variability from a multidimensional coding perspective. Cell Rep. 2016. 16 (9): 2486–2498.

  189. Moretti P., Minoz M.A. Griffiths phases and the stretching of criticality in brain networks. Nat. Commun. 2013. 4: 2521.

  190. Mudrik L., Breska A., Lamy D., Deouell L.Y. Integration without awareness: expanding the limits of unconscious processing. Psychol. Sci. 2011. 22 (6): 764–770.

  191. Myers J. Does phenomenal consciousness overflow attention? An argument from feature-integration. Florida Philosophical Review. 2017. 17 (1): 28–44.

  192. Nakatani C., Raffone A., van Leeuwen C. Efficiency of conscious access improves with coupling of slow and fast neural oscillations. J. Cogn. Neurosci. 2014. 26 (5): 1168–1179.

  193. Nakayama R., Motoyoshi I. Attention periodically binds visual features as single events depending on neural oscillationsphase-locked to action. J. Neursci. 2019. 39 (21): 4153–4161.

  194. Noah S., Mangun G.R. Recent evidence that attention is necessary, but not sufficient, for conscious perception. Ann. N.Y. Acad. Sci. 2019. Special Issue: The Year in Cognitive Neuroscience: 1–12.

  195. Noe A., Thompson E. Are there neural correlates of consciousness? Journal of Consciousness Studies. 2004. 11 (1): 3–28.

  196. Noirhomme Q., Soddu A., Lehembre R., Vanhaudenhuyse A., Boveroux P., Boly M., Laureys S. Brain connectivity in pathological and pharmacological coma. Front. Syst. Neurosci. 2010. 4: 160.

  197. Norman K.A., Joel R. Quamme J.R., Ehren L. Newman E.L. Multivariate methods for tracking cognitive states. In Neuroimaging of Human Memory: Linking Cognitive Processes to Neural Systems. 2 ed. 2012. 488 p.

  198. Norman L.J., Heywood C.A., Kentridge R.W. Object-based attention without awareness. Psychol. Sci. 2013. 24 (6): 836–843.

  199. Northoff G. Psychopathology and pathophysiology of the self in depression – neuropsychiatric hypothesis. J. Affect. Disord. 2007. 104 (1–3): 1–14.

  200. Olcese U., Bos J.J., Vinck M., Lankelma J.V., van Mourik-Donga L.B., Schlumm F., Pennartz C.M. Spike-based functional connectivity in cerebral cortex and hippocampus: loss of global connectivity is coupled to preservation of local connectivity during non-rem sleep. J. Neurosci. 2016. 36 (29): 7676–7692.

  201. Owen A.M. The search for consciousness. Neuron. 2019. 102 (3): 526–528.

  202. Palm G. Neural information processing in cognition: we start to understand the orchestra, but where is the conductor? Front. Comput. Neurosci. 2016. 10: 3.

  203. Palmieri A., Calvo V., Kleinbub J.R., Meconi F., Marangoni M., Barilaro P., Broggio A., Sambin M., Sessa P. “Reality” of near-death-experience memories: evidence from a psychodynamic and electrophysiological integrated study. Front. Hum. Neurosci. 2014. 8: 429.

  204. Pantani M., Tagini A., Raffone A. Phenomenal consciousness, access consciousness and self across waking and dreaming: bridging phenomenology and neuroscience. Phenomenology and Cognitive Sciences. 2018. 17 (1): 175–197.

  205. Park H.J., Friston K. Structural and functional brain networks: from connections to cognition. Science. 2013. 342 (6158): 1238411.

  206. Parlatini V., Radua J., Dell’Acqua F., Leslie A., Simmons A., Murphy D.G., Catani M., Thiebaut de Schotten M. Functional segregation and integration within fronto-parietal networks. Neuroimage. 2017. 146: 367–375.

  207. Phillips I. The methodological puzzle of phenomenal consciousness. Philos. Trans. R Soc. Lond. B Biol. Sci. 2018. 373 (1755).

  208. Pigorini A., Sarasso S., Proserpio P., Szymanski C., Arnulfo G., Casarotto S., Fecchio M., Rosanova M., Mariotti M., Lo Russo G., Palva J.M., Nobili L. Massimini M. Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep. Neuroimage. 2015. 112: 105–113.

  209. Pineyro M.E., Ferrer Monti R.I., Alfei J.M., Bueno A.M., Urcelay G.P. Memory destabilization is critical for the success of the reactivation-extinction procedure. Learn. Mem. 2013. 21 (1): 46–54.

  210. Pinto Y., Neville D.A., Otten M., Corballis P.M., Lamme V.AF., de Haan E.H.F., Foschi N., Fabri M. Split brain: divided perception but undivided consciousness. Brain. 2017. 140 (5): 1231–1237.

  211. Pitts M.A., Lutsyshyna L.A., Hillyard S.A. The relationship between attention and consciousness: an expanded taxonomy and implicationsfor “no-report” paradigms. Philos. Trans. R Soc. Lond. B Biol. Sci. 2018. 373 (1755): 20170348.

  212. Pockett S. Field theories of consciousness. Scholarpedia, 2013. 8 (12): 4951. http://www.scholarpedia.org/article/Field_theories_of_consciousness

  213. Poerio G.L., Sormaz M., Wang H.T., Margulies D., Jefferies E., Smallwood J. The role of the default mode network in component processes underlying the wandering mind. Soc. Cogn. Affect. Neurosci. 2017. 12 (7): 1047–1062.

  214. Poo M.M., Pignatelli M., Ryan T.J., Tonegawa S., Bonhoeffer T., Martin K.C., Rudenko A., Tsai L.H., Tsien RW., Fishell G., Mullins C., Gonçalves J.T., Shtrahman M., Johnston S.T., Gage F.H., Dan Y., Long J., Buzsáki G., Stevens C. What is memory? The present state of the engram. BMC Biol. 2016. 14: 40.

  215. Posner M.I. Attention: the mechanisms of consciousness. Proc. Natl. Acad. Sci. U. S. A. 1994. 91 (16): 7398–7403.

  216. Preti M.G., Bolton T.A., Van De Ville D. The dynamic functional connectome: State-of-the-art and perspectives. Neuroimage. 2017. 160: 41–54.

  217. Priesemann V., Valderrama M., Wibral M., Le Van Quyen M. Neuronal avalanches differ from wakefulness to deep sleep – evidence from intracranial depth recordings in humans. PLoS Comput. Biol. 2013. 9 (3): e1002985.

  218. Purdon P.L., Pierce E.T., Mukamel E.A., Prerau M.J., Walsh J.L., Wong K.F., Salazar-Gomez A.F., Harrell P.G., Sampson A.L., Cimenser A., Ching S., Kopell N.J., Tavares-Stoeckel C., Habeeb K., Merhar R., Brown E.N. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl. Acad. Sci. U. S. A. 2013. 110 (12): E1142–E1151.

  219. Radulovic J., Tronson N.C. Receptors in (e)motion. Nat. Neurosci. 2011. 14 (10): 1222–1224.

  220. Reniers R.L., Corcoran R., Völlm B.A., Mashru A., Howard R., Liddle P.F. Moral decision-making, ToM, empathy and the default mode network. Biol. Psychol. 2012. 90 (3): 202–210.

  221. Rochford K.C., Jack A.I., Boyatzis R.E., French S.E. Ethical leadership as a balance between opposing neural networks. J. Bus. Ethics. 2017. 144 (4):755–770.

  222. Ryan T.J., Roy D.S., Pignatelli M., Arons A., Tonegawa S. Memory. Engram cells retain memory under retrograde amnesia. Science. 2015. 348 (6238): 1007–1013.

  223. Sanchez-Alavez M., Robledo P., Wills D.N., Havstad J., Ehlers C.L. Cholinergic modulation of event-related oscillations (ERO). Brain Res. 2014. 1559: 11–25.

  224. Sandberg K., Frässle S., Pitts M. Future directions for identifying the neural correlates of consciousness. Nat. Rev. Neurosci. 2016. 17 (10): 666.

  225. Schedlbauer A.M., Copara M.S., Watrous A.J., Ekstrom A.D. Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans. Sci. Rep. 2014. 4: 6431.

  226. Scholvinck M.L., Maier A., Ye F.Q., Duyn J.H., Leopold D.A. Neural basis of global resting-state fMRI activity. Proc. Natl. Acad. Sci. U. S. A. 2010. 107 (22): 10238–10243.

  227. Schorr B., Schlee W., Arndt M., Bender A. Coherence in resting-state EEG as a predictor for the recovery from unresponsive wakefulness syndrome. J. Neurol. 2016. 263 (5): 937–953.

  228. Schroeder C.E., Lakatos P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 2009. 32 (1): 9–18.

  229. Schultz D.H., Cole M.W. Higher intelligence is associated with less task-related brain network reconfiguration. J. Neurosci. 2016. 36 (33): 8551–8561.

  230. Schultz D.H., Balderston N.L., Baskin-Sommers A.R., Larson C.L., Helmstetter F.J. Psychopaths show enhanced amygdala activation during fear conditioning. Front. Psychol. 2016. 7: 348.

  231. Scott G., Fagerholm E.D., Mutoh H., Leech R., Sharp D.J., Shew W.L., Knöpfel T. Voltage imaging of waking mouse cortex reveals emergence of critical neuronal dynamics. J. Neurosci. 2014. 34 (50): 16611–16620.

  232. Sergent J. A new look at the human split brain. Brain. 1987. 110 (Pt 5): 1375–1392.

  233. Shani I., Keppler J. Beyond combination: How cosmic consciousness grounds ordinary experience. Journal of the American Philosophical Association. 2018. 4 (3): 390–410.

  234. Shearkhani O., Takehara-Nishiuchi K. Coupling of prefrontal gamma amplitude and theta phase is strengthened in trace eyeblinkconditioning. Neurobiol. Learn. Mem. 2013. 100: 117–126.

  235. Shema R., Kulicke R., Cowley G.S., Stein R., Root D.E., Heiman M. Synthetic lethal screening in the mammalian central nervous system identifies Gpx6 as a modulator of Huntington’s disease. Proc. Natl. Acad. Sci. U. S. A. 2015. 112 (1): 268–272.

  236. Shew W.L., Plenz D. The functional benefits of criticality in the cortex. Neuroscientist. 2013. 19 (1): 88–100.

  237. Shine J.M., Aburn M.J., Breakspear M., Poldrack R.A. The modulation of neural gain facilitates a transition between functional segregation and integration in the brain. eLife. 2018. 7: e31130.

  238. Shine J.M., Bissett P.G., Bell P.T., Koyejo O., Balsters J.H., Gorgolewski K.J., Moodie C.A., Poldrack R.A. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron. 2016. 92 (2): 544–554.

  239. Shirvalkar P.R., Rapp P.R., Shapiro M.L. Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodes. Proc. Natl. Acad. Sci. U. S. A. 2010. 107 (15): 7054–7059.

  240. Simione L., Di Pace E., Chiarella S.G., Raffone A. Visual attention modulates phenomenal consciousness: evidence from a change detectionstudy. Front. Psychol. 2019. 10: 2150.

  241. Singer W. The Brain – An Orchestra without a Conductor. Max Planck Research. 2005. 15–18.

  242. Sitt J.D., King J.R., El Karoui I., Rohaut B., Faugeras F., Gramfort A., Cohen L., Sigman M., Dehaene S., Naccache L. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain. 2014. 137 (Pt 8): 2258–2270.

  243. Solms M. The hard problem of consciousness and the free energy principle. Front. Psychol. 2018. 9: 2714.

  244. Solovey G., Alonso L.M., Yanagawa T., Fujii N., Magnasco M.O., Cecchi G.A, Proekt A. Loss of consciousness is associated with stabilization of cortical activity. J. Neurosci. 2015. 35 (30): 10866–10877.

  245. Spaak E., Bonnefond M., Maier A., Leopold D.A., Jensen O. Layer-specific entrainment of γ-band neural activity by the α rhythm in monkey visual cortex. Curr. Biol. 2012. 22 (24): 2313–2318.

  246. Spielberg J.M., Miller G.A., Heller W., Banich M.T. Flexible brain network reconfiguration supporting inhibitory control. Proc. Natl. Acad. Sci. U.S.A. 2015. 112 (32): 10020–10025.

  247. Spreng R.N., Stevens W.D., Viviano J.D., Schacter D.L. Attenuated anticorrelation between the default and dorsal attention networks with aging: evidence from task and rest. Neurobiol. Aging. 2016. 45: 149–160.

  248. Stitt I., Hollensteiner K.J., Galindo-Leon E., Pieper F., Fiedler E., Stieglitz T., Engler G., Nolte G., Engel A.K. Dynamic reconfiguration of cortical functional connectivity across brain states. Sci. Rep. 2017. 7 (1): 8797.

  249. Storm J.F., Boly M., Casali A.G., Massimini M., Olcese U., Pennartz C.M.A., Wilke M. Consciousness regained: disentangling mechanisms, brain systems, and behavioral responses. J. Neurosci. 2017. 37 (45): 10882–10893.

  250. Sui J., Humphreys G.W. The integrative self: how self-reference integrates perception and memory. Trends Cogn. Sci. 2015. 19 (12): 719–728.

  251. Swann N.C., de Hemptinne C., Maher R.B., Stapleton C.A., Meng L., Gelb A.W., Starr P.A. Motor system interactions in the beta band decrease during loss of consciousness. J. Cogn. Neurosci. 2016. 28 (1): 84–95.

  252. Sweeney-Reed C.M., Zaehle T., Voges J., Schmitt F.C., Buentjen L., Kopitzki K., Richardson-Klavehn A., Hinrichs H., Heinze H.J., Knight R.T., Rugg M.D. Clinical, neuropsychological, and pre-stimulus dorsomedial thalamic nucleus electrophysiological data in deep brain stimulation patients. Data Brief. 2016. 8: 557–561.

  253. Tagliazucchi E., von Wegner F., Morzelewski A., Brodbeck V., Borisov S., Jahnke K., Laufs H. Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle. Neuroimage. 2013. 70: 327–339.

  254. Tagliazucchi E., Chialvo D.R., Siniatchkin M., Amico E., Brichant J.F., Bonhomme V., Noirhomme Q., Laufs H., Laureys S. Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics. J. R Soc. Interface. 2016. 13 (114): 20151027.

  255. Tang W., Liu H., Douw L., Kramer M.A., Eden U.T., Hämäläinen M.S., Stufflebeam S.M. Dynamic connectivity modulates local activity in the core regions of the default-mode network. PNAS. 2017. 114 (36): 9713–9718.

  256. Taylor A.M., Bus T., Sprengel R., Seeburg P.H., Rawlins J.N., Bannerman D.M. Hippocampal NMDA receptors are important for behavioural inhibition but not for encoding associative spatial memories. Philos. Trans. R Soc. Lond. B Biol. Sci. 2013. 369 (1633): 20130149.

  257. Telch M.J., York J. Lancaster C.L., Monfils M.H. Use of a brief fear memory reactivation procedure for enhancing exposure therapy. Clinical Psychological Science. 2017. 5 (2): 367–378.

  258. Thavabalasingam S., O’Neil E.B., Tay J., Nestor A., Lee A.C. Evidence for the incorporation of temporal duration information in human hippocampal long-term memory sequence representations. Proc. Natl. Acad. Sci. U. S. A. 2019. 116 (13): 6407–6414.

  259. Thomas J.I. Current status of consciousness research from the neuroscience perspective. Acta Scientific Neurology. 2019. 2 (1): 38–44.

  260. Thompson W.H., Fransson P. The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain. Neuroimage. 2015. 121: 227–242.

  261. Titley H.K., Brunel N., Hansel C. Toward a neurocentric view of learning. Neuron. 2017. 95 (1): 19–32.

  262. Tort A.B., Komorowski R.W., Manns J.R., Kopell N.J., Eichenbaum H. Theta-gamma coupling increases during the learning of item-context associations. Proc. Natl. Acad. Sci. U. S. A. 2009. 106 (49): 20942–20947.

  263. Tsanov M. Septo-hippocampal signal processing: breaking the code. Prog. Brain Res. 2015. 219: 103–120.

  264. Tsuchiya N., van Boxtel J. Introduction to research topic: attention and consciousness in different senses. Front. Psychol. 2013. 4: 249.

  265. Tsunada J., Baker A.E., Christison-Lagay K.L., Davis S.J., Cohen Y.E. Modulation of cross-frequency coupling by novel and repeated stimuli in the primate ventrolateral prefrontal cortex. Front. Psychol. 2011. 2: 217.

  266. Turchi J., Chang C., Ye F.Q., Russ B.E., Yu D.K., Cortes C.R., Monosov I.E., Duyn J.H., Leopold D.A. The basal forebrain regulates global resting-state fmri fluctuations. Neuron. 2018. 97 (4): 940–952.e4.

  267. van der Meij R., Kahana M., Maris E. Phase-amplitude coupling in human electrocorticography is spatially distributed and phase diverse. J. Neurosci. 2012. 32 (1): 111–123.

  268. van Vugt B., Dagnino B., Vartak D., Safaai H., Panzeri S., Dehaene S., Roelfsema P.R. The threshold for conscious report: Signal loss and response bias in visual and frontal cortex. Science. 2018. 360 (6388): 537–542.

  269. van Wingerden M., van der Meij R., Kalenscher T., Maris E., Pennartz C.M. Phase-amplitude coupling in rat orbitofrontal cortex discriminates between correct and incorrect decisions during associative learning. J. Neurosci. 2014. 34 (2): 493–505.

  270. Vatansever D., Menon D.K., Manktelow A.E., Sahakian B.J., Stamatakis E.A. Default mode dynamics for global functional integration. J. Neurosci. 2015. 35 (46): 15254–15262.

  271. Vinogradova O.S. Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus. 2001. 11 (5): 578–598.

  272. van Boxtel J.J., Tsuchiya N., Koch C. Opposing effects of attention and consciousness on afterimages. Proc. Natl. Acad. Sci. U. S. A. 2010. 107 (19): 8883–8888.

  273. Weaver K.E., Wander J.D., Ko A.L., Casimo K., Grabowski T.J., Ojemann J.G., Darvas F. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity. Neuroimage. 2016. 128: 238–251.

  274. Werner G. Consciousness viewed in the framework of brain phase space dynamics, criticality, and the renormalization group. Chaos, Solitons and Fractals. 2013. 55: 3–12.

  275. Westphal A.J., Wang S., Rissman J. Episodic Memory Retrieval Benefits from a Less Modular Brain Network Organization. J. Neurosci. 2017. 37 (13): 3523–3531.

  276. Wiltshire T.J., Euler M.J., McKinney T.L., Butner J.E. Changes in dimensionality and fractal scaling suggest soft-assembled dynamics in human EEG. Front. Physiol. 2017. 8: 633.

  277. Wu X., Zou Q., Hu J., Tang W., Mao Y., Gao L., Zhu J., Jin Y., Wu X., Lu L., Zhang Y., Zhang Y., Dai Z., Gao J.H., Weng X., Zhou L., Northoff G., Giacino J.T., He Y., Yang Y. Intrinsic functional connectivity patterns predict consciousness level and recovery outcome in acquired brain injury. J. Neurosci. 2015. 35 (37): 12932–12946.

  278. Yue Q., Martin R.C., Fischer-Baum S., Ramos-Nuñez A.I., Ye F., Deem M.W. Brain modularity mediates the relation between task complexity and performance. J. Cogn. Neurosci. 2017. 29 (9): 1532–1546.

  279. Zalesky A., Fornito A., Cocchi L., Gollo L.L., Breakspear M. Time-resolved resting-state brain networks. Proc. Natl. Acad. Sci. U. S. A. 2014. 111 (28): 10341–10346.

  280. Zhigalov A., Arnulfo G., Nobili L., Palva S., Palva J.M. Modular co-organization of functional connectivity and scale-free dynamics in the human brain. Netw Neurosci. 2017. 1 (2): 143–165.

Дополнительные материалы отсутствуют.