Физиология растений, 2023, T. 70, № 7, стр. 701-714

Антоцианы растений: структура, регуляция биосинтеза, функции, экология

Т. К. Головко *

Институт биологии Коми научного центра Уральского отделения Российской академии наук
Сыктывкар, Россия

* E-mail: golovko@ib.komisc.ru

Поступила в редакцию 09.08.2023
После доработки 12.09.2023
Принята к публикации 14.09.2023

Аннотация

В обзоре представлены современные сведения об антоцианах (АЦ), их локализации в различных органах и тканях растений. Рассмотрены пути и регуляция биосинтеза, функциональная значимость и экологическая роль этих соединений в жизнедеятельности и адаптации к условиям среды. Обобщены данные об индукции синтеза АЦ под влиянием стресс-факторов и в онтогенезе. Внимание сконцентрировано на участии АЦ в защите фотосинтетического аппарата. Обсуждены перспективы дальнейших исследований и использования АЦ в качестве индикатора состояния растительного организма. Отмечено значение этих соединений для человека и его здоровья.

Ключевые слова: антоцианы, биосинтез, локализация, онтогенез, регуляция, стресс-факторы, структура, флавоноиды, фотосинтетический аппарат, функции

Список литературы

  1. Носов А.М. Вторичный метаболизм // Физиология растений: учебник для студ. вузов. М.: Издательский центр “Академия”. 2007. С. 588.

  2. Selmar D., Kleinweichter M. Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products // Plant Cell Physiol. 2013. V. 54. P. 817. https://doi.org/10.1093/pcp/pct054

  3. Salam U., Ullah S., Tang Z.-H., Elateeg A., Khan J., Khan A., Ali S. Plant metabolomics: an overview of the role of primary and secondary metabolites against different environmental stress factors // Life. 2023. V. 13. P. 706. https://doi.org/10.3390/life13030706

  4. Croteau R., Kutchan T.M., Lewis N.G. Natural products (secondary metabolites) / Biochemistry and molecular biology of plants // Eds. B. Buchanan, W. Gruissem, R. Jones. Rockville, Maryland: Courier Comp., Inc. 2000. P. 1250.

  5. Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: an overview // J. Nutr. Sci. 2016. V. 5:E47. https://doi.org/10.1017/jns.2016.41

  6. Карабанов И.А. Флавоноиды в мире растений. Минск: Ураджай, 1981. 80 с.

  7. Chalker-Scott L. Environmental significance of anthocyanins in plant stress responses // Photochem. Photobiol. 1999. V. 70. P. 1. https://doi.org/10.1111/j.1751-1097.1999.tb01944.x

  8. Manetas Y. Why some leaves are anthocyanic and why most anthocyanic leaves are red? // Flora. 2006. V. 201. P. 163. https://doi.org/10.1016/j.flora.2005.06.010

  9. Landi M., Tattini M., Gould K.S. Multiple functional roles of anthocyanins in plant-environment interactions // Environ. Exp. Bot. 2015. V. 119. P. 4. https://doi.org/10.1016/j.envexpbot.2015.05.012

  10. Gould K.S., Jay-Allemand C., Logan B.A., Baissac Y., Bidel L.P. When are foliar anthocyanins useful to plants? Re-evaluation of the photoprotection hypothesis using Arabidopsis thaliana mutants that differ in anthocyanin accumulation // Environ. Exp. Bot. 2018. V. 154. P. 11. https://doi.org/10.1016/j.envexpbot.2018.02.006

  11. Agati G., Brunetti C., Fini A., Gori A., Guidi L., Landi M., Sebastiani F., Tattini M. Are flavonoids effective antioxidants in plants? Twenty years of our investigation // Antioxidants. 2020. V. 9. P.1098. https://doi.org/10.3390/antiox9111098

  12. Lev-Yadun S. The phenomenon of red and yellow autumn leaves: hypotheses, agreements and disagreements // J. Evol. Biol. 2022. V. 35. P. 1245. https://doi.org/10.1111/jeb.14069

  13. Nurtiana W. Anthocyanin as natural colorant: a review // Food ScienTech J. 2019. V. 1. P. 1. https://doi.org/10.33512/fsj.v1i1.6180

  14. Fernaґndez-Loґpez J.A., Fernaґndez-Lledo V., Angosto J.M. New insights into red plant pigments: more than just natural colorants // RSC Adv. 2020. V. 10. P. 24669. https://doi.org/10.1039/D0RA03514A

  15. Grotewold E. The genetics and biochemistry of floral pigments // Annu. Rev. Plant Biol. 2006. V. 57. P. 761. https://doi.org/10.1146/annurev.arplant.57.032905.105248

  16. Yoshida K., Mori M., Kondo T. Blue flower color development by anthocyanins: from chemical structure to cell physiology // Nat. Prod. Rep. 2009. V. 26. P. 884. https://doi.org/10.1039/B800165K

  17. Mannino G., Gentile C., Ertani A., Serio G., Bertea C.M. Anthocyanins: biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods ‒ a review // Agriculture. 2021. V. 11. P. 212. https://doi.org/10.3390/agriculture11030212

  18. Solovchenko A.E., Merzlyak M.N. Screening of visible and UV radiation as a photoprotective mechanism in plants // Russ. J. Plant. Physiol. 2008. V. 55. P. 719. https://doi.org/10.1134/S1021443708060010

  19. Garg M., Chawla M., Chunduri V., Kumar R., Sharma S., Sharma N.K., Kaur N., Kumar A., Mundey J.K., Saini M.K., Singh S.P. Transfer of grain colors to elite wheat cultivars and their characterization // J. Cereal Sci. 2016. V. 71. P. 138. https://doi.org/10.1016/j.jcs.2016.08.004

  20. Khlestkina E.K., Shoeva O.Y., Gordeeva E.I., Otmakhova Y.S., Usenko N.I., Tikhonova M.A., Tenditnik M.V., Amstislavskaya T.G. Anthocyanins in wheat grain: genetic control, health benefit and bread-making quality // Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology: Proc. Fifth International Scientific Conference PlantGen2019. Novosibirsk, 2019. https://doi.org/10.18699/ICG-PlantGen2019-02

  21. Holton T.A., Cornish E.C. Genetics and biochemistry of anthocyanin biosynthesis // Plant Cell. 1995. V. 7. P. 1071. https://doi.org/10.1105/tpc.7.7.1071

  22. Tanaka Y., Sasaki N., Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids // Plant J. 2008. V. 54. P. 733. https://doi.org/10.1111/j.1365-313X.2008.03447.x

  23. Zhao J. Flavonoid transport mechanisms: how to go, and with whom // Trends Plant Sci. 2015. V. 20. P. 576. https://doi.org/10.1016/j.tplants.2015.06.007

  24. Gu K.-D., Wang C.-K., Hu D.-G., Hao Y.-J. How do anthocyanins paint our horticultural products? // Sci. Hortic. 2019. V. 249. P. 257. https://doi.org/10.1016/j.scienta.2019.01.034

  25. Poustka F., Irani N.G., Feller A., Lu Y., Pourcel L., Frame K., Grotewold G. A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in arabidopsis and contributes to the formation of vacuolar inclusions // Plant Physiol. 2007. V. 145. P. 1323. https://doi.org/10.1104/pp.107.105064

  26. Quattrocchio F., Verweij W., Kroon A., Spelt C., Mol J., Koes R. PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway // Plant Cell. 2006. V. 18. P. 1274. https://doi.org/10.1105/tpc.105.034041

  27. Yin X., Wang T., Zhang M., Zhang Y., Irfan M., Chen L., Zhang L. Role of core structural genes for flavonoid biosynthesis and transcriptional factors in flower color of plants // Biotechnol. Biotechnol. Equip. 2021. V. 35. P. 1214. https://doi.org/10.1080/13102818.2021.1960605

  28. Pelletier M.K., Murrell J.R., Shirley B.W. Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis (further evidence for differential regulation of “early” and “late” genes) // Plant Physiol. 1997. V. 113. P. 1437. https://doi.org/10.1104/pp.113.4.1437

  29. Guo N., Han S., Zong M., Wang G., Zheng S., Liu F. Identification and differential expression analysis of anthocyanin biosynthetic genes in leaf color variants of ornamental kale // BMC genom. 2019. V. 20. P. 1. https://doi.org/10.1186/s12864-019-5910-z

  30. Xu W., Dubos C., Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes // Trends Plant Sci. 2015. V. 20. P. 176. https://doi.org/10.1016/j.tplants.2014.12.001

  31. Li J., Han G., Sun C., Sui N. Research advances of MYB transcription factors in plant stress resistance and breeding // Plant Signal. Behav. 2019. V. 14:e1613131 https://doi.org/10.1080/15592324.2019.1613131

  32. Dubos C., Stracke R., Grotewold E., Weisshaar. B., Martin C., Lepiniec L. MYB transcription factors in Arabidopsis // Trends Plant Sci. 2010. V. 15. P. 573. https://doi.org/10.1016/j.tplants.2010.06.005

  33. Lin-Wang K.L., Bolitho K., Grafton K., Kortstee A., Karunairetnam S., McGhie T.K., Espley R.V., Hellens R.P., Allan A.C. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae // BMC Plant Biol. 2010. V. 10. P. 50. https://doi.org/10.1186/1471-2229-10-50

  34. Chen L., Hu B., Qin Y., Hu G., Zhao J. Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors // Plant Physiol. Biochem. 2019. V. 136. P. 178. https://doi.org/10.1016/j.plaphy.2019.01.024

  35. Shi L., Chen X., Wang K., Yang M., Chen W., Yang Z., Cao S. MrMYB6 from Chinese bayberry (Myrica rubra) negatively regulates anthocyanin and proanthocyanidin accumulation // Front. Plant Sci. 2021. V. 12. P. 685654. https://doi.org/10.3389/fpls.2021.685654

  36. Muhammad N., Uddin N., Khali M., Khan U., Ali N., Ali K., Jones D.A. Diverse role of basic Helix-Loop-Helix (bHLH) transcription factor superfamily genes in the fleshy fruit-bearing plant species // Czech J. Genet. Plant Breed. 2023. V. 59. P. 1. https://doi.org/10.17221/2/2022-CJGPB

  37. Mishra A.K., Puranik S., Prasad M. Structure and regulatory networks of WD40 protein in plants // J. Plant Biochem. Biotechnol. 2012. V. 21. P. 32. https://doi.org/10.1007/s13562-012-0134-1

  38. Liu X., Feng C., Zhang M., Yin X., Xu C., Chen K. The MrWD40-gene of Chinese bayberry (Myrica rubra) interacts with MYB and bHLH to enhance anthocyanin accumulation // Plant Mol. Biol. Rep. 2013. V. 31. P. 1474. https://doi.org/10.1007/s11105-013-0621-0

  39. Strygina K.V., Khlestkina E.K. Structural and functional organization and evolution of the WD40 genes involved in the regulation of flavonoid biosynthesis in the Triticeae tribe // Russ. J. Genet. 2019. V. 55. P. 1398. https://doi.org/10.1134/S1022795419110152

  40. Liu H., Liu Z., Wu Y., Zheng L., Zhang G. Regulatory mechanisms of anthocyanin biosynthesis in Apple and Pear // Int. J. Mol. Sci. 2021. V. 22. P. 8441. https://doi.org/10.3390/ijms22168441

  41. Jin S.-W., Rahim M.A., Kim H.-T., Park J.-I., Kang J.-G., Nou I.-S. Molecular analysis of anthocyanin-related genes in ornamental cabbag // Genome. 2018. V. 61. P. 111. https://doi.org/10.1139/gen-2017-0098

  42. Heng S., Wang L., Yang X., Huang H., Chen G., Cui M., Liu M., Lv Q., Wan Z., Shen J., Fu T. Genetic and comparative transcriptome analysis revealed DEGs involved in the purple leaf formation in Brassica juncea // Front. Genet. 2020. V. 11. P. 322. https://doi.org/10.3389/fgene.2020.00322

  43. Mazza G., Cacace J.E., Kay C.D. Methods of analysis for anthocyanins in plants and biological fluids // J. AOAC Int. 2004. V. 87. P. 129.

  44. Lee J., Durst R. W., Wrolstad R. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study // J. AOAC Int. 2005. V. 88. P. 1269. https://doi.org/10.1093/jaoac/88.5.1269

  45. Marpaung A., Tjahjadi K. The analysis of monomeric anthocyanin by pH differential method is not appropriate for certain anthocyanins // Proc. 16th ASEAN Food Conference Outlook and Opportunities of Food Technology and Culinary for Tourism Industry. Sanur-Bali, Indonesia, 2019. https://doi.org/10.5220/0009985400002964

  46. Truong V.-D., Deighton N., Thompson R.T., McFeeters R.F., Dean L.O., Pecota K.V., Yencho G.C. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweet potatoes by HPLC-DAD/ESI-MS/MS // J. Agric. Food Chem. 2010. V. 58. P. 404. https://doi.org/10.1021/jf902799a

  47. Saha S., Singh J., Paul A., Sarkar R., Khan Z., Banerjee K. Anthocyanin profiling using UV-vis spectroscopy and liquid chromatography mass spectrometry // J. AOAC Int. 2020. V. 103. P. 23. https://doi.org/10.5740/jaoacint.19-0201

  48. Merzlyak M., Gitelson A., Chivkunova O., Solovchenko A., Pogosyan S. Application of reflectance spectroscopy for analysis of higher plant pigments // Russ. J. Plant Physiol. 2003. V. 50. P. 704. https://doi.org/10.1023/A:1025608728405

  49. Gitelson A., Solovchenko A. Non-invasive quantification of foliar pigments: possibilities and limitations of reflectance- and absorbance-based approaches // J. Photochem. Photobiol. B: Biol. 2018. V. 178. P. 537. https://doi.org/10.1016/j.jphotobiol.2017.11.023

  50. Dymova O.V., Zakhozhiy I.G., Golovko T.K. Age and adaptive changes in the photosynthetic apparatus of leaves in winter green herbaceous plant Ajuga reptans L. in the natural conditions of the taiga zone // Russ. J. Plant Physiol. 2023. V. 70. P. 114.https://doi.org/10.1134/S1021443723601325

  51. Dooner H.K., Robbins T.P., Jorgensen R.A. Genetic and developmental control of anthocyanin biosynthesis // Annu. Rev. Genet. 1991. V. 25. P. 173. https://doi.org/10.1146/annurev.ge.25.120191.001133

  52. Li J., Ren L., Gao Z., Jiang M., Liu Y., Zhou L., He J., Chen H. Combined transcriptomic and proteomic analysis constructs a new model for light induced anthocyanin biosynthesis in eggplant (Solanum melongena L.) // Plant Cell Environ. 2017. V. 40. P. 3069. https://doi.org/10.1111/pce.13074

  53. Song T., Li K., Wu T., Wang Y., Zhang X., Xu X., Yao Y., Han Z. Identification of new regulators through transcriptom analysis that regulate anthocyanin biosynthesis in apple leaves at low temperature // PloS ONE. 2019. V. 14:e0210672. https://doi.org/10.1371/journal.pone.0210672

  54. Van den Ende W., El-Esawe S.K. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses? // Environ. Exp. Bot. 2014. V. 108. P. 4. https://doi.org/10.1016/j.envexpbot.2013.09.017

  55. Margalha L. Valerio C., Baena-Gonzaґlez E. Plant SnRK1 kinases: structure, regulation, and function // AMP-activated Protein Kinase. 2016. V. 107. P. 403. https://doi.org/10.1007/978-3-319-43589-3_17

  56. Jezek M., Allan A.C., Jones J.J., Geilfus C.-M. Why do plants blush when they are hungry? // New Phytol. 2023. V. 239. P. 494. https://doi.org/10.1111/nph.18833

  57. Zhou Z., Zhi T., Liu Y., Chen Y., Ren C. Tyrosine induces anthocyanin biosynthesis in Arabidopsis thaliana // Am. J. Plant Sci. 2014. V. 5. P. 328. https://doi.org/10.4236/ajps.2014.53045

  58. Zhang N., Qi Y., Zhang H.-J., Wang X., Li H., Shi Y. Guo Y.-D. Genistein: a novel anthocyanin synthesis promoter that directly regulates biosynthetic genes in red cabbage in a light-dependent way // Front. Plant Sci. 2016. V. 7. P. 1804. https://doi.org/10.3389/fpls.2016.01804

  59. Karageorgou P., Manetas Y. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light // Tree Physiol. 2006. V. 26. P. 613. https://doi.org/10.1093/treephys/26.5.613

  60. Kariñho-Betancourt E. Plant-herbivore interections and secondary metabolites of plants: ecological and evolutionary perspectives // Bot Sci. 2018. V. 96. P. 35. https://doi.org/10.17129/botsci.1860

  61. Manetas Y., Drinia A., Petropoulou Y. High contents of anthocyanins in young leaves are correlated to low pools of xanthophyll cycle components and low risk of photoinhibition // Photosynthetica. 2002. V. 40. P. 349. https://doi.org/10.1023/A:1022614722629

  62. Neill S.O., Gould K.S. Anthocyanins in leaves: light attenuators or antioxidants? // Funct. Plant Biol. 2003. V. 30. P. 865. https://doi.org/10.1071/FP03118

  63. Drumm-Herrel H., Mohr I. Photostability of seedlings differing in their potential to synthesize anthocyanin // Physiol. Plant. 1985. V. 64. P. 60. https://doi.org/10.1111/j.1399-3054.1985.tb01213.x

  64. Neill S.O., Gould K.S., Kilmartin P.A., Mitchell K.A., Markham K.R. Antioxidant activities of red versus green leaves in Elatostema rugosum // Plant Cell Environ. 2002. V. 25. P. 539. https://doi.org/10.1046/j.1365-3040.2002.00837.x

  65. Yu Z.-C., Lin W., Zheng X.-T., Chow W.S., Luo Y.-N., Cai M.-N., Peng C.L. The relationship between anthocyanin accumulation and photoprotection in young leaves of two dominant tree species in subtropical forests in different seasons // Photosynth. Res. 2021. V. 149. P. 41. https://doi.org/10.1007/s11120-020-00781-4

  66. Hughes N.M., Morley C.B., Smith W.K. The coordination of anthocyanin decline and photosynthetic maturation in developing leaves of three deciduous tree species // New Phytol. 2007. V. 175 P. 675. https://doi.org/10.1111/j.1469-8137.2007.02133.x

  67. Solovchenko A.E., Chivkunova O.B. Physiological role of anthocyanin accumulation in common hazel juvenile leaves // Russ. J. Plant Physiol. 2011. V. 58. P. 674. https://doi.org/10.1134/S1021443711040157

  68. Zhu H., Zhang T.-J., Zheng J., Huang X.-D., Yu Z.-C., Peng C.-L., Chow W.S. Anthocyanins function as a light attenuator to compensate for insufficient photoprotection mediated by nonphotochemical quenching in young leaves of Acmena acuminatissima in winter // Photosynthetica. 2018. V. 56. P. 445. https://doi.org/10.1007/s11099-017-0740-1

  69. Borek M., Baczek-Kwinta R., Rapacz M. Photosynthetic activity of variegated leaves of Coleus x hybridus hort. cultivars characterised by chlorophyll fluorescence techniques // Photosynthetica. 2016. V. 54. P. 331. https://doi.org/10.1007/s11099-016-0225-7

  70. Trojak M., Skowron E. Role of anthocyanins in high-light stress response // World Sci. News. 2017. V. 81. P. 150.

  71. Moustaka J., Tanou G., Giannakoula A., Adamakis I.-D.S., Panteris E., Eleftheriou E.P., Moustakas M. Anthocyanin accumulation in poinsettia leaves and its functional role in photo-oxidative stress // Environ. Exp. Bot. 2020. V. 175. P. 104065 https://doi.org/10.1016/j.envexpbot.2020.104065

  72. Nielsen S.L., Simonsen A.-M. Photosynthesis and photoinhibition in two differently coloured varieties of Oxalis triangularis ‒ the effect of anthocyanin content // Photosynthetica. 2011. V. 49. P. 346. https://doi.org/10.1007/s11099-011-0042-y

  73. Шелякин М.А., Захожий И.Г., Табаленкова Г.Н., Дымова О.В., Малышев Р.В., Далькэ И.В., Головко Т.К. Содержание антоцианов, активность антиоксидантной и энергодиссипирующих систем в листьях Hylotelephium triphyllum (Haw.) Holub – представителя сем. Толстянковые на Севере // Материалы II Международного симпозиума “Молекулярные аспекты редокс-метаболизма растений” и международной научной школы “Роль активных форм кислорода в жизни растений”. Уфа, 2017. С. 432.

  74. Merzlyak M.N., Chivkunova O.B., Solovchenko A.E., Naqvi K.R. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves // J. Exp. Bot. 2008. V. 59. P. 3903. https://doi.org/10.1093/jxb/ern230

  75. Pietrini F., Iannelli M.A., Massacci A. Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis // Plant Cell Environ. 2002. V. 25. P. 1251. https://doi.org/10.1046/j.1365-3040.2002.00917.x

  76. Zhang J., Li S., An H., Zhang X., Zhou B. Integrated transcriptome and metabolome analysis reveals the anthocyanin biosynthesis mechanisms in blueberry (Vaccinium corymbosum L.) leaves under different light qualities // Front. Plant Sci. 2022 V. 13. P. 1073332. https://doi.org/10.3389/fpls.2022.1073332

  77. Singh P., Singh A., Choudhary K.K. Revisiting the role of phenylpropanoids in plant defense against UV-B stress // Plant Stress. 2023. V. 7. P. 100143. https://doi.org/10.1016/j.stress.2023.100143

  78. Bi X., Zhang J., Chen C., Zhang D., Li P., Ma F. Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel // Food Chem. 2014. V. 152. P. 205. https://doi.org/10.1016/j.foodchem.2013.11.088

  79. Захожий И.Г., Малышев Р.В., Дымова О.В., Табаленкова Г.Н., Головко Т.К. Регуляция метаболизма тепличных растений листового салата (Lactuca sativa L.) воздействием УФ радиации // Известия ТСХА. 2017. № 6. С. 42.

  80. Renner S.S., Zohner C.M. Trees growing in Eastern North America experience higher autumn solar irradiation than their European relatives, but is nitrogen limitation another factor explaining anthocyanin-red autumn leaves? A comment on Peña-Novas and Marchetti 2021 (https://doi.org/10.1111/jeb.13903) // J. Evol. Biol. 2022. V. 35. P. 183.

  81. Archetti M. Classification of hypotheses for the evolution of autumn colours // Oikos. 2009. V. 118. P. 328. https://doi.org/10.1111/j.1600-0706.2008.17164.x

  82. Thomas H., Huang L., Young M., Ougham H. Evolution of plant senescence // BMC Evol. Biol. 2009. V. 9. P. 163. https://doi.org/10.1186/1471-2148-9-163

  83. Lev-Yadun S., Gould K.S. What do red and yellow autumn leaves signal? // Bot. Rev. 2007. V. 73. P. 279.

  84. Hoch W.A., Zeldin E.L., McGown B.H. Physiological significance of anthocyanins during autumnal leaf senescence // Tree Physiol. 2001. V. 21. P. 1. https://doi.org/10.1093/treephys/21.1.1

  85. Yin G., Wang Y., Xiao Y., Yang J., Wang R., Jiang Y., Jiang Y. Relationships between leaf color changes, pigment levels, enzyme activity, photosynthetic fluorescence characteristics and chloroplast ultrastructure of Liquidambar formosana Hance // J. For. Res. 2022. V. 33. P. 1559. https://doi.org/10.1007/s11676-021-01441-6

  86. Hoch W.A., Singsaas E.L., McCown B.H. Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels // Plant Physiol. 2003. V. 133. P. 1296. https://doi.org/10.1104/pp.103.027631

  87. George C.O., Hughes N.M., Neufeld H.S. Coevolution and photoprotection as complementary hypotheses for autumn leaf reddening: a nutrient-centered perspective // New Phytol. 2022. V. 233. P. 22. https://doi.org/10.1111/nph.17735

  88. Mattila H., Tyystjärvi E. Red pigments in autumn leaves of Norway maple do not offer significant photoprotection but coincide with stress symptoms // Tree Physiol. 2023. V. 43. P. 751. https://doi.org/10.1093/treephys/tpad010

  89. Steyn W.J., Wand S.J.E., Holcroft D.M., Jacobs G. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection // New Phytol. 2002. V. 155. P. 349. https://doi.org/10.1046/j.1469-8137.2002.00482.x

  90. Akula R., Ravishankar G.A. Influence of abiotic stress signals on secondary metabolites in plants // Plant Signal. Behav. 2011. V. 6. P. 1720. https://doi.org/10.4161/psb.6.11.17613

  91. Alkhsabah I.A., Alsharafa K.Y., Kalaji H.M. Effects of abiotic factors on internal homeostasis of Mentha spicata leaves // Appl. Ecol. Environ. Res. 2018. V. 16. P. 2537. https://doi.org/10.15666/aeer/1603_25372564

  92. Mbarki S., Sytar O., Zivcak M., Abdelly C., Cerda A., Brestic M. Anthocyanins of coloured wheat genotypes in specific response to salt stress // Molecules. 2018. V. 23: 1518. https://doi.org/10.3390/molecules23071518

  93. Чупахина Г.Н., Масленников П.В. Адаптация растений к нефтяному стрессу // Экология. 2004. № 5. С. 330.

  94. Бузмаков С.А., Хотяновская Ю.В., Андреев Д.Н., Егорова Д.О., Назаров А.В. Индикация состояния экосистем в условиях нефтепромыслового техногенеза // Географический вестник. 2018. Т. 4. С. 90.

  95. Lila M.A. Anthocyanins and human health: an in vitro investigative approach // J. Biomed. Biotechnol. 2004. V. 5. P. 306. https://doi.org/10.1155/S111072430440401X

  96. Mazza G.J. Anthocyanins and heart health // Ann. Ist. Super. Sanita. 2007. V. 43. P. 369.

  97. Pascual-Teresa S., Sanchez-Ballesta M.T. Anthocyanins: from plant to health // Phytochem. Rev. 2008. V. 7. P. 281. https://doi.org/10.1007/s11101-007-9074-0

  98. Tsuda T. Dietary anthocyanin rich plants: biochemical basis and recent progress in health benefits studies // Mol. Nutr. Food Res. 2012. V. 56. P. 159. https://doi.org/10.1002/mnfr.201100526

  99. Тараховский Ю.С., Ким Ю.А., Абдрасилов Б.С., Музафаров Е.Н. Флавоноиды: биохимия, биофизика, медицина. Пущино: Sуnchrobook, 2013. 310 с.

  100. Yudina R.S., Gordeeva E.I., Shoeva O.Yu., Tikhonova M.A., Khlestkina E.K. Anthocyanins as functional food components // Vavilov J. Genetics and Breeding. 2021. V. 25. P. 178. https://doi.org/10.18699/VJ21.022

Дополнительные материалы отсутствуют.