Цитология, 2023, T. 65, № 6, стр. 535-556

Метаболизм и рецепторные механизмы действия ниацина

С. Е. Бороновский 1, В. С. Копылова 1*, Я. Р. Нарциссов 12

1 Научно-исследовательский институт цитохимии и молекулярной фармакологии
115404 Москва, Россия

2 Биомедицинская исследовательская группа BiDiPharma GmbH
22962 Siek, Germany

* E-mail: kopilova.veronika@yandex.ru

Поступила в редакцию 26.04.2023
После доработки 11.07.2023
Принята к публикации 13.07.2023

Аннотация

В работе обсуждается метаболизм ниацина, также известного как витамин В3 или РР, и механизмы его рецепторного действия в организме человека. Ниацин существует в виде различных молекулярных соединений, которые действуют как предшественники никотинамидных коферментов. Эти коферменты играют решающую роль в метаболизме, являясь донорами или акцепторами электронов в окислительно-восстановительных реакциях, катализируемых различными ферментами. Поддержание внутриклеточного пула ниацина жизненно важно не только для окислительно-восстановительного метаболизма, но и для функционирования NAD-зависимых путей. При этом патофизиологические ситуации и изменение активности ферментов могут влиять на потребность в различных формах ниацина. Помимо опосредованного воздействия через никотинамидные коферменты, он также имеет ряд прямых эффектов, включающих в себя антилиполитическую, вазодилататорную и нейропротекторную функции, точный механизм действия которых в настоящее время до конца не исследован. В целом, ниацин играет жизненно важную роль в поддержании эффективного функционирования клетки, и дальнейшее изучение его влияния на различные физиологические процессы, включая микробиом кишечника и эпигенетическую регуляцию, может привести к новым открытиям и методам лечения различных заболеваний.

Ключевые слова: витамин B3, ниацин, метаболизм, NAD

Список литературы

  1. Куликова В.А., Громыко Д.В., Никифоров А.А. 2018. Роль NAD в регуляторных процессах в клетках человека и животных. Биохимия. Т.83. С. 987. (Kulikova V.A., Gromyko D.V., Nikiforov A.A. 2018. The Regulatory role of NAD in human and animal cells. Biochemistry (Mosc). V. 83. P. 800.)

  2. Куликова В.А., Никифоров А.А. 2020. Роль гидролаз семейства NUDIX в метаболизме NAD и ADP-рибозы у млекопитающих. Биохимия. Т.85. С. 1037. (Kulikova V.A., Nikiforov A.A. 2020. Role of NUDIX hydrolases in NAD and ADP-ribose metabolism in mammals. Biochemistry (Mosc). V. 85. P. 883.)

  3. Abdelraheim S.R., Spiller D.G., McLennan A.G. 2017. Mouse Nudt13 is a Mitochondrial Nudix hydrolase with NAD(P)H pyrophosphohydrolase activity. Protein J. V. 36. P. 425.

  4. Ahmed K., Tunaru S., Tang C., Muller M., Gille A., Sassmann A., Hanson J., Offermanns S. 2010. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab. V. 11. P. 311.

  5. Airhart S.E., Shireman L.M., Risler L.J., Anderson G.D., Nagana Gowda G.A., Raftery D., Tian R., Shen D.D., O’Brien K.D. 2017. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One. V. 12: e0186459. https://doi.org/10.1371/journal.pone.0186459

  6. Anderson K.A., Madsen A.S., Olsen C.A., Hirschey M.D. 2017. Metabolic control by sirtuins and other enzymes that sense NAD(+), NADH, or their ratio. Biochim. Biophys. Acta Bioenerg. V. 1858. P. 991.

  7. Angeletti C., Amici A., Gilley J., Loreto A., Trapanotto A.G., Antoniou C., Merlini E., Coleman M.P., Orsomando G. 2022. SARM1 is a multi-functional NAD(P)ase with prominent base exchange activity, all regulated bymultiple physiologically relevant NAD metabolites. Science. V. 25: 103812.

  8. Bai P., Canto C. 2012. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. V. 16. P. 290.

  9. Belenky P., Christensen K.C., Gazzaniga F., Pletnev A.A., Brenner C. 2009. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism. J. Biol. Chem. V. 284. P. 158.

  10. Benyo Z., Gille A., Kero J., Csiky M., Suchankova M.C., Nusing R.M., Moers A., Pfeffer K., Offermanns S. 2005. GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing. J. Clin. Invest. V. 115. P. 3634.

  11. Berger F., Lau C., Dahlmann M., Ziegler M. 2005. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. V. 280. P. 36334.

  12. Bieganowski P., Brenner C. 2003. The reported human NADsyn2 is ammonia-dependent NAD synthetase from a pseudomonad. J. Biol. Chem. V. 278. P. 33056.

  13. Bogan K.L., Brenner C. 2010. 5′-Nucleotidases and their new roles in NAD+ and phosphate metabolism. New J. Chem. V. 34. P. 845.

  14. Bogan K.L., Evans C., Belenky P., Song P., Burant C.F., Kennedy R., Brenner C. 2009. Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5'-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside. J. Biol. Chem. V. 284. P. 34861.

  15. Braune S., Kupper J.H., Jung F. 2020. Effect of prostanoids on human platelet function: an overview. Int. J. Mol. Sci. V. 21: 9020. https://doi.org/10.3390/ijms21239020

  16. Bricard G., Cadassou O., Cassagnes L.E., Cros-Perrial E., Payen-Gay L., Puy J.Y., Lefebvre-Tournier I., Tozzi M.G., Dumontet C., Jordheim L.P. 2017. The cytosolic 5'-nucleotidase cN-II lowers the adaptability to glucose deprivation in human breast cancer cells. Oncotarget. V. 8. P. 67380.

  17. Burkle A. 2005. Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J. V. 272. P. 4576.

  18. Bzowska A., Kulikowska E., Shugar D. 2000. Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacol Ther. V. 88. P. 349.

  19. Canto C. 2022. NAD(+) precursors: a questionable redundancy. Metabolites. V. 12: 630. https://doi.org/10.3390/metabo12070630

  20. Carlson L.A. 2005. Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. V. 258. P. 94. https://doi.org/10.1111/j.1365-2796.2005.01528.x

  21. Chai J.T., Digby J.E., Choudhury R.P. 2013. GPR109A and vascular inflammation. Curr. Atheroscler. Rep. V. 15. P. 325.

  22. Chanvillard L., Tammaro A., Sorrentino V. 2022. NAD(+) metabolism and interventions in premature renal aging and chronic kidney disease. Cells. V. 12. https://doi.org/10.3390/cells12010021

  23. Cheng K., Wu T.J., Wu K.K., Sturino C., Metters K., Gottesdiener K., Wright S.D., Wang Z., O′Neill G., Lai E., Waters M.G. 2006. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc. Natl. Acad. Sci. USA. V. 103. P. 6682.

  24. Chong R., Wakade C., Seamon M., Giri B., Morgan J., Purohit S. 2021. Niacin enhancement for parkinson′s disease: an effectiveness trial. Front. Aging Neurosci. V. 13. P. 667032. https://doi.org/10.3389/fnagi.2021.667032

  25. Clement J., Wong M., Poljak A., Sachdev P., Braidy N. 2019. The Plasma NAD(+) metabolome is dysregulated in “normal” aging. Rejuvenation Res. V. 22. P. 121.

  26. Crawford K., Bonfiglio J.J., Mikoc A., Matic I., Ahel I. 2018. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crit. Rev. Biochem. Mol. Biol. V. 53. P. 64.

  27. Davis L.C., Morgan A.J., Ruas M., Wong J.L., Graeff R.M., Poustka A.J., Lee H.C., Wessel G.M., Parrington J., Galione A. 2008. Ca(2+) signaling occurs via second messenger release from intraorganelle synthesis sites. Curr. Biol. V. 18. P. 1612.

  28. De Flora A., Guida L., Franco L., Zocchi E. 1997. The CD38/cyclic ADP-ribose system: a topological paradox. Int. J. Biochem. Cell Biol. V. 29. P. 1149.

  29. Digby J.E., Lee J.M., Choudhury R.P. 2009. Nicotinic acid and the prevention of coronary artery disease. Curr. Opin. Lipidol. V. 20. P. 321.

  30. Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J., Kim J.H., Choi B.H., He B., Chen W., Zhang S., Cerione R.A., Auwerx J. et al. 2011. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. V. 334. P. 806.

  31. Duarte-Pereira S., Pereira-Castro I., Silva S.S., Correia M.G., Neto C., da Costa L.T., Amorim A., Silva R.M. 2016. Extensive regulation of nicotinate phosphoribosyltransferase (NAPRT) expression in human tissues and tumors. Oncotarget. V. 7. P. 1973.

  32. Duarte-Pereira S., Silva S.S., Azevedo L., Castro L., Amorim A., Silva R.M. 2014. NAMPT and NAPRT1: novel polymorphisms and distribution of variants between normal tissues and tumor samples. Sci. Rep. V. 4. P. 6311.

  33. Eckert M.A., Coscia F., Chryplewicz A., Chang J.W., Hernandez K.M., Pan S., Tienda S.M., Nahotko D.A., Li G., Blazenovic I., Lastra R.R., Curtis M., Yamada S.D., Perets R., McGregor S.M. et al. 2019. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. V. 569. P. 723.

  34. Falk M.J., Zhang Q., Nakamaru-Ogiso E., Kannabiran C., Fonseca-Kelly Z., Chakarova C., Audo I., Mackay D.S., Zeitz C., Borman A.D., Staniszewska M., Shukla R., Palavalli L., Mohand-Said S., Waseem N.H. et al. 2012. NMNAT1 mutations cause Leber congenital amaurosis. Nat. Genet. V. 44. P. 1040.

  35. Figley M.D., Gu W., Nanson J.D., Shi Y., Sasaki Y., Cunnea K., Malde A.K., Jia X., Luo Z., Saikot F.K., Mosaiab T., Masic V., Holt S., Hartley-Tassell L., McGuinness H.Y. et al. 2021. SARM1 is a metabolic sensor activated by an increased NMN/NAD(+) ratio to trigger axon degeneration. Neuron. V. 109. P. 1118.

  36. Fletcher R.S., Lavery G.G. 2018. The emergence of the nicotinamide riboside kinases in the regulation of NAD+ metabolism. J. Mol. Endocrinol. V. 61. P. R107.

  37. Furihata T., Kishida S., Sugiura H., Kamiichi A., Iikura M., Chiba K. 2014. Functional analysis of purine nucleoside phosphorylase as a key enzyme in ribavirin metabolism. Drug. Metab. Pharmacokinet. V. 29. P. 211.

  38. Galassi L., Di Stefano M., Brunetti L., Orsomando G., Amici A., Ruggieri S., Magni G. 2012. Characterization of human nicotinate phosphoribosyltransferase: kinetic studies, structure prediction and functional analysis by site-directed mutagenesis. Biochimie. V. 94. P. 300.

  39. Ganji S.H., Tavintharan S., Zhu D., Xing Y., Kamanna V.S., Kashyap M.L. 2004. Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J. Lipid Res. V. 45. P. 1835.

  40. Garten A., Schuster S., Penke M., Gorski T., de Giorgis T., Kiess W. 2015. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. V. 11. P. 535.

  41. Geisler C.E., Miller K.E., Ghimire S., Renquist B.J. 2021. The Role of GPR109a signaling in niacin induced effects on fed and fasted hepatic metabolism. Int. J. Mol. Sci. V. 22. https://doi.org/10.3390/ijms22084001

  42. Gerdts J., Brace E.J., Sasaki Y., DiAntonio A., Milbrandt J. 2015. SARM1 activation triggers axon degeneration locally via NAD(+) destruction. Science. V. 348. P. 453.

  43. Gerdts J., Summers D.W., Sasaki Y., DiAntonio A., Milbrandt J. 2013. Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J. Neurosci. V. 33: 13569. https://doi.org/10.1523/JNEUROSCI.1197-13.2013

  44. Gilley J., Mayer P.R., Yu G., Coleman M.P. 2019. Low levels of NMNAT2 compromise axon development and survival. Hum. Mol. Genet. V. 28. P. 448.

  45. Giroud-Gerbetant J., Joffraud M., Giner M.P., Cercillieux A., Bartova S., Makarov M.V., Zapata-Perez R., Sanchez-Garcia J.L., Houtkooper R.H., Migaud M.E., Moco S., Canto C. 2019. A reduced form of nicotinamide riboside defines a new path for NAD(+) biosynthesis and acts as an orally bioavailable NAD(+) precursor. Mol. Metab. V. 30. P. 192.

  46. Gomes P., Fleming Outeiro T., Cavadas C. 2015. Emerging role of sirtuin 2 in the regulation of mammalian metabolism. Trends Pharmacol. Sci. V. 36. P. 756.

  47. Gong B., Pan Y., Vempati P., Zhao W., Knable L., Ho L., Wang J., Sastre M., Ono K., Sauve A.A., Pasinetti G.M. 2013. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-gamma coactivator 1alpha regulated beta-secretase 1 degradation and mitochondrial gene expression in Alzheimer′s mouse models. Neurobiol. Aging. V. 34. P. 1581.

  48. Goodman R.P., Calvo S.E., Mootha V.K. 2018. Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism. J. Biol. Chem. V. 293. P. 7508.

  49. Graeff R., Liu Q., Kriksunov I.A., Hao Q., Lee H.C. 2006. Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine nicotinic acid adenine dinucleotide phosphate (NAADP) synthesis and hydrolysis activities. J. Biol. Chem. V. 281. P. 28951.

  50. Graff E.C., Fang H., Wanders D., Judd R.L. 2016. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2. Metabolism. V. 65. P. 102.

  51. Grant R., Berg J., Mestayer R., Braidy N., Bennett J., Broom S., Watson J. 2019. A pilot study investigating changes in the human plasma and urine NAD+ metabolome during a 6 hour intravenous infusion of NAD. Front. Aging Neurosci. V. 11. P. 257.

  52. Green K.N., Steffan J.S., Martinez-Coria H., Sun X., Schreiber S.S., Thompson L.M., LaFerla F.M. 2008. Nicotinamide restores cognition in Alzheimer′s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci. V. 28. P. 11 500.

  53. Grozio A., Mills K.F., Yoshino J., Bruzzone S., Sociali G., Tokizane K., Lei H.C., Cunningham R., Sasaki Y., Migaud M.E., Imai S.I. 2019. Slc12a8 is a nicotinamide mononucleotide transporter. Nat. Metab. V. 1. P. 47.

  54. Grozio A., Sociali G., Sturla L., Caffa I., Soncini D., Salis A., Raffaelli N., De Flora A., Nencioni A., Bruzzone S. 2013. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J. Biol. Chem. V. 288. P. 25938.

  55. Haigis M.C., Mostoslavsky R., Haigis K.M., Fahie K., Christodoulou D.C., Murphy A.J., Valenzuela D.M., Yancopoulos G.D., Karow M., Blander G., Wolberger C., Prolla T.A., Weindruch R., Alt F.W., Guarente L. 2006. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. V. 126. P. 941. https://doi.org/10.1016/j.cell.2006.06.057

  56. Hanson J., Gille A., Offermanns S. 2012. Role of HCA(2) (GPR109A) in nicotinic acid and fumaric acid ester-induced effects on the skin. Pharmacol. Ther. V. 136. P. 1.

  57. Hanson J., Gille A., Zwykiel S., Lukasova M., Clausen B.E., Ahmed K., Tunaru S., Wirth A., Offermanns S. 2010. Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice. J. Clin. Invest. V. 120. P. 2910.

  58. Hara N., Yamada K., Shibata T., Osago H., Hashimoto T., Tsuchiya M. 2007. Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells. J. Biol. Chem. V. 282. P. 24 574.

  59. Hara N., Yamada K., Terashima M., Osago H., Shimoyama M., Tsuchiya M. 2003. Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency. J. Biol. Chem. V. 278. P. 10914.

  60. Hikosaka K., Ikutani M., Shito M., Kazuma K., Gulshan M., Nagai Y., Takatsu K., Konno K., Tobe K., Kanno H., Nakagawa T. 2014. Deficiency of nicotinamide mononucleotide adenylyltransferase 3 (nmnat3) causes hemolytic anemia by altering the glycolytic flow in mature erythrocytes. J. Biol. Chem. V. 289. P. 14796.

  61. Hogan K.A., Chini C.C.S., Chini E.N. 2019. The multi-faceted ecto-enzyme CD38: roles in immunomodulation, cancer, aging, and metabolic diseases. Front. Immunol. V. 10. P. 1187. https://doi.org/10.3389/fimmu.2019.01187

  62. Hottiger M.O., Hassa P.O., Luscher B., Schuler H., Koch-Nolte F. 2010. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem. Sci. V. 35. P. 208.

  63. Hwang E.S., Song S.B. 2020. Possible Adverse effects of high-dose nicotinamide: mechanisms and safety assessment. Biomolecules. V. 10. P. 687.

  64. Ito T.K., Sato T., Hakamata A., Onoda Y., Sato S., Yamazaki F., Horikawa M., Takahashi Y., Kitamoto T., Suzuki M., Uchida S., Odagiri K., Setou M. 2020. A nonrandomized study of single oral supplementation within the daily tolerable upper level of nicotinamide affects blood nicotinamide and NAD+ levels in healthy subjects. Translat. Med. Aging. V. 4. P. 45.

  65. Iwata K., Ogata S., Okumura K., Taguchi H. 2003. Induction of differentiation in human promyelocytic leukemia HL-60 cell line by niacin-related compounds. Biosci. Biotechnol. Biochem. V. 67. P. 1132.

  66. Jackson M.D., Denu J.M. 2002. Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases. J Biol Chem. V. 277. P. 18535.

  67. Kamanna V.S., Ganji S.H., Kashyap M.L. 2009. The mechanism and mitigation of niacin-induced flushing. Int. J. Clin. Pract. V. 63. P. 1369.

  68. Kanayama M., Luo J. 2022. CD38-induced apoptosis and mitochondrial damage is restored by nicotinamide in prostate cancer. Front. Mol. Biosci. V. 9: 890402. https://doi.org/10.3389/fmolb.2022.890402

  69. Kim E.H., Surh Y.J. 2008. The role of 15-deoxy-delta(12,14)-prostaglandin J(2), an endogenous ligand of peroxisome proliferator-activated receptor gamma, in tumor angiogenesis. Biochem. Pharmacol. V. 76. P. 1544.

  70. Kiran S., Chatterjee N., Singh S., Kaul S.C., Wadhwa R., Ramakrishna G. 2013. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal. FEBS J. V. 280. P. 3451.

  71. Kitamura S., Tatsumi K. 1984. Involvement of liver aldehyde oxidase in the reduction of nicotinamide N-oxide. Biochem. Biophys. Res. Commun. V. 120. P. 602.

  72. Klein C., Grahnert A., Abdelrahman A., Muller C.E., Hauschildt S. 2009. Extracellular NAD(+) induces a rise in [Ca(2+)](i) in activated human monocytes via engagement of P2Y(1) and P2Y(11) receptors. Cell Calcium. V. 46. P. 263.

  73. Kropotov A., Kulikova V., Nerinovski K., Yakimov A., Svetlova M., Solovjeva L., Sudnitsyna J., Migaud M.E., Khodorkovskiy M., Ziegler M., Nikiforov A. 2021. Equilibrative nucleoside transporters mediate the import of nicotinamide riboside and nicotinic acid riboside into human cells. Int. J. Mol. Sci. V. 22. https://doi.org/10.3390/ijms22031391

  74. Kropotov A., Kulikova V., Solovjeva L., Yakimov A., Nerinovski K., Svetlova M., Sudnitsyna J., Plusnina A., Antipova M., Khodorkovskiy M., Migaud M.E., Gambaryan S., Ziegler M., Nikiforov A. 2022. Purine nucleoside phosphorylase controls nicotinamide riboside metabolism in mammalian cells. J. Biol. Chem. V. 298. P. 102615.

  75. Kulikova V., Shabalin K., Nerinovski K., Dolle C., Niere M., Yakimov A., Redpath P., Khodorkovskiy M., Migaud M.E., Ziegler M., Nikiforov A. 2015. Generation, release, and uptake of the NAD precursor nicotinic acid riboside by human cells. J. Biol. Chem. V. 290. P. 27124.

  76. Laing S., Unger M., Koch-Nolte F., Haag F. 2011. ADP-ribosylation of arginine. Amino Acids. V. 41. P. 257.

  77. Lauring B., Taggart A.K., Tata J.R., Dunbar R., Caro L., Cheng K., Chin J., Colletti S.L., Cote J., Khalilieh S., Liu J., Luo W.L., Maclean A.A., Peterson L.B., Polis A.B. et al. 2012. Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression. Sci. Transl. Med. V. 4: 148ra115. https://doi.org/10.1126/scitranslmed.3003877

  78. Lee S.J., Choi S.E., Jung I.R., Lee K.W., Kang Y. 2013. Protective effect of nicotinamide on high glucose/palmitate-induced glucolipotoxicity to INS-1 beta cells is attributed to its inhibitory activity to sirtuins. Arch. Biochem. Biophys. V. 535. P. 187.

  79. Li J., Dou X., Li S., Zhang X., Zeng Y., Song Z. 2015. Nicotinamide ameliorates palmitate-induced ER stress in hepatocytes via cAMP/PKA/CREB pathway-dependent Sirt1 upregulation. Biochim. Biophys. Acta. V. 1853. P. 2929.

  80. Li Y.H., Zhang Y., Pan G., Xiang L.X., Luo D.C., Shao J.Z. 2022. Occurrences and functions of Ly6C(hi) and Ly6C(lo) macrophages in health and disease. Front. Immunol. V. 13: P. 901672. https://doi.org/10.3389/fimmu.2022.901672

  81. Liu C., Wu J., Zhu J., Kuei C., Yu J., Shelton J., Sutton S.W., Li X., Yun S.J., Mirzadegan T., Mazur C., Kamme F., Lovenberg T.W. 2009. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. V. 284. P. 2811.

  82. Liu L., Su X., Quinn W.J., 3rd, Hui S., Krukenberg K., Frederick D.W., Redpath P., Zhan L., Chellappa K., White E., Migaud M., Mitchison T.J., Baur J.A., Rabinowitz J.D. 2018. Quantitative Analysis of NAD synthesis-breakdown fluxes. Cell Metab. V. 27. P. 1067.

  83. Lou Y., Wang Z., Xu Y., Zhou P., Cao J., Li Y., Chen Y., Sun J., Fu L. 2015. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. Int. J. Mol. Med. V. 36. P. 873.

  84. Lukacs M., Gilley J., Zhu Y., Orsomando G., Angeletti C., Liu J., Yang X., Park J., Hopkin R.J., Coleman M.P., Zhai R.G., Stottmann R.W. 2019. Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Exp. Neurol. V. 320: 112961. https://doi.org/10.1016/j.expneurol.2019.112961

  85. Lukasova M., Hanson J., Tunaru S., Offermanns S. 2011. Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials. Trends Pharmacol. Sci. V. 32. P. 700.

  86. Luongo T.S., Eller J.M., Lu M.J., Niere M., Raith F., Perry C., Bornstein M.R., Oliphint P., Wang L., McReynolds M.R., Migaud M.E., Rabinowitz J.D., Johnson F.B., Johnsson K., Ziegler M. et al. 2020. SLC25A51 is a mammalian mitochondrial NAD(+) transporter. Nature. V. 588. P. 174.

  87. Maciejewski-Lenoir D., Richman J.G., Hakak Y., Gaidarov I., Behan D.P., Connolly D.T. 2006. Langerhans cells release prostaglandin D2 in response to nicotinic acid. J. Invest. Dermatol. V. 126. P. 2637.

  88. Maeta A., Sano M., Fukuwatari T., Shibata K. 2014. Simultaneous measurement of nicotinamide and its catabolites, nicotinamide N-oxide, N(1)-methyl-2-pyridone-5-carboxamide, and N(1)-methyl-4-pyridone-3-carboxamide, in mice urine. Biosci. Biotechnol. Biochem. V. 78. P. 1306.

  89. Magni G., Amici A., Emanuelli M., Orsomando G., Raffaelli N., Ruggieri S. 2004. Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr. Med. Chem. V. 11. P. 873.

  90. Magni G., Amici A., Orsomando G. 2013. The enzymology of cytosolic pyrimidine 5'-nucleotidases: functional analysis and physiopathological implications. Curr. Med. Chem. V. 20. P. 4304.

  91. Marletta A.S., Massarotti A., Orsomando G., Magni G., Rizzi M., Garavaglia S. 2015. Crystal structure of human nicotinic acid phosphoribosyltransferase. FEBS Open Bio. V. 5. P. 419.

  92. Menon R.M., Gonzalez M.A., Adams M.H., Tolbert D.S., Leu J.H., Cefali E.A. 2007. Effect of the rate of niacin administration on the plasma and urine pharmacokinetics of niacin and its metabolites. J. Clin. Pharmacol. V. 47. P. 681.

  93. Montserrat-de la Paz S., Naranjo M.C., Lopez S., Abia R., Muriana F.J.G., Bermudez B. 2017. Niacin and its metabolites as master regulators of macrophage activation. J. Nutr. Biochem. V. 39. P. 40.

  94. Moreschi I., Bruzzone S., Melone L., De Flora A., Zocchi E. 2006. NAADP+ synthesis from cADPRP and nicotinic acid by ADP-ribosyl cyclases. Biochem. Biophys. Res. Commun. V. 345. P. 573.

  95. Mori V., Amici A., Mazzola F., Di Stefano M., Conforti L., Magni G., Ruggieri S., Raffaelli N., Orsomando G. 2014. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS One. V. 9: e113939. https://doi.org/10.1371/journal.pone.0113939

  96. Murray K.J. 1990. Cyclic AMP and mechanisms of vasodilation. Pharmacol. Ther. V. 47. P. 329.

  97. Nakagawa-Nagahama Y., Igarashi M., Miura M., Kashiwabara K., Yaku K., Fukamizu Y., Sato T., Sakurai T., Nakagawa T., Kadowaki T., Yamauchi T. 2023. Blood levels of nicotinic acid negatively correlate with hearing ability in healthy older men. BMC Geriatr. V. 23. P. 97.

  98. Ortolan E., Augeri S., Fissolo G., Musso I., Funaro A. 2019. CD157: From immunoregulatory protein to potential therapeutic target. Immunol. Lett. V. 205. P. 59.

  99. Ortolan E., Vacca P., Capobianco A., Armando E., Crivellin F., Horenstein A., Malavasi F. 2002. CD157, the Janus of CD38 but with a unique personality. Cell Biochem. Funct. V. 20. P. 309.

  100. Osborne B., Cooney G.J., Turner N. 2014. Are sirtuin deacylase enzymes important modulators of mitochondrial energy metabolism? Biochim. Biophys. Acta. V. 1840. P. 1295.

  101. Osterloh J.M., Yang J., Rooney T.M., Fox A.N., Adalbert R., Powell E.H., Sheehan A.E., Avery M.A., Hackett R., Logan M.A., MacDonald J.M., Ziegenfuss J.S., Milde S., Hou Y.J., Nathan C., et al. 2012. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science. V. 337. P. 481.

  102. Palazzo L., Thomas B., Jemth A.S., Colby T., Leidecker O., Feijs K.L., Zaja R., Loseva O., Puigvert J.C., Matic I., Helleday T., Ahel I. 2015. Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem J. V. 468. P. 293.

  103. Pike N.B. 2005. Flushing out the role of GPR109A (HM74A) in the clinical efficacy of nicotinic acid. J. Clin. Invest. V. 115. P. 3400.

  104. Quarona V., Zaccarello G., Chillemi A., Brunetti E., Singh V.K., Ferrero E., Funaro A., Horenstein A.L., Malavasi F. 2013. CD38 and CD157: a long journey from activation markers to multifunctional molecules. Cytometry B Clin. Cytom. V. 84. P. 207.

  105. Ratajczak J., Joffraud M., Trammell S.A., Ras R., Canela N., Boutant M., Kulkarni S.S., Rodrigues M., Redpath P., Migaud M.E., Auwerx J., Yanes O., Brenner C., Canto C. 2016. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun. V. 7: 13103. https://doi.org/10.1038/ncomms13103

  106. Real A.M., Hong S., Pissios P. 2013. Nicotinamide N-oxidation by CYP2E1 in human liver microsomes. Drug Metab. Dispos. V. 41. P. 550.

  107. Roessler C., Tuting C., Meleshin M., Steegborn C., Schutkowski M. 2015. A Novel continuous assay for the deacylase Sirtuin 5 and other deacetylases. J. Med. Chem. V. 58. P. 7217.

  108. Rossi A., Kapahi P., Natoli G., Takahashi T., Chen Y., Karin M., Santoro M.G. 2000. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature. V. 403. P. 103.

  109. Sadr Z., Ghasemi A., Rohani M., Alavi A. 2023. NMNAT1 and hereditary spastic paraplegia (HSP): expanding the phenotypic spectrum of NMNAT1 variants. Neuromuscular Disorders. V. 33. P. 295.

  110. Sallin O., Reymond L., Gondrand C., Raith F., Koch B., Johnsson K. 2018. Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides. Elife. V. 7. https://doi.org/10.7554/eLife.32638

  111. Scher J.U., Pillinger M.H. 2005. 15d-PGJ2: the anti-inflammatory prostaglandin? Clin Immunol. V. 114. P. 100.

  112. Schmidt M.S., Brenner C. 2019. Absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nat. Metab. V. 1: 660. https://doi.org/10.1038/s42255-019-0085-0

  113. Seamon M., Purohit S., Giri B., Baban B., Morgan J., Chong R., Wakade C. 2020. Niacin for Parkinson′s disease. Clin. Exper. Neuroimmunol. V. 11. P. 47.

  114. Shats I., Williams J.G., Liu J., Makarov M.V., Wu X., Lih F.B., Deterding L.J., Lim C., Xu X., Randall T.A., Lee E., Li W., Fan W., Li J.L., Sokolsky M. et al. 2020. Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway. Cell Metab. V. 31. P. 564.

  115. Shi H., Enriquez A., Rapadas M., Martin E., Wang R., Moreau J., Lim C.K., Szot J.O., Ip E., Hughes J.N., Sugimoto K., Humphreys D.T., McInerney-Leo A.M., Leo P.J., Maghzal G.J. et al. 2017. NAD deficiency, congenital malformations, and niacin supplementation. New Engl. J. Med. V. 377. P. 544.

  116. Shrimp J.H., Hu J., Dong M., Wang B.S., MacDonald R., Jiang H., Hao Q., Yen A., Lin H. 2014. Revealing CD38 cellular localization using a cell permeable, mechanism-based fluorescent small-molecule probe. J. Am. Chem. Soc. V. 136. P. 5656.

  117. Soudijn W., van Wijngaarden I., Ijzerman A.P. 2007. Nicotinic acid receptor subtypes and their ligands. Med. Res. Rev. V. 27. P. 417.

  118. Sumoza-Toledo A., Penner R. 2011. TRPM2: a multifunctional ion channel for calcium signalling. J.Physiol. V. 589. P. 1515.

  119. Szot J.O., Campagnolo C., Cao Y., Iyer K.R., Cuny H., Drysdale T., Flores-Daboub J.A., Bi W., Westerfield L., Liu P., Leung T.N., Choy K.W., Chapman G., Xiao R., Siu V.M. et al. 2020. Bi-allelic mutations in NADSYN1 cause multiple organ defects and expand the genotypic spectrum of congenital NAD deficiency disorders. Am. J. Hum. Genet. V. 106. P. 129.

  120. Taniguchi H., Mohri I., Okabe-Arahori H., Aritake K., Wada K., Kanekiyo T., Narumiya S., Nakayama M., Ozono K., Urade Y., Taniike M. 2007. Prostaglandin D2 protects neonatal mouse brain from hypoxic ischemic injury. J. Neurosci. V. 27. P. 4303.

  121. Trammell S.A., Schmidt M.S., Weidemann B.J., Redpath P., Jaksch F., Dellinger R.W., Li Z., Abel E.D., Migaud M.E., Brenner C. 2016. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun. V. 7: 12948. https://doi.org/10.1038/ncomms12948

  122. Tuteja S. 2019. Activation of HCAR2 by niacin: benefits beyond lipid lowering. Pharmacogenomics. V. 20. P. 1143.

  123. Vina J., Saez G.T., Gambini J., Gomez-Cabrera M.C., Borras C. 2016. Role of NAD(+)/NADH redox ratio in cell metabolism: A tribute to Helmut Sies and Theodor Bucher and Hans A. Krebs. Arch. Biochem. Biophys. V. 595. P. 176.

  124. Vyas S., Matic I., Uchima L., Rood J., Zaja R., Hay R.T., Ahel I., Chang P. 2014. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat. Commun. V. 5. P. 4426.

  125. Wanders D., Judd R.L. 2011. Future of GPR109A agonists in the treatment of dyslipidaemia. Diabetes Obes. Metab. V. 13. P. 685.

  126. Wang Y., He J., Liao M., Hu M., Li W., Ouyang H., Wang X., Ye T., Zhang Y., Ouyang L. 2019. An overview of Sirtuins as potential therapeutic target: structure, function and modulators. Eur. J. Med. Chem. V. 161. P. 48.

  127. Wilson C., Zhang X., Buckley C., Heathcote H.R., Lee M.D., McCarron J.G. 2019. Increased vascular contractility in hypertension results from impaired endothelial calcium signaling. Hypertension. V. 74. P. 1200.

  128. Wise A., Foord S.M., Fraser N.J., Barnes A.A., Elshourbagy N., Eilert M., Ignar D.M., Murdock P.R., Steplewski K., Green A., Brown A.J., Dowell S.J., Szekeres P.G., Hassall D.G., Marshall F.H. et al. 2003. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. V. 278. P. 9869.

  129. Xie N., Zhang L., Gao W., Huang C., Huber P.E., Zhou X., Li C., Shen G., Zou B. 2020. NAD(+) metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target Ther. V. 5: 227. https://doi.org/10.1038/s41392-020-00311-7

  130. Xie X., Gao Y., Zeng M., Wang Y., Wei T.F., Lu Y.B., Zhang W.P. 2019. Nicotinamide ribose ameliorates cognitive impairment of aged and Alzheimer′s disease model mice. Metab. Brain Dis. V. 34. P. 353.

  131. Xu J., Jackson C.W., Khoury N., Escobar I., Perez-Pinzon M.A. 2018. Brain SIRT1 mediates metabolic homeostasis and neuroprotection. Front. Endocrinol. (Lausanne). V. 9: 702. https://doi.org/10.3389/fendo.2018.00702

  132. Yaku K., Palikhe S., Izumi H., Yoshida T., Hikosaka K., Hayat F., Karim M., Iqbal T., Nitta Y., Sato A., Migaud M.E., Ishihara K., Mori H., Nakagawa T. 2021. BST1 regulates nicotinamide riboside metabolism via its glycohydrolase and base-exchange activities. Nat. Commun. V. 12. P. 6767. https://doi.org/10.1038/s41467-021-27080-3

  133. Yamagata K., Goto Y., Nishimasu H., Morimoto J., Ishitani R., Dohmae N., Takeda N., Nagai R., Komuro I., Suga H., Nureki O. 2014. Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change. Structure. V. 22. P. 345.

  134. Yang T., Sauve A.A. 2006. NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity. AAPS J. V. 8: E632. https://doi.org/10.1208/aapsj080472

  135. Yang Y., Sauve A.A. 2016. NAD(+) metabolism: bioenergetics, signaling and manipulation for therapy. Biochim. Biophys. Acta. V. 1864. P. 1787.

  136. Yoshida M., Satoh A., Lin J.B., Mills K.F., Sasaki Y., Rensing N., Wong M., Apte R.S., Imai S.I. 2019. Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab. V. 30. P. 329.

  137. Zapata-Perez R., Wanders R.J.A., van Karnebeek C.D.M., Houtkooper R.H. 2021. NAD(+) homeostasis in human health and disease. EMBO Mol. Med. V. 13. P. e13943. https://doi.org/10.15252/emmm.202113943

  138. Zeidler J.D., Hogan K.A., Agorrody G., Peclat T.R., Kashyap S., Kanamori K.S., Gomez L.S., Mazdeh D.Z., Warner G.M., Thompson K.L., Chini C.C.S., Chini E.N. 2022. The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. Am. J. Physiol. Cell Physiol. V. 322. P. C521.

  139. Zha M., Guo Q., Zhang Y., Yu B., Ou Y., Zhong C., Ding J. 2008. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies. J. Mol. Biol. V. 379. P. 568.

  140. Zhang F.-J., Gu Q.-M., Jing P., Sih C.J. 1995. Enzymatic cyclization of nicotinamide adenine dinucleotide phosphate (NADP). Bioorganic Med. Chem. Letters. V. 5. P. 2267. https://doi.org/10.1016/0960-894X(95)00393-8

  141. Zhao Y.J., Lam C.M., Lee H.C. 2012. The membrane-bound enzyme CD38 exists in two opposing orientations. Sci. Signal. V. 5. P. ra67.

  142. Zhao Z.Y., Xie X.J., Li W.H., Liu J., Chen Z., Zhang B., Li T., Li S.L., Lu J.G., Zhang L., Zhang L.H., Xu Z., Lee H.C., Zhao Y.J. 2019. A cell-permeant mimetic of NMN activates SARM1 to produce cyclic ADP-ribose and induce non-apoptotic cell death. iScience. V. 15. P. 452. https://doi.org/10.1016/j.isci.2019.05.001

  143. Zielinska W., Barata H., Chini E.N. 2004. Metabolism of cyclic ADP-ribose: Zinc is an endogenous modulator of the cyclase/NAD glycohydrolase ratio of a CD38-like enzyme from human seminal fluid. Life Sci. V. 74. P. 1781.

  144. Zuo W., Liu N., Zeng Y., Liu Y., Li B., Wu K., Xiao Y., Liu Q. 2021. CD38: A potential therapeutic target in cardiovascular disease. Cardiovasc. Drugs Ther. V. 35. P. 815.

Дополнительные материалы отсутствуют.