Известия РАН. Механика твердого тела, 2023, № 5, стр. 138-146

ФУНДАМЕНТАЛЬНЫЕ РЕШЕНИЯ УРАВНЕНИЙ ТЕОРИИ КОЛЕБАНИЙ ДЛЯ АНИЗОТРОПНЫХ УПРУГИХ СРЕД

А. В. Ильяшенко a*

a Московский государственный строительный университет
Москва, Россия

* E-mail: avi_56@mail.ru

Поступила в редакцию 20.12.2022
После доработки 09.01.2023
Принята к публикации 12.01.2023

Аннотация

Осуществляется построение фундаментальных решений в R3 для уравнений гармонических колебаний в теории упругости анизотропных упругих сред. Решения строятся в виде рядов по мультиполям. Доказываются теоремы о сходимости рядов в топологии компактной сходимости в ${{R}^{{\text{3}}}}{{\backslash }}0$. Обсуждаются проблемы построения некоторых сингулярных решений теории колебаний анизотропного тела. Фундаментальное решение уравнений колебаний для изотропной среды получено в замкнутом виде.

Ключевые слова: фундаментальные решения, анизотропия, изотропия, теория колебаний

Список литературы

  1. Купрадзе В.Д. Граничные задачи теории установившихся упругих колебаний // УМН. 1953. Т. 8. № 3. С. 21–74.

  2. Kupradze V.D. Dynamical problems in elasticity. Amsterdam: North-Holland Publ. Comp., 1963.

  3. Burchuladze T. Non-stationary problems of generalized elastothermodiffusion for inhomogeneous media // Georgian Math. J. 1994. V. 1. P. 587–598.

  4. Colton D., Kress R. Inverse acoustic and electromagnetic scattering theory. N.Y.: Springer, 1998.

  5. McLean W. Strongly elliptic systems and boundary integral operators. Cambridge: Cambridge University Press, 2000.

  6. Constanda Ch., Doty D., Hamill W. Boundary integral equation methods and numerical solutions: thin plates on an elastic foundation. N.Y.: Springer, 2016.

  7. Kupradze V.D., Basheleishvili, M.O., Burchuladze T.V. Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. North-Holland Series in Applied Mathematics and Mechanics, 25. Amsterdam, N. Y.: North-Holland Publ. Co. 1979.

  8. John F. Plane waves and spherical means applied to partial differential equations. Interscience tracts in pure and applied mathematics. V. 2. N.Y.: Interscience Publ., 1955.

  9. Grosser M. et al. Geometric theory of generalized functions with applications to general relativity. Berlin: Kluwer Acad. Publ., 2001.

  10. Wilson R.B., Cruse T.A. Efficient implementation of anisotropic three dimensional boundary-integral equation stress analysis // Int. J. Num. Meth. Eng. 1978. V. 12. № 9. P. 1383–1397. https://doi.org/10.1002/nme.1620120907

  11. Deb A., Henry D.P., Jr., Wilson R.B. Alternate BEM formulation for 2- and 3D anisotropic thermoelasticity // Int. J. Solids Struct. 1991. V. 27. № 13. P. 1721–1738. https://doi.org/10.1016/0020-7683(91)90071-M

  12. Kuznetzov S.V. Closed form analytical solution for dispersion of Lamb waves in FG plates // Wave Motion. 2019. V. 84. P. 1–7. https://doi.org/10.1016/j.wavemoti.2018.09.018

  13. Kuznetsov S.V. Fundamental and singular solutions of Lamé equations of media with arbitrary anisotropy // Quart. Appl. Math. 2005. V. 63. № 3. P. 455–467. https://doi.org/10.1090/S0033-569X-05-00969-X

  14. Gegelia T., Buchukuri T. Some dynamic problems of the theory of electroelasticity // Mem. Differential Equations Math. Phys. 1997. V. 10. P. 1–53.

  15. Bourbaki N. Théories spectrales. Ch. 1, 2. Berlin: Springer. 2019.

  16. Marti J.-A. Nonlinear algebraic analysis of delta shock wave solutions to Burgers’ equation // Pacific J. Math. 2003. V. 210. P. 165–187.

  17. Gegelia T., Chichinadze R. Boundary value problems of mechanics of continuum media for a sphere // Mem. Differential Equations Math. Phys. 1996. V. 7. P. 1–222.

  18. Sanchez-Palencia E. Non homogeneous media and vibration theory. Lecture notes in physics. V. 127. Berlin: Springer, 1980.

  19. Fairweather G., Karageorghis A., Martin P.A. The method of fundamental solutions for scattering and radiation problems // Eng. Anal. Bound. Elem. 2003. V. 27. № 7. P. 759–769. https://doi.org/10.1016/S0955-7997(03)00017-1

  20. Iovane G., Nasedkin A.V., Passarella F. Fundamental solutions in antiplane elastodynamic problem for anisotropic medium under moving oscillating source // Eur. J. Mech. A/Solids. 2004. V. 23. № 6. P. 935–943. https://doi.org/10.1016/j.euromechsol.2004.09.002

  21. Iovane G., Nasedkin A.V., Passarella F. Moving oscillating loads in 2D anisotropic elastic medium: plane waves and fundamental solutions // Wave Motion. 2005. V. 43. № l. P. 51–66. https://doi.org/10.1016/j.wavemoti.2005.06.002

  22. Kleiman R.E., Roach G.F. On modified Green functions in exterior problems for the Helmholtz equations // R. Soc. Lond. 1982. V. 383. № 1785. P. 313–332. https://doi.org/10.1098/rspa.1982.0133

  23. Kleinman R.E., Roach G.F. Boundary integral equation for the three-dimension Helmholtz equations // SIAM Rev. 1974. V. 16. № 2. P. 214–236. https://www.jstor.org/stable/2028461

  24. Kuznetsov S.V. Surface waves of non-Rayleigh type // Quart. Appl. Math. 2003. V. 61. P. 575–583. https://doi.org/10.1090/qam/1999838

  25. Yang S.A. Evaluation of the Helmholtz boundary integral equation and its normal and tangential derivatives in two dimensions // J. Sound Vibr. 2007. V. 301. № 3–5. P. 864–877. https://doi.org/10.1016/j.jsv.2006.10.023

  26. Wang C.Y., Achenbach J.D. Elastodynamic fundamental solutions for anisotropic solids // Geophys. Int. J. 1994. V. 118. № 2. P. 384–92. https://doi.org/10.1111/j.1365-246X.1994.tb03970.x

  27. Tonon F., Pan E., Amadei B. Green’s functions and boundary element method formulation for 3D anisotropic media // Comput. Struct. 2001. V. 79. № 5. P. 469–482. https://doi.org/10.1016/S0045-7949(00)00163-2

  28. Kuznetsov S.V. On the operator of the theory of cracks // C. R. Acad. Sci. Paris. 1996. V. 323. P. 427–432.

  29. Ilyashenko A.V. et al. Pochhammer–Chree waves: polarization of the axially symmetric modes // Arch. Appl. Mech. 2018. V. 88. P. 1385–1394. https://doi.org/10.1007/s00419-018-1377-7

  30. Kravtsov A.V. et al. Finite element models in Lamb’s problem // Mech. Solids. 2011. V. 46. P. 952–959. https://doi.org/10.3103/S002565441106015X

  31. Kuznetsov S.V., Terentjeva E.O. Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source // Acoust. Phys. 2015. V. 61. № 3. P. 356–367. https://doi.org/10.1134/S1063771015030112

  32. Norris A.N. Dynamic Green’s functions in anisotropic piezoelectric, thermoelastic and poroelectric solids // R. Soc. Lond. 1994. V. 447. № 1929. P. 175–188. https:// https://doi.org/10.1098/rspa.1994.0134

  33. Tverdokhlebov A., Rose J. On Green’s functions for elastic waves in anisotropic media // J. Acoust. Soc. Am. 1988. V. 83. № l. P. 118–121. https://doi.org/10.1121/1.396437

  34. Telles J.C.F., Brebbia C.A. Boundary element solution for half-plane problems // Int. J. Solids Struct. 1981. V. 17. № 12. P. 1149–1158. https://doi.org/10.1016/0020-7683(81)90094-9

  35. Spyrakos C.C., Ahtes H. Time domain boundary element method approaches in elastodynamics: a comparative study // Comp. Struct. 1986. V. 24. № 4. P. 529–535. https://doi.org/10.1016/0045-7949(86)90191-4

  36. Singh K.M., Tanaka M. Elementary analytical integrals required in subtraction of singularity method for evaluation of weakly singular boundary integrals // Eng. Anal. Bound. Elem. 2007. V. 31. № 3. P. 241–247. https://doi.org/10.1016/j.enganabound.2006.05.003

  37. Saez A., Dominguez J. Far field dynamic Green’s functions for BEM in transversely isotropic solids // Wave Motion. 2000. V. 32. № 1. P. 113–123. https://doi.org/10.1016/S0165-2125(00)00032-9

  38. Koegl M. Free vibration analysis of anisotropic solids with the boundary element method // Eng. Anal. Bound. Elem. 2003. V. 27. № 2. P. 107–114. https://doi.org/10.1016/S0955-7997(02)00088-7

  39. Hayir A., Bakirtas I. A note on a plate having a circular cavity excited by plane harmonic SH waves // J. Sound Vibr. 2004. V. 271. № 1–2. P. 241–255. https://doi.org/10.1016/S0022-460X(03)00751-X

  40. Dumir P.C., Mehta A.K. Boundary element solution for elastic orthotropic half-plan problem // Comp. Struct. 1978. V. 26. № 3. P. 431–438. https://doi.org/10.1016/0045-7949(87)90043-5

  41. Kuznetsov S.V. Seismic waves and seismic barriers // Acoust. Phys. 2011. V. 57. № 3. P. 420–436. https://doi.org/10.1134/S1063771011030109

  42. Djeran-Maigre I. et al. Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates // Acoust. Phys. 2014. V. 60. P. 200–207. https://doi.org/10.1134/S106377101402002X

Дополнительные материалы отсутствуют.