Журнал аналитической химии, 2023, T. 78, № 10, стр. 897-913

Атомно-спектральные методы в исследовании свойств и поведения наноразмерных магнитных материалов в биологических системах

И. В. Кубракова a*, О. Н. Гребнева-Балюк a, Д. В. Пряжников a, М. С. Киселева a, О. О. Ефанова a

a Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук
119991 Москва, ул. Косыгина, 19, Россия

* E-mail: kubrakova@geokhi.ru

Поступила в редакцию 03.04.2023
После доработки 17.05.2023
Принята к публикации 17.05.2023

Аннотация

Кратко рассмотрены способы получения и некоторые виды магнитных наночастиц (МНЧ), перспективных для биомедицинских исследований. Показана связь строения и свойств частиц с областями их применения в медицинской диагностике и биоанализе. Особое внимание уделено МНЧ, содержащим благородные металлы в качестве биомаркеров или действующего вещества. Рассмотрены биомедицинские задачи, реализуемые с помощью МНЧ, и аналитические пути их решения. Обобщены данные о применении прямых и комбинированных атомно-спектральных (ЭТААС, АЭС/МС-ИСП) методов в биомедицинских исследованиях. Рассмотрены экспериментальные подходы к изучению поведения и превращений МНЧ in vitro и in vivo. Подчеркнута ключевая роль пробоподготовки в экспериментальном моделировании поведения НЧ в биологических средах. Отмечены особенности подготовки при определении растворенных и наноразмерных форм в биообъектах. Оценены перспективы комплексных исследований поведения МНЧ в сложных биологических системах.

Ключевые слова: наноразмерные магнитные материалы, биомедицинские исследования, электротермическая атомно-абсорбционная спектрометрия (ЭТААС), масс-спектрометрия с индуктивно связанной плазмой (МС-ИСП) в режимах высокого разрешения, детектирования одиночных частиц (SP-ICP-MS) или анализа отдельных клеток (SC-ICP-MS).

Список литературы

  1. Nochehdehi A.R., Thomas S., Sadri M., Afghahi S.S.S., Mehdi Hadavi S.M. Iron oxide biomagnetic nanoparticles (IO-BMNPs); synthesis, characterization and biomedical application − A review // J. Nanomed. Nanotechnol. 2017. V. 8. № 1. P. 423. https://doi.org/10.4172/2157-7439.1000423

  2. Королев Д.В. Разработка препаратов для тераностики и направленной доставки кардиопротективных субстанций на основе кремнеземных и магнитных наночастиц Дис. … док. хим. наук. Санкт-Петербург: Национальный медицинский исследовательский центр им. В.А. Алмазова Министерства здравоохранения РФ, 2019. 384 с.

  3. Sandler S.E., Fellows B., Mefford O.T. Best practices for characterization of magnetic nanoparticles for biomedical applications // Anal. Chem. 2019. V. 91. P. 14159. https://doi.org/10.1021/acs.analchem.9b03518

  4. Ganta S., Devalapally H., Shahiwala A., Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery// J. Control. Release. 2008. V. 126. № 3. P. 187. https://doi.org/10.1016/j.jconrel.2007.12.017

  5. Nanoparticles for Drug Delivery / Eds. Joshy K.S., Sabu Thomas, Vijay Kumar Thakur. Springer Nature Singapore Pte Ltd., 2021. https://doi.org/10.1007/978-981-16-2119-2

  6. Xu C., Sun S. New forms of superparamagnetic nanoparticles for biomedical applications // Adv. Drug Deliv. Rev. 2013. V. 65. № 5. P. 732. https://doi.org/10.1016/j.addr.2012.10.008

  7. Zelepukin I.V., Yaremenko A.V., Ivanov I.N., Yuryev M.V., Cherkasov V.R., Deyev S.M., Nikitin P.I., Nikitin M.P. Long-term fate of magnetic particles in mice: A comprehensive study // ACS Nano. 2021. V. 15. P. 11341. https://doi.org/10.1021/acsnano.1c00687

  8. Handbook of Bioanalytics / Eds. Buszewski B., Baranowska I. Springer Nature Switzerland AG, 2022. P. 1091. https://doi.org/10.1007/978-3-030-95660-8

  9. ICPMS and trace element analysis as tools for better understanding medical conditions / Comprehensive Analytical Chemistry / Eds. Aurélio M., Arruda Z., Jemmyson Romário de Jesu, 2022. V. 97. P. 2. https:// www.sciencedirect.com/science/journal/0166526X/ 97/ supp/Cю

  10. Hurley K.R., Ring H.L., Kang H., Klein N.D., Haynes C.L. Characterization of magnetic nanoparticles in biological matrices // Anal. Chem. 2015. V. 87. P. 11611. https://doi.org/10.1021/acs.analchem.5b02229

  11. Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: An update // Bioeng. Transl. Med. 2019. V. 4. № 3. Article e10143. https://doi.org/10.1002/btm2.10143

  12. Kharisov B.I., Rasika Dias H.V., Kharissova O.V., Vazquez A., Pena Y., Gomez I. Solubilization, dispersionand stabilization of magnetic nanoparticles in water and non-aqueous solvents: Recent trends // RSCAdv. 2014. V. 4. № 85. P. 45354. https://doi.org/10.1039/C4RA06902A

  13. Xie L., Jiang R., Zhu F., Liu H., Ouyang G. Application of functionalized magnetic nanoparticles in samplepr eparation // Anal. Bioanal. Chem. 2014. V. 406. № 2. P. 377. https://doi.org/10.1007/s00216-013-7302-6

  14. Пряжников Д.В., Кубракова И.В. Магнитные наноразмерные материалы с модифицированной поверхностью: получение и исследование структуры, состава и свойств // Журн. аналит. химии. 2021. Т. 76. № 6. С. 496. https://doi.org/10.31857/S0044450221060098 (Pryazhnikov D.V., Kubrakova I.V. Surface-modified magnetic nanoscale materials: Preparation and study of their structure, composition, and properties // J. Anal. Chem. 2021. Т. 76. № 6. P. 685.)

  15. Kudr J., Haddad Y., Richtera L., Heger Z., Cernak M., Adam V., Zitka O. Magnetic nanoparticles: From design and synthesis to real world applications // Nanomaterials. 2017. V. 7. № 9. P. 243. https://doi.org/10.3390/nano7090243

  16. Pryazhnikov D.V., Kubrakova I.V., Kiseleva M.S, Martynov L.Yu., Koshcheeva I.Ya. Preparation and structural characterization of nanosized magnetic solid-phase extractants // Mendeleev Commun. 2014. V. 24. № 2. P. 130. https://doi.org/10.1016/j.mencom.2014.03.023

  17. Кубракова И.В., Пряжников Д.В. Микроволновый синтез наноразмерных магнитных сорбентов // Журн. аналит. химии. 2021. Т. 76. № 1. С. 20. https://doi.org/10.31857/S0044450221010047 (Kubrakova I.V., Pryazhnikov D.V. Microwave-assisted synthesis of nanosized magnetic sorbents // J. Anal. Chem. 2021. Т. 76. № 1. С. 15.)

  18. Mekseriwattana W., Srisuk S., Kriangsaksri R., Niamsiri N., Prapainop K. The impact of serum proteins and surface chemistry on magnetic nanoparticle colloidal stability and cellular uptake in breast cancer cells // AAPS PharmSciTech. 2019. V. 20. P. 55. https://doi.org/10.1208/s12249-018-1275-x

  19. Timerbaev A.R. Analytical methodology for developing nanomaterials designed for magnetically-guided delivery of platinum anticancer drugs // Talanta. 2022. V. 243. Article 123371. https://doi.org/10.1016/j.talanta.2022.123371

  20. Nigam S., Chandra S., Newgreen D.F., Bahadur D., Chen Q. Poly (ethylene glycol)-modified PAMAM-Fe3O4-doxorubicin triads with the potential for improved therapeutic efficacy: generation-dependent increased drug loading and retention at neutral pH and increased release at acidic pH // Langmuir. 2014. V. 30. P. 1004. https://doi.org/10.1021/la404246h

  21. Gaihre B., Khil M.S., Lee D.R., Kim H.Y. Gelatin-coated magnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study // Int. J. Pharm. 2009. V. 365. P. 180. https://doi.org/10.1016/j.ijpharm.2008.08.020

  22. Lee J.E., Lee D.J., Lee N., Kim B.H., Choi S.H., Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for pH controlled drug release and dual modal imaging // J. Mater. Chem. 2011. V. 21. P. 16869. https://doi.org/10.1039/C1JM11869B

  23. N’Guyen T.T.T., Duong H.T.T., Basuki J., Montembault V., Pascual S., Guibert C., Fresnais J., Boyer C., Whittaker M.R., Davis T.P., Fontaine L. Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions // Angew. Chem. Int. Ed. 2013. V. 52. P. 14152. https://doi.org/10.1002/anie.201306724

  24. Yuan L., Tang Q., Yang D., Zhang J.Z., Zhang F., Hu J. Preparation of pH-responsivemesoporous silica nanoparticles and their application in controlled drug delivery // J. Phys. Chem. C. 2011. V. 115. P. 9926. https://doi.org/10.1021/jp201053d

  25. Shen J., He Q., Gao Y., Shi J., Li Y. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: Performance and mechanism // Nanoscale. 2011. V. 3. P. 4314. https://doi.org/10.1039/c1nr10580a

  26. Пряжников Д.В., Ефанова О.О., Киселева М.С., Кубракова И.В. Микроволновый синтез наноразмерных материалов типа “ядро–оболочка” на основе магнетита, функционализированного золотом и доксорубицином // Российские нанотехнологии. 2017. Т. 12. № 3–4. С. 69. doi: 10.1134/S1995078017020094 (Pryazhnikov D.V., Efanova O.O., Kiseleva M.S., Kubrakova I.V. Microwave synthesis of core–shell nanosize materials on the basis of magnetite functionalized with gold and doxorubicine // Nanotechnologies in Russia. 2017. V. 12. № 3–4. P. 199.)

  27. Liu J., Detrembleur C., De Pauw-Gillet M.-C., Mornet S., Vander Elst L., Laurent S., Jérôme C., Duguet E. Heat-triggered drug release systems based on mesoporous silica nanoparticles filled with a maghemite core and phase-change molecules as gatekeepers // J. Mater. Chem. B. 2014. V. 2. P. 59. https://doi.org/10.1039/c3tb21229g

  28. Ménard M., Meyer F., Affolter-Zbaraszczuk C., Rabineau M., Adam A., Duenas Ramirez P., Bégin-Colin S., Mertz D. Design of hybrid protein-coated magnetic core mesoporous silica shell nanocomposites for MRI and drug release assessed in a 3D tumor cell model // Nanotechnology. 2019. V. 30. № 17. Article 174001. https://doi.org/10.1088/1361-6528/aafe1c

  29. Wang Y., Wang B., Liao H., Song X., Wu H., Wang H., Shen H., Ma X., Tan M. Liposomal nanohybrid cerasomes for mitochondria-targeted drug delivery // J. Mater. Chem. B. 2015. V. 3. P. 7291. https://doi.org/10.1039/c5tb01197c

  30. Jin Y., Yue X., Zhang Q., Wu X., Cao Z., Dai Z. Cerasomal doxorubicin with long-term storage stability and controllable sustained release // Acta Biomaterialia. 2012. V. 8. P. 3372. https://doi.org/10.1016/j.actbio.2012.05.022

  31. Bixner O., Reimhult E. Controlled magnetosomes: Embedding of magnetic nanoparticles into membranes of monodisperse lipid vesicles // J. Colloid Interface Sci. 2016. V. 466. P. 62. https://doi.org/10.1016/j.jcis.2015.11.071

  32. Pryazhnikov D.V., Efanova O.O., Kubrakova I.V. Cerasomes containing magnetic nanoparticles: Synthesis and gel-filtration chromatographic characterization // Mendeleev Commun. 2019. V. 29. № 2. P. 226. https://doi.org/10.1016/j.mencom.2019.03.038

  33. Lu S., Li X., Zhang J., Peng C., Shen M., Shi X. Dendrimer-stabilized gold nanoflowers embedded with ultrasmall iron oxide nanoparticles for multimode imaging-guided combination therapy of tumors // Adv Sci (Weinh). 2018. V. 5. № 12. Article 1801612. https://doi.org/10.1002/advs.201801612

  34. Xu C., Sun S. New forms of superparamagnetic nanoparticles for biomedical applications // Adv. Drug Deliv. Rev. 2013. V. 65. P. 732. https://doi.org/10.1016/j.addr.2012.10.008

  35. Rios A., Zougagh M. Recent advances in magnetic nanomaterials for improving analytical processes // Trends Anal. Chem. 2016. V. 84 A. P. 72. https://doi.org/10.1016/j.trac.2016.03.001

  36. Alshehri S., Imam S.S., Rizwanullah M., Akhter S., Mahdi W., Kazi M., Ahmad J. Progress of cancer nanotechnology as diagnostics, therapeutics, and theranostics nanomedicine: preclinical promise and translational challenges // Pharmaceutics. 2021. V. 13. P. 24. https://doi.org/10.3390/pharmaceutics13010024

  37. Timerbaev A.R. How well can we characterize human serum transformations of magnetic nanoparticles // Analyst. 2020. V. 145. P. 1103. https://doi.org/10.1039/C9AN01920K

  38. Ke P.C., Lin S., Parak W.J., Davis T.P., Caruso F. Decade of the Protein Corona // ACS Nano. 2017. T. 11. № 12. P. 11773. https://doi.org/10.1021/acsnano.7b08008

  39. Куликова Г.А., Парфенюк Е.В. Поверхностные свойства модифицированных наноразмерных кремнеземов и их влияние на иммобилизацию человеческого сывороточного альбумина // Физикохимия поверхности и защита материалов. 2010. Т. 46. № 5. С. 473. (Kulikova G.A., Parfenyuk E.V. Surface properties of modified nanosized silica and their influence on human serum albumin immobilization // Prot. Met. Phys. Chem. Surf. 2010. Т. 46. № 5. P. 546.)

  40. Winzen S., Schoettler S., Baier G., Rosenauer C., Mailaender V., Landfester K., Mohr K. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition // Nanoscale. 2015. T. 7. № 7. C. 2992. https://doi.org/10.1039/c4nr05982d

  41. Lundqvist M., Stigler J., Elia G., Lynch I., Cedervall T., Dawson K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts // Proc. Natl. Acad. Sci. U.S.A. 2008. V. 105. № 38. P. 14265. https://doi.org/10.1073/pnas.0805135105

  42. Tenzer S., Docter D., Kuharev J., Musyanovych A., Fetz V., Hecht R., Schlenk F., Fischer D., Kiouptsi K., Reinhardt C., Landfester K., Schild H., Maskos M., Knauer S.K., Stauber R.H. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology // Nat. Nanotechnol. 2013. T. 8. № 10. P. 772. https://doi.org/10.1038/nnano.2013.181

  43. Sikorski J., Matczuk M., Kaminska A., Kruszewska J., Trzaskowski M., Timerbaev A.R., Jarosz M. Protein-mediated transformations of superparamagnetic nanoparticles evidenced by single-particle inductively coupled plasma tandem mass spectrometry: A disaggregation phenomenon // Int. J. Mol. Sci. 2022. V. 23. P. 1088. https://doi.org/10.3390/ijms23031088

  44. Rabel M., Warncke P., Grüttner C., Bergemann C., Kurland H.-D., Müller R., Dugandzic V., Thamm J., Muller R., Popp J., Cialla-May D., Fischer D. Simulation of the long-term fate of superparamagnetic iron oxide-based nanoparticles using simulated biological fluids // Nanomedicine. 2019. V. 14. P. 1681. https://doi.org/10.2217/nnm-2018-0382

  45. Gutiérrez L., Romero S., Da Silva G.B., Costo R., Vargas M.D., Ronconi C.M., Serna C.J., Veintemillas-Verdaguer S., Del Puerto Morales M. Degradation of magnetic nanoparticles mimicking lysosomal conditions followed by AC susceptibility // Biomed. Tech. 2015. V. 60. P. 417. https://doi.org/10.1515/bmt-2015-0043

  46. Rojas J.M., Gavilán H., Del Dedo V., Lorente-Sorolla E., Sanz-Ortega L., Da Silva G.B., Costo R., Perez-Yagüe S., Talelli M., Marciello M., Morales M.P., Barber D.F., Gutiérrez L. Time course assessment of the aggregation and metabolization of magnetic nanoparticles // Acta Biomater. 2017. V. 58. P. 181. https://doi.org/10.1016/j.actbio.2017.05.047

  47. Yurenya A., Nikitin A., Garanina A., Gabbasov R., Polikarpov M., Cherepanov V., Chuev M., Majouga A., Panchenko V. Synthesis and mössbauer study of 57Fe-based nanoparticles biodegradation in living cells // J. Magn. Magn. Mater. 2019. V. 474. P. 337. https://doi.org/10.1016/j.jmmm.2018.11.040

  48. Mazuel F., Espinosa A., Luciani N., Reffay M., Le Borgne R., Motte L., Desboeufs K., Michel A., Pellegrino T., Lalatonne Y., Wilhelm C. Massive intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue levels // ACS Nano. 2016. V. 10. P. 7627. https://doi.org/10.1021/acsnano.6b02876

  49. Седых Э.М., Дементьева О.В., Карцева М.Е., Румянцева Т.Б., Тунян А.А., Банных Л.Н., Громяк И.Н., Рудой В.М. Возможности методов атомной спектроскопии при анализе наночастиц на основе золота и серебра в синтезируемых золях и биологических объектах // Журн. аналит. химии. 2016. Т. 71. № 1. С. 65. doi: 10.7868/S0044450216010138 (Sedykh E.M., Dement’eva O.V., Kartseva M.E., Roumyantseva T.B., Tunyan A.A., Bannykh L.N., Gromyak I.N., Rudoy V.M. Possibilities of atomic spectroscopy in the analysis of gold-and silver-based nanoparticles in synthesized sols and biological samples // J. Anal. Chem. 2016. V. 71. P. 62.)

  50. Kruszewska J., Sikorski J., Samsonowicz-Górski J., Matczuk M. A CE-ICP-MS/MS method for the determination of superparamagnetic iron oxide nanoparticles under simulated physiological conditions // Anal. Bioanal. Chem. 2020. V. 412. P. 8145. https://doi.org/10.1007/s00216-020-02948-3

  51. Choi M.M.F., Douglas A.D., Murray R.W. Ion-pair chromatographic separation of water-soluble gold monolayer-protected clusters // Anal. Chem. 2006. V. 78. № 8. P. 2779. https://doi.org/10.1021/ac052167m

  52. Zhang Y., Shuang S., Dong C., Lo C.K., Paau M.C., Choi M.M.F. Application of HPLC and MALDI-TOF MS for studying As-synthesized ligand-protected gold nanoclusters products // Anal. Chem. 2009. V. 81. № 4. P. 1676. https://doi.org/10.1021/ac8026349

  53. Pace H.E., Rogers N.J., Jarolimek C., Coleman V.A., Higgins C.P., Ranville J.F. Correction to determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry // Anal. Chem. 2012. V. 84. P. 4633. https://doi.org/10.1021/ac201952t

  54. Levy M., Luciani N., Alloyeau D., Elgrabli D., Deveaux V., Pechoux C., Chat S., Wang G., Vats N., Gendron F., Factor C., Lotersztajn S., Luciani A., Wilhelm C., Gazeau F. Long term in vivo biotransformation of iron oxide nanoparticles // Biomaterials. 2011. V. 32. P. 3988. https://doi.org/10.1016/j.biomaterials.2011.02.031

  55. Montes-Bayón M., Corte-Rodríguez M., Álvarez-Fernández García R., Severo Fagundes J. Biomedical analysis by ICP-MS: A focus on single cell strategies / Comprehensive Analytical Chemistry. 2022. V. 97. Ch. 4. P. 109. https://doi.org/10.1016/bs.coac.2022.03.002

  56. Ivask A., Mitchell A.J., Malysheva A., Voelcker N.H., Lombi E. Methodologies and approaches for the analysis of cell nanoparticle interactions // Nanomed. Nanobiotechnol. 2018. V. 10. Article e1486. https://doi.org/10.1002/wnan.1486

  57. Yu X., He M., Chen B., Hu B. Recent advances in single-cell analysis by inductively coupled plasma-mass spectrometry: A review // Anal. Chim. Acta. 2020. V. 1137. P. 191. https://doi.org/10.1016/j.aca.2020.07.041

  58. Sun Q.-X., Wei X., Zhang S.-Q., Chen M.-L., Yang T., Wang J.-H. Single cell analysis for elucidating cellular uptake and transport of cobalt curcumin complex with detection by time-resolved ICPMS // Anal. Chim. Acta. 2019. V. 1066. P. 13. https://doi.org/10.1016/j.aca.2019.03.062

  59. García R.A.-F., Corte-Rodríguez M., Macke M., LeBlanc K., Mester Z., Montes-Bayon M., Bettmer J. Addressing the presence of biogenic selenium nanoparticles in yeast cells: Analytical strategies based on ICP-TQ-MS // Analyst. 2020. V. 145. P. 1457. https://doi.org/10.1039/c9an01565e

  60. Cao Y., Feng J., Tang L., Yu C., Mo G., Deng B. A highly efficient introduction system for single cell-ICP-MS and its application to detection of copper in single human red blood cells // Talanta. 2020. V. 206. Article 120174. https://doi.org/10.1016/j.talanta.2019.120174

  61. Amor M., Tharaud M., Gelabert A., Komeili A. Single-cell determination of iron content in magnetotactic bacteria: Implications for the iron biogeochemical cycle // Environ. Microbiol. 2020. V. 22. P. 823. https://doi.org/10.1111/1462-2920.14708

  62. Wang H., Wang M., Wang B., Zheng L., Chen H., Chai Z., Feng W. Interrogating the variation of element masses and distribution patterns in single cells using ICP-MS with a high efficiency cell introduction system // Anal. Bioanal. Chem. 2017. V. 409. P. 1415. https://doi.org/10.1007/s00216-016-0075-y

  63. Liu T., Bolea-Fernandez E., Mangodt C., De Wever O., Vanhaecke F. Single-event tandem ICP-mass spectrometry for the quantification of chemotherapeutic drug-derived Pt and endogenous elements in individual human cells // Anal. Chim. Acta. 2021. V. 1177. Article 338797. https://doi.org/10.1016/j.aca.2021.338797

  64. Hieftje G.M. Howard Malmshtadt – Toward the ideal // Spectrochim. Acta B. 2006. V. 61. P. 597. https://doi.org/10.1016/j.sab.2006.05.006

  65. Degueldre C., Favarger P.-Y. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: A feasibility study // Colloids Surf. A: Physicochem. Eng. Aspects. 2003. V. 217. P. 137. https://doi.org/10.1016/S0927-7757(02)00568-X

  66. Laborda F., Bolea E., Jiménez-Lamana J. Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples // Trends Environ. Anal. Chem. 2016. V. 9. P. 15.

  67. Bolea E., Jimenez M.S., Perez-Arantegui J., Vidal J.C., Bakir M., Ben-Jeddou K., Gimenez-Ingalaturre A.C., Ojeda D., Trujilloa C., Laborda F. Analytical applications of single particle inductively coupled plasma mass spectrometry: A comprehensive and critical review // Anal. Methods. 2021. V. 13. P. 2742. https://doi.org/10.1039/d1ay00761k

  68. Pace H.E., Rogers N.J., Jarolimek C., Coleman V.A., Higgins C.P., Ranville J.F. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry // Anal. Chem. 2011. V. 83. P. 9361. https://doi.org/10.1021/ac201952t

  69. Laborda F., Bolea E., Cepriá G., Gómez M.T., Jiménez M.S., Pérez Arantegui J., Castillo J.R. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples // Anal. Chim. Acta. 2016. V. 904. P. 10. https://doi.org/10.1016/j.aca.2015.11.008

  70. Laborda F., Gimenez-Ingalaturre A.C., Bolea E. Single-particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles: Metrological and quality issues // Compr. Anal. Chem. 2021. V. 93. P. 35. https://doi.org/10.1016/bs.coac.2021.02.012

  71. Abad-Alvaro I., Pena-Vazquez E., Bolea E., Bermejo-Barera P., Castillo J.R., Laborda F. Evaluation of number concentration quantification by single particle inductively coupled plasma mass spectrometry: Microsecond vs. millisecond dwell times // Anal. Bioanal. Chem. 2016. V. 408. P. 5089. https://doi.org/10.1007/s00216-016-9515-y

  72. Laborda F., Gimenez-Ingalaturre A.C., Bolea E., Castillo J.R. About detectability and limits of detection in single particle inductively coupled plasma mass spectrometry // Spectrochim. Acta B. 2020. V. 169. Article 105883. https://doi.org/10.1016/j.sab.2020.105883

  73. Lee S., Bi X., Reed R.B., Ranville J.F., Herckes P., Westerhoff P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements // Environ. Sci. Technol. 2014. V. 48. P. 10291. https://doi.org/10.1021/es502422v

  74. Vidmar J., Oprčkal P., Milačič R., Mladenovič A., Ščančar J. Investigation of the behaviour of zero-valent iron nanoparticles and their interactions with Cd2+ in wastewater by single particle ICP-MS // Sci. Total Environ. 2018. V. 634. P. 1259. https://doi.org/10.1016/j.scitotenv.2018.04.081

  75. Laycock A., Clark N.J., Clough R., Smith R., Handy R.D. Determination of metallic nanoparticles in biological samples by single particle ICP-MS: A systematic review from sample collection to analysis // Environ. Sci. Nano. 2022. V. 9. P. 420. https://doi.org/10.1039/d1en00680k

  76. Laborda F., Jiménez-Lamana J., Bolea E., Castillo J.R. Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS // J. Anal. At. Spectrom. 2013. V. 28. P. 1220. https://doi.org/10.1039/C3JA50100K

  77. Mozhayeva D., Engelhard C. A critical review of single particle inductively coupled plasma mass spectrometry – A step towards an ideal method for nanomaterial characterization // J. Anal. At. Spectrom. 2020. V. 35. P. 1740. https://doi.org/10.1039/C9JA00206E

  78. ISO/TS19590:2017. Nanotechnologies – Size distribution and concentration of inorganic nanoparticles in aqueous media via single particle inductively coupled plasma mass spectrometry. 2017. P. 19.

  79. Nelson J., Yamanaka M., Lopez-Linares F., Poirier L., Rogel E. Characterization of dissolved metals and metallic nanoparticles in asphaltene solutions by single particle inductively coupled plasma mass spectrometry // Energy Fuels. 2017. V. 31. P. 11971. https://doi.org/10.1021/ACS.ENERGYFUELS.7B02380

  80. Rua-Ibarza A., Bolea-Fernandez E., Pozo G., Dominguez-Benetton X., Vanhaecke F., Tirez K. Characterization of iron oxide nanoparticles by means of single-particle ICP-mass spectrometry (SP-ICP-MS) – Chemical versus physical resolution to overcome spectral overlap // J. Anal. At. Spectrom. 2020. V. 35. P. 2023. https://doi.org/10.1039/D0JA00183J

  81. Темердашев З.А., Галицкая О.А., Большов М.А., Романовский К.А. Определение размеров наночастиц серебра в водных дисперсиях методом масс-спектрометрии с индуктивно связанной плазмой в режиме детектирования одиночных частиц // Журн. аналит. химии. 2022. Т. 77. № 1. С. 39. https://doi.org/10.1039/D0JA00183J (Temerdashev Z.A., Galitskaya O.A., Romanovskii K.A., Bol’shov M.A. Determination of sizes of silver nanoparticles in an aqueous dispersions by single particle inductively coupled plasma mass spectrometry // J. Anal. Chem. 2022. V. 77. № 1. P. 53.)

  82. Venkatesan K.A., Rodríguez B.T., Marcotte A.R., Bi X., Schoepf J., Ranville J.F., Herckes P., Westerhoff P. Using single-particle ICP-MS for monitoring metal-containing particles in tap water // Environ. Sci.: Water Res. Technol. 2018. V. 4. P. 1923. https://doi.org/10.1039/C8EW00478A

  83. Nwoko K.C., Raab A., Cheyne L., Dawson D., Krupp E., Feldmann J. Matrix-dependent size modifications of iron oxide nanoparticles (Ferumoxytol) spiked into rat blood cells and plasma: Characterisation with TEM, AF4-UVMALS-ICP-MS/MS and spICP-MS // J. Chromatogr. B. 2019. V. 1124. P. 356. https://doi.org/10.1016/j.jchromb.2019.06.029

  84. Sun Y., Liu N., Wang Y., Yin Y., Qu G., Shi J., Song M., Hu L., He B., Liu G., Cai Y., Liang Y., Jiang G. Monitoring AuNP dynamics in the blood of a single mouse using single particle inductively coupled plasma mass spectrometry with an ultralow-volume high-efficiency introduction system // Anal. Chem. 2020. V. 92. P. 14872. https://doi.org/10.1021/acs.analchem.0c02285

  85. Bocca B., Battistini B., Petrucci F. Silver and gold anoparticles characterization by SP-ICP-MS and AF4-FFFMALS-UV-ICP-MS in human samples used for biomonitoring // Talanta. 2020. V. 220. Article 121404. https://doi.org/10.1016/j.talanta.2020.121404

  86. Van der Zande M., Vandebriel R.J., Van Doren E., Kramer E., Herrera Rivera Z., Serrano-Rojero C.S., Gremmer E.R., Mast J., Peters R.J.B., Hollman P.C.H., Hendriksen P.J.M., Marvin H.J.P., Peijnenburg A.A.C.M., Bouwmeester H. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure // ACS Nano. 2012. V. 6. P. 7427. https://doi.org/10.1021/nn302649p

  87. Logozzia M., Mizzonia D., Boccab B., Di Raimoa R., Petruccib F., Caimib S., Alimontib A., Falchic M., Cappellod F., Campanellad C., Bavisottod C.C., Davidd S., Bucchierid F., Angelinig D.F., Battistinig L., Faisa S. Human primary macrophages scavenge AuNPs and eliminate it through exosomes. A natural shuttling for nanomaterials // Eur. J. Pharm. Biopharm. 2019. V. 137. P. 23. https://doi.org/10.1016/j.ejpb.2019.02.014

  88. García R.Á.-F., Fernández-Iglesias N., López-Chaves C., Sánchez-González C., Llopis J., Montes-Bayón M., Bettmer J. Complementary techniques (spICP-MS, TEM, and HPLC-ICP-MS) reveal the degradation of 40 nm citrate- stabilized Au nanoparticles in rat liver after intraperitoneal injection // J. Trace Elem. Med. Biol. 2019. V. 55. P. 1. https://doi.org/10.1016/j.jtemb.2019.05.006

  89. Ebeling W., Hennrich N., Klockow M., Metz H., Orth H.D., Lang H. Proteinase K from Tritirachium album limber // Eur. J. Biochem. 1974. V. 47. P. 91. https://doi.org/10.1111/j.1432-1033.1974.tb03671.x

  90. Bajorath J., Hinrichs W., Saenger W. The enzymatic activity of proteinase K is controlled by calcium // Eur. J. Biochem. 1988. V. 176. P. 441. https://doi.org/10.1111/j.1432-1033.1988.tb14301.x

  91. Loeschner K., Navratilova J., Købler C., Mølhave K., Wagner S., Von der Kammer F., Larsen E.H. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS // Anal. Bioanal. Chem. 2013. V. 405. P. 8185. https://doi.org/10.1007/s00216-013-7228-z

  92. Johnson M.E., Hanna S.K., Bustos A.R.M., Sims C.M., Elliott L.C.C., Lingayat A., Johnston A.C., Nikoobakht B., Elliott J.T., Holbrook R.D., Scoto K.C.K., Murphy K.E., Petersen E.J., Yu L.L., Nelson B.C. Separation, sizing, and quantitation of engineered nanoparticles in an organism model using inductively coupled plasma mass spectrometry and image analysis // ACS Nano. 2017. V. 11. P. 526. https://doi.org/10.1021/acsnano.6b06582

  93. Noireaux J., Grall R., Hullo M., Chevillard S., Oster C., Brun E., Sicard-Roselli C., Loeschner K., Fisicaro P. Gold nanoparticle uptake in tumor cells: Quantification and size distribution by sp-ICPMS // Separations. 2019. V. 6. P. 3. https://doi.org/10.3390/separations6010003

  94. Zhou Q., Liu L., Liu N., He B., Hu L., Wang L. Determination and characterization of metal nanoparticles in clams and oysters // Ecotoxicol. Environ. Safety. 2020. V. 198. P. 110670. https://doi.org/10.1016/j.ecoenv.2020.110670

  95. Clark N.J., Clough R., Boyle D., Handy R.D. Development of a suitable detection method for silver nanoparticles in fish tissue using single particle ICP-MS // Environ. Sci.: Nano. 2019. V. 6. P. 3388. https://doi.org/10.1039/C9EN00547A

  96. Ishizaka T., Nagano K., Tasaki I., Tao H., Gao J.Q., Harada K., Hirata K., Saito S., Tsujino H., Higashisaka K., Tsutsumi Y. Optimization and evaluation of pretreatment method for sp-ICP-MS to reveal the distribution of silver nanoparticles in the body // Nanoscale Res. Lett. 2019. V. 14. P. 1. https://doi.org/10.1186/s11671-019-3016-9

  97. Vidmar J., Buerki-Thurnherr T., Loeschner K. Comparison of the suitability of alkaline or enzymatic sample pre-treatment for characterization of silver nanoparticles in human tissue by single particle ICP-MS // J. Anal. At. Spectrom. 2018. V. 33. № 5. P. 752. https://doi.org/10.1039/C7JA00402H

  98. Gao Ya., Zhang R., Sun H., Guo Y., Chen L., Shi X., Ge G. High-efficiency mechanically assisted alkaline extraction of nanoparticles from biological tissues for spICP-MS analysis // Anal. Bioanal. Chem. 2022. V. 414. P. 4401. https://doi.org/10.1007/s00216-022-03972-1

  99. Fernandez-Trujillo S., Rodríguez-Farinas N., Jimenez-Moreno M., Martín-Doimeadios R.D.C.R. Speciation of platinum nanoparticles in different cell culture media by HPLC-ICP-TQ-MS and complementary techniques: A contribution to toxicological assays // Anal. Chim. Acta. 2021. V. 1182. Article 338935. https://doi.org/10.1016/j.aca.2021.338935

  100. Turiel-Fernandez D., Guti’errez-Romero L., Corte-Rodriguez M., Bettmer J., Montes-Bayon M. Ultrasmall iron oxide nanoparticles cisplatin (IV) prodrug nanoconjugate: ICP-MS based strategies to evaluate the formation and drug delivery capabilities in single cells // Anal. Chim. Acta. 2021. V. 1159. Article 338356. https://doi.org/10.1016/j.aca.2021.338356

  101. Lores-Padín A., Pereiro R., Fernández B. Laser ablation ICP-MS: New instrumental developments, applications and trends / Recent Advances in Analytical Techniques. 2020. V. 4. P. 1. https://doi.org/10.2174/9789811405112120040003

  102. Metarapi D., Šala M., Vogel-Mikuš K., Šelih V.S., Van Elteren J.T. Nanoparticle analysis in biomaterials using laser ablation−single particle−inductively coupled plasma mass spectrometry // Anal. Chem. 2019. V. 91. P. 6200. https://doi.org/10.1021/acs.analchem.9b00853

  103. Metarapi D., van Elteren J.T., Šala M., Vogel-Mikuš K., Arčon I., Šelih V.S., Kolar M., Hočevar S.B. Laser ablation-single-particle-inductively coupled plasma mass spectrometry as a multimodality bioimaging tool in nano-based omics // Environ. Sci.: Nano. 2021. V. 8. P. 647.

  104. Sotebier C.A., Kutscher D.J., Rottmann L., Jakubowski N., Panne U., Bettmer J. Combination of single particle ICP-QMS and isotope dilution analysis for the determination of size, particle number and number size distribution of silver nanoparticles // J. Anal. At. Spectrom. 2016. V. 31. P. 2045.

Дополнительные материалы отсутствуют.